1 /* $OpenBSD: subr_hibernate.c,v 1.41 2012/07/11 16:19:04 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <uvm/uvm_swap.h> 34 #include <machine/hibernate.h> 35 36 /* Temporary vaddr ranges used during hibernate */ 37 vaddr_t hibernate_temp_page; 38 vaddr_t hibernate_copy_page; 39 40 /* Hibernate info as read from disk during resume */ 41 union hibernate_info disk_hiber_info; 42 paddr_t global_pig_start; 43 vaddr_t global_piglet_va; 44 45 /* 46 * Hib alloc enforced alignment. 47 */ 48 #define HIB_ALIGN 8 /* bytes alignment */ 49 50 /* 51 * sizeof builtin operation, but with alignment constraint. 52 */ 53 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 54 55 struct hiballoc_entry { 56 size_t hibe_use; 57 size_t hibe_space; 58 RB_ENTRY(hiballoc_entry) hibe_entry; 59 }; 60 61 /* 62 * Compare hiballoc entries based on the address they manage. 63 * 64 * Since the address is fixed, relative to struct hiballoc_entry, 65 * we just compare the hiballoc_entry pointers. 66 */ 67 static __inline int 68 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 69 { 70 return l < r ? -1 : (l > r); 71 } 72 73 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 74 75 /* 76 * Given a hiballoc entry, return the address it manages. 77 */ 78 static __inline void * 79 hib_entry_to_addr(struct hiballoc_entry *entry) 80 { 81 caddr_t addr; 82 83 addr = (caddr_t)entry; 84 addr += HIB_SIZEOF(struct hiballoc_entry); 85 return addr; 86 } 87 88 /* 89 * Given an address, find the hiballoc that corresponds. 90 */ 91 static __inline struct hiballoc_entry* 92 hib_addr_to_entry(void *addr_param) 93 { 94 caddr_t addr; 95 96 addr = (caddr_t)addr_param; 97 addr -= HIB_SIZEOF(struct hiballoc_entry); 98 return (struct hiballoc_entry*)addr; 99 } 100 101 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 102 103 /* 104 * Allocate memory from the arena. 105 * 106 * Returns NULL if no memory is available. 107 */ 108 void * 109 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 110 { 111 struct hiballoc_entry *entry, *new_entry; 112 size_t find_sz; 113 114 /* 115 * Enforce alignment of HIB_ALIGN bytes. 116 * 117 * Note that, because the entry is put in front of the allocation, 118 * 0-byte allocations are guaranteed a unique address. 119 */ 120 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 121 122 /* 123 * Find an entry with hibe_space >= find_sz. 124 * 125 * If the root node is not large enough, we switch to tree traversal. 126 * Because all entries are made at the bottom of the free space, 127 * traversal from the end has a slightly better chance of yielding 128 * a sufficiently large space. 129 */ 130 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 131 entry = RB_ROOT(&arena->hib_addrs); 132 if (entry != NULL && entry->hibe_space < find_sz) { 133 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 134 if (entry->hibe_space >= find_sz) 135 break; 136 } 137 } 138 139 /* 140 * Insufficient or too fragmented memory. 141 */ 142 if (entry == NULL) 143 return NULL; 144 145 /* 146 * Create new entry in allocated space. 147 */ 148 new_entry = (struct hiballoc_entry*)( 149 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 150 new_entry->hibe_space = entry->hibe_space - find_sz; 151 new_entry->hibe_use = alloc_sz; 152 153 /* 154 * Insert entry. 155 */ 156 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 157 panic("hib_alloc: insert failure"); 158 entry->hibe_space = 0; 159 160 /* Return address managed by entry. */ 161 return hib_entry_to_addr(new_entry); 162 } 163 164 /* 165 * Free a pointer previously allocated from this arena. 166 * 167 * If addr is NULL, this will be silently accepted. 168 */ 169 void 170 hib_free(struct hiballoc_arena *arena, void *addr) 171 { 172 struct hiballoc_entry *entry, *prev; 173 174 if (addr == NULL) 175 return; 176 177 /* 178 * Derive entry from addr and check it is really in this arena. 179 */ 180 entry = hib_addr_to_entry(addr); 181 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 182 panic("hib_free: freed item %p not in hib arena", addr); 183 184 /* 185 * Give the space in entry to its predecessor. 186 * 187 * If entry has no predecessor, change its used space into free space 188 * instead. 189 */ 190 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 191 if (prev != NULL && 192 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 193 prev->hibe_use + prev->hibe_space) == entry) { 194 /* Merge entry. */ 195 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 196 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 197 entry->hibe_use + entry->hibe_space; 198 } else { 199 /* Flip used memory to free space. */ 200 entry->hibe_space += entry->hibe_use; 201 entry->hibe_use = 0; 202 } 203 } 204 205 /* 206 * Initialize hiballoc. 207 * 208 * The allocator will manage memmory at ptr, which is len bytes. 209 */ 210 int 211 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 212 { 213 struct hiballoc_entry *entry; 214 caddr_t ptr; 215 size_t len; 216 217 RB_INIT(&arena->hib_addrs); 218 219 /* 220 * Hib allocator enforces HIB_ALIGN alignment. 221 * Fixup ptr and len. 222 */ 223 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 224 len = p_len - ((size_t)ptr - (size_t)p_ptr); 225 len &= ~((size_t)HIB_ALIGN - 1); 226 227 /* 228 * Insufficient memory to be able to allocate and also do bookkeeping. 229 */ 230 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 231 return ENOMEM; 232 233 /* 234 * Create entry describing space. 235 */ 236 entry = (struct hiballoc_entry*)ptr; 237 entry->hibe_use = 0; 238 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 239 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 240 241 return 0; 242 } 243 244 /* 245 * Zero all free memory. 246 */ 247 void 248 uvm_pmr_zero_everything(void) 249 { 250 struct uvm_pmemrange *pmr; 251 struct vm_page *pg; 252 int i; 253 254 uvm_lock_fpageq(); 255 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 256 /* Zero single pages. */ 257 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 258 != NULL) { 259 uvm_pmr_remove(pmr, pg); 260 uvm_pagezero(pg); 261 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 262 uvmexp.zeropages++; 263 uvm_pmr_insert(pmr, pg, 0); 264 } 265 266 /* Zero multi page ranges. */ 267 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 268 != NULL) { 269 pg--; /* Size tree always has second page. */ 270 uvm_pmr_remove(pmr, pg); 271 for (i = 0; i < pg->fpgsz; i++) { 272 uvm_pagezero(&pg[i]); 273 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 274 uvmexp.zeropages++; 275 } 276 uvm_pmr_insert(pmr, pg, 0); 277 } 278 } 279 uvm_unlock_fpageq(); 280 } 281 282 /* 283 * Mark all memory as dirty. 