1 /* $OpenBSD: subr_hibernate.c,v 1.40 2012/07/09 09:47:42 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 /* Temporary vaddr ranges used during hibernate */ 36 vaddr_t hibernate_temp_page; 37 vaddr_t hibernate_copy_page; 38 39 /* Hibernate info as read from disk during resume */ 40 union hibernate_info disk_hiber_info; 41 paddr_t global_pig_start; 42 vaddr_t global_piglet_va; 43 44 /* 45 * Hib alloc enforced alignment. 46 */ 47 #define HIB_ALIGN 8 /* bytes alignment */ 48 49 /* 50 * sizeof builtin operation, but with alignment constraint. 51 */ 52 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 53 54 struct hiballoc_entry { 55 size_t hibe_use; 56 size_t hibe_space; 57 RB_ENTRY(hiballoc_entry) hibe_entry; 58 }; 59 60 /* 61 * Compare hiballoc entries based on the address they manage. 62 * 63 * Since the address is fixed, relative to struct hiballoc_entry, 64 * we just compare the hiballoc_entry pointers. 65 */ 66 static __inline int 67 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 68 { 69 return l < r ? -1 : (l > r); 70 } 71 72 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 73 74 /* 75 * Given a hiballoc entry, return the address it manages. 76 */ 77 static __inline void * 78 hib_entry_to_addr(struct hiballoc_entry *entry) 79 { 80 caddr_t addr; 81 82 addr = (caddr_t)entry; 83 addr += HIB_SIZEOF(struct hiballoc_entry); 84 return addr; 85 } 86 87 /* 88 * Given an address, find the hiballoc that corresponds. 89 */ 90 static __inline struct hiballoc_entry* 91 hib_addr_to_entry(void *addr_param) 92 { 93 caddr_t addr; 94 95 addr = (caddr_t)addr_param; 96 addr -= HIB_SIZEOF(struct hiballoc_entry); 97 return (struct hiballoc_entry*)addr; 98 } 99 100 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 101 102 /* 103 * Allocate memory from the arena. 104 * 105 * Returns NULL if no memory is available. 106 */ 107 void * 108 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 109 { 110 struct hiballoc_entry *entry, *new_entry; 111 size_t find_sz; 112 113 /* 114 * Enforce alignment of HIB_ALIGN bytes. 115 * 116 * Note that, because the entry is put in front of the allocation, 117 * 0-byte allocations are guaranteed a unique address. 118 */ 119 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 120 121 /* 122 * Find an entry with hibe_space >= find_sz. 123 * 124 * If the root node is not large enough, we switch to tree traversal. 125 * Because all entries are made at the bottom of the free space, 126 * traversal from the end has a slightly better chance of yielding 127 * a sufficiently large space. 128 */ 129 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 130 entry = RB_ROOT(&arena->hib_addrs); 131 if (entry != NULL && entry->hibe_space < find_sz) { 132 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 133 if (entry->hibe_space >= find_sz) 134 break; 135 } 136 } 137 138 /* 139 * Insufficient or too fragmented memory. 140 */ 141 if (entry == NULL) 142 return NULL; 143 144 /* 145 * Create new entry in allocated space. 146 */ 147 new_entry = (struct hiballoc_entry*)( 148 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 149 new_entry->hibe_space = entry->hibe_space - find_sz; 150 new_entry->hibe_use = alloc_sz; 151 152 /* 153 * Insert entry. 154 */ 155 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 156 panic("hib_alloc: insert failure"); 157 entry->hibe_space = 0; 158 159 /* Return address managed by entry. */ 160 return hib_entry_to_addr(new_entry); 161 } 162 163 /* 164 * Free a pointer previously allocated from this arena. 165 * 166 * If addr is NULL, this will be silently accepted. 167 */ 168 void 169 hib_free(struct hiballoc_arena *arena, void *addr) 170 { 171 struct hiballoc_entry *entry, *prev; 172 173 if (addr == NULL) 174 return; 175 176 /* 177 * Derive entry from addr and check it is really in this arena. 178 */ 179 entry = hib_addr_to_entry(addr); 180 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 181 panic("hib_free: freed item %p not in hib arena", addr); 182 183 /* 184 * Give the space in entry to its predecessor. 185 * 186 * If entry has no predecessor, change its used space into free space 187 * instead. 