284 * 285 * Used to inform the system that the clean memory isn't clean for some 286 * reason, for example because we just came back from hibernate. 287 */ 288 void 289 uvm_pmr_dirty_everything(void) 290 { 291 struct uvm_pmemrange *pmr; 292 struct vm_page *pg; 293 int i; 294 295 uvm_lock_fpageq(); 296 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 297 /* Dirty single pages. */ 298 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 299 != NULL) { 300 uvm_pmr_remove(pmr, pg); 301 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 302 uvm_pmr_insert(pmr, pg, 0); 303 } 304 305 /* Dirty multi page ranges. */ 306 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 307 != NULL) { 308 pg--; /* Size tree always has second page. */ 309 uvm_pmr_remove(pmr, pg); 310 for (i = 0; i < pg->fpgsz; i++) 311 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 312 uvm_pmr_insert(pmr, pg, 0); 313 } 314 } 315 316 uvmexp.zeropages = 0; 317 uvm_unlock_fpageq(); 318 } 319 320 /* 321 * Allocate the highest address that can hold sz. 322 * 323 * sz in bytes. 324 */ 325 int 326 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pig_pg, *pg; 330 331 /* 332 * Convert sz to pages, since that is what pmemrange uses internally. 333 */ 334 sz = atop(round_page(sz)); 335 336 uvm_lock_fpageq(); 337 338 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 339 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 340 if (pig_pg->fpgsz >= sz) { 341 goto found; 342 } 343 } 344 } 345 346 /* 347 * Allocation failure. 348 */ 349 uvm_unlock_fpageq(); 350 return ENOMEM; 351 352 found: 353 /* Remove page from freelist. */ 354 uvm_pmr_remove_size(pmr, pig_pg); 355 pig_pg->fpgsz -= sz; 356 pg = pig_pg + pig_pg->fpgsz; 357 if (pig_pg->fpgsz == 0) 358 uvm_pmr_remove_addr(pmr, pig_pg); 359 else 360 uvm_pmr_insert_size(pmr, pig_pg); 361 362 uvmexp.free -= sz; 363 *addr = VM_PAGE_TO_PHYS(pg); 364 365 /* 366 * Update pg flags. 367 * 368 * Note that we trash the sz argument now. 369 */ 370 while (sz > 0) { 371 KASSERT(pg->pg_flags & PQ_FREE); 372 373 atomic_clearbits_int(&pg->pg_flags, 374 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 375 376 if (pg->pg_flags & PG_ZERO) 377 uvmexp.zeropages -= sz; 378 atomic_clearbits_int(&pg->pg_flags, 379 PG_ZERO|PQ_FREE); 380 381 pg->uobject = NULL; 382 pg->uanon = NULL; 383 pg->pg_version++; 384 385 /* 386 * Next. 387 */ 388 pg++; 389 sz--; 390 } 391 392 /* Return. */ 393 uvm_unlock_fpageq(); 394 return 0; 395 } 396 397 /* 398 * Allocate a piglet area. 399 * 400 * This is as low as possible. 401 * Piglets are aligned. 402 * 403 * sz and align in bytes. 404 * 405 * The call will sleep for the pagedaemon to attempt to free memory. 406 * The pagedaemon may decide its not possible to free enough memory, causing 407 * the allocation to fail. 408 */ 409 int 410 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 411 { 412 paddr_t pg_addr, piglet_addr; 413 struct uvm_pmemrange *pmr; 414 struct vm_page *pig_pg, *pg; 415 struct pglist pageq; 416 int pdaemon_woken; 417 vaddr_t piglet_va; 418 419 KASSERT((align & (align - 1)) == 0); 420 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 421 422 /* 423 * Fixup arguments: align must be at least PAGE_SIZE, 424 * sz will be converted to pagecount, since that is what 425 * pmemrange uses internally. 426 */ 427 if (align < PAGE_SIZE) 428 align = PAGE_SIZE; 429 sz = round_page(sz); 430 431 uvm_lock_fpageq(); 432 433 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 434 pmr_use) { 435 retry: 436 /* 437 * Search for a range with enough space. 438 * Use the address tree, to ensure the range is as low as 439 * possible. 440 */ 441 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 442 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 443 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 444 445 if (atop(pg_addr) + pig_pg->fpgsz >= 446 atop(piglet_addr) + atop(sz)) 447 goto found; 448 } 449 } 450 451 /* 452 * Try to coerse the pagedaemon into freeing memory 453 * for the piglet. 454 * 455 * pdaemon_woken is set to prevent the code from 456 * falling into an endless loop. 457 */ 458 if (!pdaemon_woken) { 459 pdaemon_woken = 1; 460 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 461 sz, UVM_PLA_FAILOK) == 0) 462 goto retry; 463 } 464 465 /* Return failure. */ 466 uvm_unlock_fpageq(); 467 return ENOMEM; 468 469 found: 470 /* 471 * Extract piglet from pigpen. 472 */ 473 TAILQ_INIT(&pageq); 474 uvm_pmr_extract_range(pmr, pig_pg, 475 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 476 477 *pa = piglet_addr; 478 uvmexp.free -= atop(sz); 479 480 /* 481 * Update pg flags. 482 * 483 * Note that we trash the sz argument now. 484 */ 485 TAILQ_FOREACH(pg, &pageq, pageq) { 486 KASSERT(pg->pg_flags & PQ_FREE); 487 488 atomic_clearbits_int(&pg->pg_flags, 489 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 490 491 if (pg->pg_flags & PG_ZERO) 492 uvmexp.zeropages--; 493 atomic_clearbits_int(&pg->pg_flags, 494 PG_ZERO|PQ_FREE); 495 496 pg->uobject = NULL; 497 pg->uanon = NULL; 498 pg->pg_version++; 499 } 500 501 uvm_unlock_fpageq(); 502 503 /* 504 * Now allocate a va. 505 * Use direct mappings for the pages. 506 */ 507 508 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 509 if (!piglet_va) { 510 uvm_pglistfree(&pageq); 511 return ENOMEM; 512 } 513 514 /* 515 * Map piglet to va. 516 */ 517 TAILQ_FOREACH(pg, &pageq, pageq) { 518 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 519 piglet_va += PAGE_SIZE; 520 } 521 pmap_update(pmap_kernel()); 522 523 return 0; 524 } 525 526 /* 527 * Free a piglet area. 528 */ 529 void 530 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 531 { 532 paddr_t pa; 533 struct vm_page *pg; 534 535 /* 536 * Fix parameters. 537 */ 538 sz = round_page(sz); 539 540 /* 541 * Find the first page in piglet. 542 * Since piglets are contiguous, the first pg is all we need. 543 */ 544 if (!pmap_extract(pmap_kernel(), va, &pa)) 545 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 546 pg = PHYS_TO_VM_PAGE(pa); 547 if (pg == NULL) 548 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 549 550 /* 551 * Unmap. 552 */ 553 pmap_kremove(va, sz); 554 pmap_update(pmap_kernel()); 555 556 /* 557 * Free the physical and virtual memory. 558 */ 559 uvm_pmr_freepages(pg, atop(sz)); 560 km_free((void *)va, sz, &kv_any, &kp_none); 561 } 562 563 /* 564 * Physmem RLE compression support. 565 * 566 * Given a physical page address, it will return the number of pages 567 * starting at the address, that are free. Clamps to the number of pages in 568 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 569 */ 570 int 571 uvm_page_rle(paddr_t addr) 572 { 573 struct vm_page *pg, *pg_end; 574 struct vm_physseg *vmp; 575 int pseg_idx, off_idx; 576 577 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 578 if (pseg_idx == -1) 579 return 0; 580 581 vmp = &vm_physmem[pseg_idx]; 582 pg = &vmp->pgs[off_idx]; 583 if (!(pg->pg_flags & PQ_FREE)) 584 return 0; 585 586 /* 587 * Search for the first non-free page after pg. 588 * Note that the page may not be the first page in a free pmemrange, 589 * therefore pg->fpgsz cannot be used. 590 */ 591 for (pg_end = pg; pg_end <= vmp->lastpg && 592 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 593 ; 594 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 595 } 596 597 /* 598 * Fills out the hibernate_info union pointed to by hiber_info 599 * with information about this machine (swap signature block 600 * offsets, number of memory ranges, kernel in use, etc) 601 */ 602 int 603 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 604 { 605 int chunktable_size; 606 struct disklabel dl; 607 char err_string[128], *dl_ret; 608 609 /* Determine I/O function to use */ 610 hiber_info->io_func = get_hibernate_io_function(); 611 if (hiber_info->io_func == NULL) 612 return (1); 613 614 /* Calculate hibernate device */ 615 hiber_info->device = swdevt[0].sw_dev; 616 617 /* Read disklabel (used to calculate signature and image offsets) */ 618 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 619 620 if (dl_ret) { 621 printf("Hibernate error reading disklabel: %s\n", dl_ret); 622 return (1); 623 } 624 625 hiber_info->secsize = dl.d_secsize; 626 627 /* Make sure the signature can fit in one block */ 628 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 629 630 /* Calculate swap offset from start of disk */ 631 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 632 633 /* Calculate signature block location */ 634 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 635 dl.d_partitions[1].p_size - 636 sizeof(union hibernate_info)/hiber_info->secsize; 637 638 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 639 640 /* Stash kernel version information */ 641 bzero(&hiber_info->kernel_version, 128); 642 bcopy(version, &hiber_info->kernel_version, 643 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 644 645 if (suspend) { 646 /* Allocate piglet region */ 647 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 648 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 649 HIBERNATE_CHUNK_SIZE)) { 650 printf("Hibernate failed to allocate the piglet\n"); 651 return (1); 652 } 653 hiber_info->io_page = (void *)hiber_info->piglet_va; 654 655 /* 656 * Initialize of the hibernate IO function (for drivers which 657 * need that) 658 */ 659 if (hiber_info->io_func(hiber_info->device, 0, 660 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 661 goto fail; 662 663 } else { 664 /* 665 * Resuming kernels use a regular I/O page since we won't 666 * have access to the suspended kernel's piglet VA at this 667 * point. No need to free this I/O page as it will vanish 668 * as part of the resume. 669 */ 670 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 671 if (!hiber_info->io_page) 672 return (1); 673 } 674 675 676 if (get_hibernate_info_md(hiber_info)) 677 goto fail; 678 679 /* Calculate memory image location */ 680 hiber_info->image_offset = dl.d_partitions[1].p_offset + 681 dl.d_partitions[1].p_size - 682 (hiber_info->image_size / hiber_info->secsize) - 683 sizeof(union hibernate_info)/hiber_info->secsize - 684 chunktable_size; 685 686 return (0); 687 fail: 688 if (suspend) 689 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 690 691 return (1); 692 } 693 694 /* 695 * Allocate nitems*size bytes from the hiballoc area presently in use 696 */ 697 void 698 *hibernate_zlib_alloc(void *unused, int nitems, int size) 699 { 700 struct hibernate_zlib_state *hibernate_state; 701 702 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 703 704 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 705 } 706 707 /* 708 * Free the memory pointed to by addr in the hiballoc area presently in 709 * use 710 */ 711 void 712 hibernate_zlib_free(void *unused, void *addr) 713 { 714 struct hibernate_zlib_state *hibernate_state; 715 716 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 717 718 hib_free(&hibernate_state->hiballoc_arena, addr); 719 } 720 721 /* 722 * Gets the next RLE value from the image stream 723 */ 724 int 725 hibernate_get_next_rle(void) 726 { 727 int rle, i; 728 struct hibernate_zlib_state *hibernate_state; 729 730 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 731 732 /* Read RLE code */ 733 hibernate_state->hib_stream.next_out = (char *)&rle; 734 hibernate_state->hib_stream.avail_out = sizeof(rle); 735 736 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 737 if (i != Z_OK && i != Z_STREAM_END) { 738 /* 739 * XXX - this will likely reboot/hang most machines, 740 * but there's not much else we can do here. 741 */ 742 panic("inflate rle error"); 743 } 744 745 /* Sanity check what RLE value we got */ 746 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 747 panic("invalid RLE code"); 748 749 if (i == Z_STREAM_END) 750 rle = -1; 751 752 return rle; 753 } 754 755 /* 756 * Inflate next page of data from the image stream 757 */ 758 int 759 hibernate_inflate_page(void) 760 { 761 struct hibernate_zlib_state *hibernate_state; 762 int i; 763 764 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 765 766 /* Set up the stream for inflate */ 767 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 768 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 769 770 /* Process next block of data */ 771 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 772 if (i != Z_OK && i != Z_STREAM_END) { 773 /* 774 * XXX - this will likely reboot/hang most machines, 775 * but there's not much else we can do here. 776 */ 777 778 panic("inflate error"); 779 } 780 781 /* We should always have extracted a full page ... */ 782 if (hibernate_state->hib_stream.avail_out != 0) 783 panic("incomplete page"); 784 785 return (i == Z_STREAM_END); 786 } 787 788 /* 789 * Inflate size bytes from src into dest, skipping any pages in 790 * [src..dest] that are special (see hibernate_inflate_skip) 791 * 792 * This function executes while using the resume-time stack 793 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 794 * will likely hang or reset the machine. 795 */ 796 void 797 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 798 paddr_t src, size_t size) 799 { 800 int rle, end_stream = 0 ; 801 struct hibernate_zlib_state *hibernate_state; 802 803 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 804 805 hibernate_state->hib_stream.next_in = (char *)src; 806 hibernate_state->hib_stream.avail_in = size; 807 808 do { 809 /* Flush cache and TLB */ 810 hibernate_flush(); 811 812 /* Consume RLE skipped pages */ 813 do { 814 rle = hibernate_get_next_rle(); 815 if (rle == -1) { 816 end_stream = 1; 817 goto next_page; 818 } 819 820 if (rle != 0) 821 dest += (rle * PAGE_SIZE); 822 823 } while (rle != 0); 824 825 /* 826 * Is this a special page? If yes, redirect the 827 * inflate output to a scratch page (eg, discard it) 828 */ 829 if (hibernate_inflate_skip(hiber_info, dest)) { 830 hibernate_enter_resume_mapping( 831 HIBERNATE_INFLATE_PAGE, 832 HIBERNATE_INFLATE_PAGE, 0); 833 } else { 834 hibernate_enter_resume_mapping( 835 HIBERNATE_INFLATE_PAGE, dest, 0); 836 } 837 838 hibernate_flush(); 839 end_stream = hibernate_inflate_page(); 840 841 next_page: 842 dest += PAGE_SIZE; 843 } while (!end_stream); 844 } 845 846 /* 847 * deflate from src into the I/O page, up to 'remaining' bytes 848 * 849 * Returns number of input bytes consumed, and may reset 850 * the 'remaining' parameter if not all the output space was consumed 851 * (this information is needed to know how much to write to disk 852 */ 853 size_t 854 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 855 size_t *remaining) 856 { 857 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 858 struct hibernate_zlib_state *hibernate_state; 859 860 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 861 862 /* Set up the stream for deflate */ 863 hibernate_state->hib_stream.next_in = (caddr_t)src; 864 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 865 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 866 (PAGE_SIZE - *remaining); 867 hibernate_state->hib_stream.avail_out = *remaining; 868 869 /* Process next block of data */ 870 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 871 panic("hibernate zlib deflate error"); 872 873 /* Update pointers and return number of bytes consumed */ 874 *remaining = hibernate_state->hib_stream.avail_out; 875 return (PAGE_SIZE - (src & PAGE_MASK)) - 876 hibernate_state->hib_stream.avail_in; 877 } 878 879 /* 880 * Write the hibernation information specified in hiber_info 881 * to the location in swap previously calculated (last block of 882 * swap), called the "signature block". 883 * 884 * Write the memory chunk table to the area in swap immediately 885 * preceding the signature block. 886 */ 887 int 888 hibernate_write_signature(union hibernate_info *hiber_info) 889 { 890 /* Write hibernate info to disk */ 891 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 892 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 893 hiber_info->io_page)); 894 } 895 896 /* 897 * Write the memory chunk table to the area in swap immediately 898 * preceding the signature block. The chunk table is stored 899 * in the piglet when this function is called. 900 */ 901 int 902 hibernate_write_chunktable(union hibernate_info *hiber_info) 903 { 904 struct hibernate_disk_chunk *chunks; 905 vaddr_t hibernate_chunk_table_start; 906 size_t hibernate_chunk_table_size; 907 daddr_t chunkbase; 908 int i; 909 910 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 911 912 chunkbase = hiber_info->sig_offset - 913 (hibernate_chunk_table_size / hiber_info->secsize); 914 915 hibernate_chunk_table_start = hiber_info->piglet_va + 916 HIBERNATE_CHUNK_SIZE; 917 918 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 919 HIBERNATE_CHUNK_SIZE); 920 921 /* Write chunk table */ 922 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 923 if (hiber_info->io_func(hiber_info->device, 924 chunkbase + (i/hiber_info->secsize), 925 (vaddr_t)(hibernate_chunk_table_start + i), 926 MAXPHYS, HIB_W, hiber_info->io_page)) 927 return (1); 928 } 929 930 return (0); 931 } 932 933 /* 934 * Write an empty hiber_info to the swap signature block, which is 935 * guaranteed to not match any valid hiber_info. 936 */ 937 int 938 hibernate_clear_signature(void) 939 { 940 union hibernate_info blank_hiber_info; 941 union hibernate_info hiber_info; 942 943 /* Zero out a blank hiber_info */ 944 bzero(&blank_hiber_info, sizeof(hiber_info)); 945 946 if (get_hibernate_info(&hiber_info, 0)) 947 return (1); 948 949 /* Write (zeroed) hibernate info to disk */ 950 if (hibernate_block_io(&hiber_info, 951 hiber_info.sig_offset - hiber_info.swap_offset, 952 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 953 panic("error hibernate write 6"); 954 955 return (0); 956 } 957 958 /* 959 * Check chunk range overlap when calculating whether or not to copy a 960 * compressed chunk to the piglet area before decompressing. 961 * 962 * returns zero if the ranges do not overlap, non-zero otherwise. 963 */ 964 int 965 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 966 { 967 /* case A : end of r1 overlaps start of r2 */ 968 if (r1s < r2s && r1e > r2s) 969 return (1); 970 971 /* case B : r1 entirely inside r2 */ 972 if (r1s >= r2s && r1e <= r2e) 973 return (1); 974 975 /* case C : r2 entirely inside r1 */ 976 if (r2s >= r1s && r2e <= r1e) 977 return (1); 978 979 /* case D : end of r2 overlaps start of r1 */ 980 if (r2s < r1s && r2e > r1s) 981 return (1); 982 983 return (0); 984 } 985 986 /* 987 * Compare two hibernate_infos to determine if they are the same (eg, 988 * we should be performing a hibernate resume on this machine. 989 * Not all fields are checked - just enough to verify that the machine 990 * has the same memory configuration and kernel as the one that 991 * wrote the signature previously. 992 */ 993 int 994 hibernate_compare_signature(union hibernate_info *mine, 995 union hibernate_info *disk) 996 { 997 u_int i; 998 999 if (mine->nranges != disk->nranges) 1000 return (1); 1001 1002 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 1003 return (1); 1004 1005 for (i = 0; i < mine->nranges; i++) { 1006 if ((mine->ranges[i].base != disk->ranges[i].base) || 1007 (mine->ranges[i].end != disk->ranges[i].end) ) 1008 return (1); 1009 } 1010 1011 return (0); 1012 } 1013 1014 /* 1015 * Transfers xfer_size bytes between the hibernate device specified in 1016 * hib_info at offset blkctr and the vaddr specified at dest. 1017 * 1018 * Separate offsets and pages are used to handle misaligned reads (reads 1019 * that span a page boundary). 1020 * 1021 * blkctr specifies a relative offset (relative to the start of swap), 1022 * not an absolute disk offset 1023 * 1024 */ 1025 int 1026 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1027 size_t xfer_size, vaddr_t dest, int iswrite) 1028 { 1029 struct buf *bp; 1030 struct bdevsw *bdsw; 1031 int error; 1032 1033 bp = geteblk(xfer_size); 1034 bdsw = &bdevsw[major(hib_info->device)]; 1035 1036 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1037 if (error) { 1038 printf("hibernate_block_io open failed\n"); 1039 return (1); 1040 } 1041 1042 if (iswrite) 1043 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1044 1045 bp->b_bcount = xfer_size; 1046 bp->b_blkno = blkctr; 1047 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1048 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1049 bp->b_dev = hib_info->device; 1050 bp->b_cylinder = 0; 1051 (*bdsw->d_strategy)(bp); 1052 1053 error = biowait(bp); 1054 if (error) { 1055 printf("hibernate_block_io biowait failed %d\n", error); 1056 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1057 curproc); 1058 if (error) 1059 printf("hibernate_block_io error close failed\n"); 1060 return (1); 1061 } 1062 1063 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1064 if (error) { 1065 printf("hibernate_block_io close failed\n"); 1066 return (1); 1067 } 1068 1069 if (!iswrite) 1070 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1071 1072 bp->b_flags |= B_INVAL; 1073 brelse(bp); 1074 1075 return (0); 1076 } 1077 1078 /* 1079 * Reads the signature block from swap, checks against the current machine's 1080 * information. If the information matches, perform a resume by reading the 1081 * saved image into the pig area, and unpacking. 1082 */ 1083 void 1084 hibernate_resume(void) 1085 { 1086 union hibernate_info hiber_info; 1087 int s; 1088 1089 /* Get current running machine's hibernate info */ 1090 bzero(&hiber_info, sizeof(hiber_info)); 1091 if (get_hibernate_info(&hiber_info, 0)) 1092 return; 1093 1094 /* Read hibernate info from disk */ 1095 s = splbio(); 1096 1097 if (hibernate_block_io(&hiber_info, 1098 hiber_info.sig_offset - hiber_info.swap_offset, 1099 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1100 panic("error in hibernate read"); 1101 1102 /* 1103 * If on-disk and in-memory hibernate signatures match, 1104 * this means we should do a resume from hibernate. 1105 */ 1106 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1107 splx(s); 1108 return; 1109 } 1110 1111 /* Read the image from disk into the image (pig) area */ 1112 if (hibernate_read_image(&disk_hiber_info)) 1113 goto fail; 1114 1115 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1116 goto fail; 1117 1118 (void) splhigh(); 1119 disable_intr(); 1120 cold = 1; 1121 1122 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1123 cold = 0; 1124 enable_intr(); 1125 goto fail; 1126 } 1127 1128 /* Point of no return ... */ 1129 1130 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1131 VM_PROT_ALL); 1132 pmap_activate(curproc); 1133 1134 /* Switch stacks */ 1135 hibernate_switch_stack_machdep(); 1136 1137 /* 1138 * Image is now in high memory (pig area), copy to correct location 1139 * in memory. We'll eventually end up copying on top of ourself, but 1140 * we are assured the kernel code here is the same between the 1141 * hibernated and resuming kernel, and we are running on our own 1142 * stack, so the overwrite is ok. 1143 */ 1144 hibernate_unpack_image(&disk_hiber_info); 1145 1146 /* 1147 * Resume the loaded kernel by jumping to the MD resume vector. 1148 * We won't be returning from this call. 1149 */ 1150 hibernate_resume_machdep(); 1151 1152 fail: 1153 splx(s); 1154 printf("Unable to resume hibernated image\n"); 1155 } 1156 1157 /* 1158 * Unpack image from pig area to original location by looping through the 1159 * list of output chunks in the order they should be restored (fchunks). 1160 * This ordering is used to avoid having inflate overwrite a chunk in the 1161 * middle of processing that chunk. This will, of course, happen during the 1162 * final output chunk, where we copy the chunk to the piglet area first, 1163 * before inflating. 1164 */ 1165 void 1166 hibernate_unpack_image(union hibernate_info *hiber_info) 1167 { 1168 struct hibernate_disk_chunk *chunks; 1169 union hibernate_info local_hiber_info; 1170 paddr_t image_cur = global_pig_start; 1171 int *fchunks, i; 1172 char *pva = (char *)hiber_info->piglet_va; 1173 struct hibernate_zlib_state *hibernate_state; 1174 1175 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1176 1177 /* Mask off based on arch-specific piglet page size */ 1178 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1179 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1180 1181 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1182 1183 /* Can't use hiber_info that's passed in after this point */ 1184 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1185 1186 hibernate_activate_resume_pt_machdep(); 1187 1188 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1189 /* Reset zlib for inflate */ 1190 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1191 panic("hibernate failed to reset zlib for inflate"); 1192 1193 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1194 image_cur); 1195 1196 image_cur += chunks[fchunks[i]].compressed_size; 1197 1198 } 1199 } 1200 1201 /* 1202 * Process a chunk by ensuring its proper placement, followed by unpacking 1203 */ 1204 void 1205 hibernate_process_chunk(union hibernate_info *hiber_info, 1206 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1207 { 1208 char *pva = (char *)hiber_info->piglet_va; 1209 1210 /* 1211 * If there is a conflict, copy the chunk to the piglet area 1212 * before unpacking it to its original location. 1213 */ 1214 if ((chunk->flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1215 hibernate_inflate_region(hiber_info, chunk->base, 1216 img_cur, chunk->compressed_size); 1217 else { 1218 bcopy((caddr_t)img_cur, 1219 pva + (HIBERNATE_CHUNK_SIZE * 2), 1220 chunk->compressed_size); 1221 hibernate_inflate_region(hiber_info, chunk->base, 1222 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1223 chunk->compressed_size); 1224 } 1225 } 1226 1227 /* 1228 * Write a compressed version of this machine's memory to disk, at the 1229 * precalculated swap offset: 1230 * 1231 * end of swap - signature block size - chunk table size - memory size 1232 * 1233 * The function begins by looping through each phys mem range, cutting each 1234 * one into MD sized chunks. These chunks are then compressed individually 1235 * and written out to disk, in phys mem order. Some chunks might compress 1236 * more than others, and for this reason, each chunk's size is recorded 1237 * in the chunk table, which is written to disk after the image has 1238 * properly been compressed and written (in hibernate_write_chunktable). 1239 * 1240 * When this function is called, the machine is nearly suspended - most 1241 * devices are quiesced/suspended, interrupts are off, and cold has 1242 * been set. This means that there can be no side effects once the 1243 * write has started, and the write function itself can also have no 1244 * side effects. This also means no printfs are permitted (since it 1245 * has side effects.) 1246 */ 1247 int 1248 hibernate_write_chunks(union hibernate_info *hiber_info) 1249 { 1250 paddr_t range_base, range_end, inaddr, temp_inaddr; 1251 size_t nblocks, out_remaining, used; 1252 struct hibernate_disk_chunk *chunks; 1253 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1254 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1255 int i, rle; 1256 struct hibernate_zlib_state *hibernate_state; 1257 1258 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1259 1260 hiber_info->chunk_ctr = 0; 1261 1262 /* 1263 * Allocate VA for the temp and copy page. 1264 * These will becomee part of the suspended kernel and will 1265 * be freed in hibernate_free, upon resume. 1266 */ 1267 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1268 &kp_none, &kd_nowait); 1269 if (!hibernate_temp_page) 1270 return (1); 1271 1272 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1273 &kp_none, &kd_nowait); 1274 if (!hibernate_copy_page) 1275 return (1); 1276 1277 pmap_kenter_pa(hibernate_copy_page, 1278 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1279 1280 /* XXX - not needed on all archs */ 1281 pmap_activate(curproc); 1282 1283 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1284 HIBERNATE_CHUNK_SIZE); 1285 1286 /* Calculate the chunk regions */ 1287 for (i = 0; i < hiber_info->nranges; i++) { 1288 range_base = hiber_info->ranges[i].base; 1289 range_end = hiber_info->ranges[i].end; 1290 1291 inaddr = range_base; 1292 1293 while (inaddr < range_end) { 1294 chunks[hiber_info->chunk_ctr].base = inaddr; 1295 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1296 chunks[hiber_info->chunk_ctr].end = inaddr + 1297 HIBERNATE_CHUNK_SIZE; 1298 else 1299 chunks[hiber_info->chunk_ctr].end = range_end; 1300 1301 inaddr += HIBERNATE_CHUNK_SIZE; 1302 hiber_info->chunk_ctr ++; 1303 } 1304 } 1305 1306 /* Compress and write the chunks in the chunktable */ 1307 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1308 range_base = chunks[i].base; 1309 range_end = chunks[i].end; 1310 1311 chunks[i].offset = blkctr; 1312 1313 /* Reset zlib for deflate */ 1314 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1315 return (1); 1316 1317 inaddr = range_base; 1318 1319 /* 1320 * For each range, loop through its phys mem region 1321 * and write out the chunks (the last chunk might be 1322 * smaller than the chunk size). 1323 */ 1324 while (inaddr < range_end) { 1325 out_remaining = PAGE_SIZE; 1326 while (out_remaining > 0 && inaddr < range_end) { 1327 1328 /* 1329 * Adjust for regions that are not evenly 1330 * divisible by PAGE_SIZE or overflowed 1331 * pages from the previous iteration. 1332 */ 1333 temp_inaddr = (inaddr & PAGE_MASK) + 1334 hibernate_copy_page; 1335 1336 if (hibernate_inflate_skip(hiber_info, inaddr)) 1337 rle = 1; 1338 else 1339 rle = uvm_page_rle(inaddr); 1340 1341 while (rle != 0 && inaddr < range_end) { 1342 hibernate_state->hib_stream.next_in = 1343 (char *)&rle; 1344 hibernate_state->hib_stream.avail_in = 1345 sizeof(rle); 1346 hibernate_state->hib_stream.next_out = 1347 (caddr_t)hibernate_io_page + 1348 (PAGE_SIZE - out_remaining); 1349 hibernate_state->hib_stream.avail_out = 1350 out_remaining; 1351 1352 if (deflate(&hibernate_state->hib_stream, 1353 Z_PARTIAL_FLUSH) != Z_OK) 1354 return (1); 1355 1356 out_remaining = 1357 hibernate_state->hib_stream.avail_out; 1358 inaddr += (rle * PAGE_SIZE); 1359 if (inaddr > range_end) 1360 inaddr = range_end; 1361 else 1362 rle = uvm_page_rle(inaddr); 1363 } 1364 1365 if (out_remaining == 0) { 1366 /* Filled up the page */ 1367 nblocks = PAGE_SIZE / hiber_info->secsize; 1368 1369 if (hiber_info->io_func(hiber_info->device, 1370 blkctr, (vaddr_t)hibernate_io_page, 1371 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1372 return (1); 1373 1374 blkctr += nblocks; 1375 out_remaining = PAGE_SIZE; 1376 } 1377 1378 /* Write '0' RLE code */ 1379 if (inaddr < range_end) { 1380 hibernate_state->hib_stream.next_in = 1381 (char *)&rle; 1382 hibernate_state->hib_stream.avail_in = 1383 sizeof(rle); 1384 hibernate_state->hib_stream.next_out = 1385 (caddr_t)hibernate_io_page + 1386 (PAGE_SIZE - out_remaining); 1387 hibernate_state->hib_stream.avail_out = 1388 out_remaining; 1389 1390 if (deflate(&hibernate_state->hib_stream, 1391 Z_PARTIAL_FLUSH) != Z_OK) 1392 return (1); 1393 1394 out_remaining = 1395 hibernate_state->hib_stream.avail_out; 1396 } 1397 1398 if (out_remaining == 0) { 1399 /* Filled up the page */ 1400 nblocks = PAGE_SIZE / hiber_info->secsize; 1401 1402 if (hiber_info->io_func(hiber_info->device, 1403 blkctr, (vaddr_t)hibernate_io_page, 1404 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1405 return (1); 1406 1407 blkctr += nblocks; 1408 out_remaining = PAGE_SIZE; 1409 } 1410 1411 /* Deflate from temp_inaddr to IO page */ 1412 if (inaddr != range_end) { 1413 pmap_kenter_pa(hibernate_temp_page, 1414 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1415 1416 /* XXX - not needed on all archs */ 1417 pmap_activate(curproc); 1418 1419 bcopy((caddr_t)hibernate_temp_page, 1420 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1421 inaddr += hibernate_deflate(hiber_info, 1422 temp_inaddr, &out_remaining); 1423 } 1424 } 1425 1426 if (out_remaining == 0) { 1427 /* Filled up the page */ 1428 nblocks = PAGE_SIZE / hiber_info->secsize; 1429 1430 if (hiber_info->io_func(hiber_info->device, 1431 blkctr, (vaddr_t)hibernate_io_page, 1432 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1433 return (1); 1434 1435 blkctr += nblocks; 1436 } 1437 } 1438 1439 if (inaddr != range_end) 1440 return (1); 1441 1442 /* 1443 * End of range. Round up to next secsize bytes 1444 * after finishing compress 1445 */ 1446 if (out_remaining == 0) 1447 out_remaining = PAGE_SIZE; 1448 1449 /* Finish compress */ 1450 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1451 hibernate_state->hib_stream.avail_in = 0; 1452 hibernate_state->hib_stream.next_out = 1453 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1454 hibernate_state->hib_stream.avail_out = out_remaining; 1455 1456 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1457 Z_STREAM_END) 1458 return (1); 1459 1460 out_remaining = hibernate_state->hib_stream.avail_out; 1461 1462 used = PAGE_SIZE - out_remaining; 1463 nblocks = used / hiber_info->secsize; 1464 1465 /* Round up to next block if needed */ 1466 if (used % hiber_info->secsize != 0) 1467 nblocks ++; 1468 1469 /* Write final block(s) for this chunk */ 1470 if (hiber_info->io_func(hiber_info->device, blkctr, 1471 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1472 HIB_W, hiber_info->io_page)) 1473 return (1); 1474 1475 blkctr += nblocks; 1476 1477 offset = blkctr; 1478 chunks[i].compressed_size = (offset - chunks[i].offset) * 1479 hiber_info->secsize; 1480 } 1481 1482 return (0); 1483 } 1484 1485 /* 1486 * Reset the zlib stream state and allocate a new hiballoc area for either 1487 * inflate or deflate. This function is called once for each hibernate chunk. 1488 * Calling hiballoc_init multiple times is acceptable since the memory it is 1489 * provided is unmanaged memory (stolen). We use the memory provided to us 1490 * by the piglet allocated via the supplied hiber_info. 1491 */ 1492 int 1493 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1494 { 1495 vaddr_t hibernate_zlib_start; 1496 size_t hibernate_zlib_size; 1497 char *pva = (char *)hiber_info->piglet_va; 1498 struct hibernate_zlib_state *hibernate_state; 1499 1500 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1501 1502 if(!deflate) 1503 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1504 1505 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1506 hibernate_zlib_size = 80 * PAGE_SIZE; 1507 1508 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1509 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1510 1511 /* Set up stream structure */ 1512 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1513 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1514 1515 /* Initialize the hiballoc arena for zlib allocs/frees */ 1516 hiballoc_init(&hibernate_state->hiballoc_arena, 1517 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1518 1519 if (deflate) { 1520 return deflateInit(&hibernate_state->hib_stream, 1521 Z_BEST_SPEED); 1522 } else 1523 return inflateInit(&hibernate_state->hib_stream); 1524 } 1525 1526 /* 1527 * Reads the hibernated memory image from disk, whose location and 1528 * size are recorded in hiber_info. Begin by reading the persisted 1529 * chunk table, which records the original chunk placement location 1530 * and compressed size for each. Next, allocate a pig region of 1531 * sufficient size to hold the compressed image. Next, read the 1532 * chunks into the pig area (calling hibernate_read_chunks to do this), 1533 * and finally, if all of the above succeeds, clear the hibernate signature. 1534 * The function will then return to hibernate_resume, which will proceed 1535 * to unpack the pig image to the correct place in memory. 1536 */ 1537 int 1538 hibernate_read_image(union hibernate_info *hiber_info) 1539 { 1540 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1541 paddr_t image_start, image_end, pig_start, pig_end; 1542 struct hibernate_disk_chunk *chunks; 1543 daddr_t blkctr; 1544 vaddr_t chunktable = (vaddr_t)NULL; 1545 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1546 HIBERNATE_CHUNK_SIZE; 1547 int i; 1548 1549 pmap_activate(curproc); 1550 1551 /* Calculate total chunk table size in disk blocks */ 1552 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1553 1554 blkctr = hiber_info->sig_offset - chunktable_size - 1555 hiber_info->swap_offset; 1556 1557 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1558 &kp_none, &kd_nowait); 1559 1560 if (!chunktable) 1561 return (1); 1562 1563 /* Read the chunktable from disk into the piglet chunktable */ 1564 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1565 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1566 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1567 pmap_update(pmap_kernel()); 1568 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1569 chunktable + i, 0); 1570 } 1571 1572 blkctr = hiber_info->image_offset; 1573 compressed_size = 0; 1574 1575 chunks = (struct hibernate_disk_chunk *)chunktable; 1576 1577 for (i = 0; i < hiber_info->chunk_ctr; i++) 1578 compressed_size += chunks[i].compressed_size; 1579 1580 disk_size = compressed_size; 1581 1582 /* Allocate the pig area */ 1583 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1584 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1585 return (1); 1586 1587 pig_end = pig_start + pig_sz; 1588 1589 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1590 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1591 image_start = pig_start; 1592 1593 image_start = image_end - disk_size; 1594 1595 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1596 chunks); 1597 1598 pmap_kremove(chunktable, PAGE_SIZE); 1599 pmap_update(pmap_kernel()); 1600 1601 /* Prepare the resume time pmap/page table */ 1602 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1603 1604 /* Read complete, clear the signature and return */ 1605 return hibernate_clear_signature(); 1606 } 1607 1608 /* 1609 * Read the hibernated memory chunks from disk (chunk information at this 1610 * point is stored in the piglet) into the pig area specified by 1611 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1612 * only chunk with overlap possibilities. 1613 */ 1614 int 1615 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1616 paddr_t pig_end, size_t image_compr_size, 1617 struct hibernate_disk_chunk *chunks) 1618 { 1619 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1620 paddr_t copy_start, copy_end, piglet_cur; 1621 paddr_t piglet_base = hib_info->piglet_pa; 1622 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1623 daddr_t blkctr; 1624 size_t processed, compressed_size, read_size; 1625 int i, j, overlap, found, nchunks; 1626 int nochunks = 0, nfchunks = 0, npchunks = 0; 1627 int *ochunks, *pchunks, *fchunks; 1628 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1629 1630 global_pig_start = pig_start; 1631 1632 /* XXX - dont need this on all archs */ 1633 pmap_activate(curproc); 1634 1635 /* 1636 * These mappings go into the resuming kernel's page table, and are 1637 * used only during image read. They dissappear from existence 1638 * when the suspended kernel is unpacked on top of us. 1639 */ 1640 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1641 if (!tempva) 1642 return (1); 1643 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1644 &kp_none, &kd_nowait); 1645 if (!hibernate_fchunk_area) 1646 return (1); 1647 1648 /* Temporary output chunk ordering VA */ 1649 ochunks = (int *)hibernate_fchunk_area; 1650 1651 /* Piglet chunk ordering VA */ 1652 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1653 1654 /* Final chunk ordering VA */ 1655 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1656 1657 /* Map the chunk ordering region */ 1658 pmap_kenter_pa(hibernate_fchunk_area, 1659 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1660 pmap_update(pmap_kernel()); 1661 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1662 VM_PROT_ALL); 1663 pmap_update(pmap_kernel()); 1664 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1665 VM_PROT_ALL); 1666 pmap_update(pmap_kernel()); 1667 1668 nchunks = hib_info->chunk_ctr; 1669 1670 /* Initially start all chunks as unplaced */ 1671 for (i = 0; i < nchunks; i++) 1672 chunks[i].flags = 0; 1673 1674 /* 1675 * Search the list for chunks that are outside the pig area. These 1676 * can be placed first in the final output list. 1677 */ 1678 for (i = 0; i < nchunks; i++) { 1679 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1680 ochunks[nochunks] = i; 1681 fchunks[nfchunks] = i; 1682 nochunks++; 1683 nfchunks++; 1684 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1685 } 1686 } 1687 1688 /* 1689 * Walk the ordering, place the chunks in ascending memory order. 1690 * Conflicts might arise, these are handled next. 1691 */ 1692 do { 1693 img_index = -1; 1694 found = 0; 1695 j = -1; 1696 for (i = 0; i < nchunks; i++) 1697 if (chunks[i].base < img_index && 1698 chunks[i].flags == 0 ) { 1699 j = i; 1700 img_index = chunks[i].base; 1701 } 1702 1703 if (j != -1) { 1704 found = 1; 1705 ochunks[nochunks] = (short)j; 1706 nochunks++; 1707 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1708 } 1709 } while (found); 1710 1711 img_index = pig_start; 1712 1713 /* 1714 * Identify chunk output conflicts (chunks whose pig load area 1715 * corresponds to their original memory placement location) 1716 */ 1717 for (i = 0; i < nochunks ; i++) { 1718 overlap = 0; 1719 r1s = img_index; 1720 r1e = img_index + chunks[ochunks[i]].compressed_size; 1721 r2s = chunks[ochunks[i]].base; 1722 r2e = chunks[ochunks[i]].end; 1723 1724 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1725 if (overlap) 1726 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1727 img_index += chunks[ochunks[i]].compressed_size; 1728 } 1729 1730 /* 1731 * Prepare the final output chunk list. Calculate an output 1732 * inflate strategy for overlapping chunks if needed. 1733 */ 1734 img_index = pig_start; 1735 for (i = 0; i < nochunks ; i++) { 1736 /* 1737 * If a conflict is detected, consume enough compressed 1738 * output chunks to fill the piglet 1739 */ 1740 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1741 copy_start = piglet_base; 1742 copy_end = piglet_end; 1743 piglet_cur = piglet_base; 1744 npchunks = 0; 1745 j = i; 1746 1747 while (copy_start < copy_end && j < nochunks) { 1748 piglet_cur += chunks[ochunks[j]].compressed_size; 1749 pchunks[npchunks] = ochunks[j]; 1750 npchunks++; 1751 copy_start += chunks[ochunks[j]].compressed_size; 1752 img_index += chunks[ochunks[j]].compressed_size; 1753 i++; 1754 j++; 1755 } 1756 1757 piglet_cur = piglet_base; 1758 for (j = 0; j < npchunks; j++) { 1759 piglet_cur += chunks[pchunks[j]].compressed_size; 1760 fchunks[nfchunks] = pchunks[j]; 1761 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1762 nfchunks++; 1763 } 1764 } else { 1765 /* 1766 * No conflict, chunk can be added without copying 1767 */ 1768 if ((chunks[ochunks[i]].flags & 1769 HIBERNATE_CHUNK_USED) == 0) { 1770 fchunks[nfchunks] = ochunks[i]; 1771 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1772 nfchunks++; 1773 } 1774 img_index += chunks[ochunks[i]].compressed_size; 1775 } 1776 } 1777 1778 img_index = pig_start; 1779 for (i = 0; i < nfchunks; i++) { 1780 piglet_cur = piglet_base; 1781 img_index += chunks[fchunks[i]].compressed_size; 1782 } 1783 1784 img_cur = pig_start; 1785 1786 for (i = 0; i < nfchunks; i++) { 1787 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1788 processed = 0; 1789 compressed_size = chunks[fchunks[i]].compressed_size; 1790 1791 while (processed < compressed_size) { 1792 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1793 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1794 VM_PROT_ALL); 1795 pmap_update(pmap_kernel()); 1796 1797 if (compressed_size - processed >= PAGE_SIZE) 1798 read_size = PAGE_SIZE; 1799 else 1800 read_size = compressed_size - processed; 1801 1802 hibernate_block_io(hib_info, blkctr, read_size, 1803 tempva + (img_cur & PAGE_MASK), 0); 1804 1805 blkctr += (read_size / hib_info->secsize); 1806 1807 hibernate_flush(); 1808 pmap_kremove(tempva, PAGE_SIZE); 1809 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1810 processed += read_size; 1811 img_cur += read_size; 1812 } 1813 } 1814 1815 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1816 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1817 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1818 pmap_update(pmap_kernel()); 1819 1820 return (0); 1821 } 1822 1823 /* 1824 * Hibernating a machine comprises the following operations: 1825 * 1. Calculating this machine's hibernate_info information 1826 * 2. Allocating a piglet and saving the piglet's physaddr 1827 * 3. Calculating the memory chunks 1828 * 4. Writing the compressed chunks to disk 1829 * 5. Writing the chunk table 1830 * 6. Writing the signature block (hibernate_info) 1831 * 1832 * On most architectures, the function calling hibernate_suspend would 1833 * then power off the machine using some MD-specific implementation. 1834 */ 1835 int 1836 hibernate_suspend(void) 1837 { 1838 union hibernate_info hib_info; 1839 size_t swap_size; 1840 1841 /* 1842 * Calculate memory ranges, swap offsets, etc. 1843 * This also allocates a piglet whose physaddr is stored in 1844 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1845 */ 1846 if (get_hibernate_info(&hib_info, 1)) 1847 return (1); 1848 1849 swap_size = hib_info.image_size + hib_info.secsize + 1850 HIBERNATE_CHUNK_TABLE_SIZE; 1851 1852 if (uvm_swap_check_range(hib_info.device, swap_size)) { 1853 printf("insufficient swap space for hibernate\n"); 1854 return (1); 1855 } 1856 1857 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1858 VM_PROT_ALL); 1859 pmap_activate(curproc); 1860 1861 /* Stash the piglet VA so we can free it in the resuming kernel */ 1862 global_piglet_va = hib_info.piglet_va; 1863 1864 if (hibernate_write_chunks(&hib_info)) 1865 return (1); 1866 1867 if (hibernate_write_chunktable(&hib_info)) 1868 return (1); 1869 1870 if (hibernate_write_signature(&hib_info)) 1871 return (1); 1872 1873 delay(500000); 1874 return (0); 1875 } 1876 1877 /* 1878 * Free items allocated by hibernate_suspend() 1879 */ 1880 void 1881 hibernate_free(void) 1882 { 1883 if (global_piglet_va) 1884 uvm_pmr_free_piglet(global_piglet_va, 1885 3*HIBERNATE_CHUNK_SIZE); 1886 1887 if (hibernate_copy_page) 1888 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1889 if (hibernate_temp_page) 1890 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1891 1892 pmap_update(pmap_kernel()); 1893 1894 if (hibernate_copy_page) 1895 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1896 &kv_any, &kp_none); 1897 if (hibernate_temp_page) 1898 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1899 &kv_any, &kp_none); 1900 1901 global_piglet_va = 0; 1902 hibernate_copy_page = 0; 1903 hibernate_temp_page = 0; 1904 } 1905