188 */ 189 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 190 if (prev != NULL && 191 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 192 prev->hibe_use + prev->hibe_space) == entry) { 193 /* Merge entry. */ 194 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 195 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 196 entry->hibe_use + entry->hibe_space; 197 } else { 198 /* Flip used memory to free space. */ 199 entry->hibe_space += entry->hibe_use; 200 entry->hibe_use = 0; 201 } 202 } 203 204 /* 205 * Initialize hiballoc. 206 * 207 * The allocator will manage memmory at ptr, which is len bytes. 208 */ 209 int 210 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 211 { 212 struct hiballoc_entry *entry; 213 caddr_t ptr; 214 size_t len; 215 216 RB_INIT(&arena->hib_addrs); 217 218 /* 219 * Hib allocator enforces HIB_ALIGN alignment. 220 * Fixup ptr and len. 221 */ 222 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 223 len = p_len - ((size_t)ptr - (size_t)p_ptr); 224 len &= ~((size_t)HIB_ALIGN - 1); 225 226 /* 227 * Insufficient memory to be able to allocate and also do bookkeeping. 228 */ 229 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 230 return ENOMEM; 231 232 /* 233 * Create entry describing space. 234 */ 235 entry = (struct hiballoc_entry*)ptr; 236 entry->hibe_use = 0; 237 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 238 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 239 240 return 0; 241 } 242 243 /* 244 * Zero all free memory. 245 */ 246 void 247 uvm_pmr_zero_everything(void) 248 { 249 struct uvm_pmemrange *pmr; 250 struct vm_page *pg; 251 int i; 252 253 uvm_lock_fpageq(); 254 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 255 /* Zero single pages. */ 256 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 257 != NULL) { 258 uvm_pmr_remove(pmr, pg); 259 uvm_pagezero(pg); 260 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 261 uvmexp.zeropages++; 262 uvm_pmr_insert(pmr, pg, 0); 263 } 264 265 /* Zero multi page ranges. */ 266 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 267 != NULL) { 268 pg--; /* Size tree always has second page. */ 269 uvm_pmr_remove(pmr, pg); 270 for (i = 0; i < pg->fpgsz; i++) { 271 uvm_pagezero(&pg[i]); 272 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 273 uvmexp.zeropages++; 274 } 275 uvm_pmr_insert(pmr, pg, 0); 276 } 277 } 278 uvm_unlock_fpageq(); 279 } 280 281 /* 282 * Mark all memory as dirty. 283 * 284 * Used to inform the system that the clean memory isn't clean for some 285 * reason, for example because we just came back from hibernate. 286 */ 287 void 288 uvm_pmr_dirty_everything(void) 289 { 290 struct uvm_pmemrange *pmr; 291 struct vm_page *pg; 292 int i; 293 294 uvm_lock_fpageq(); 295 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 296 /* Dirty single pages. */ 297 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 298 != NULL) { 299 uvm_pmr_remove(pmr, pg); 300 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 301 uvm_pmr_insert(pmr, pg, 0); 302 } 303 304 /* Dirty multi page ranges. */ 305 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 306 != NULL) { 307 pg--; /* Size tree always has second page. */ 308 uvm_pmr_remove(pmr, pg); 309 for (i = 0; i < pg->fpgsz; i++) 310 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvm_pmr_insert(pmr, pg, 0); 312 } 313 } 314 315 uvmexp.zeropages = 0; 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Allocate the highest address that can hold sz. 321 * 322 * sz in bytes. 323 */ 324 int 325 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 326 { 327 struct uvm_pmemrange *pmr; 328 struct vm_page *pig_pg, *pg; 329 330 /* 331 * Convert sz to pages, since that is what pmemrange uses internally. 332 */ 333 sz = atop(round_page(sz)); 334 335 uvm_lock_fpageq(); 336 337 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 338 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 339 if (pig_pg->fpgsz >= sz) { 340 goto found; 341 } 342 } 343 } 344 345 /* 346 * Allocation failure. 347 */ 348 uvm_unlock_fpageq(); 349 return ENOMEM; 350 351 found: 352 /* Remove page from freelist. */ 353 uvm_pmr_remove_size(pmr, pig_pg); 354 pig_pg->fpgsz -= sz; 355 pg = pig_pg + pig_pg->fpgsz; 356 if (pig_pg->fpgsz == 0) 357 uvm_pmr_remove_addr(pmr, pig_pg); 358 else 359 uvm_pmr_insert_size(pmr, pig_pg); 360 361 uvmexp.free -= sz; 362 *addr = VM_PAGE_TO_PHYS(pg); 363 364 /* 365 * Update pg flags. 366 * 367 * Note that we trash the sz argument now. 368 */ 369 while (sz > 0) { 370 KASSERT(pg->pg_flags & PQ_FREE); 371 372 atomic_clearbits_int(&pg->pg_flags, 373 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 374 375 if (pg->pg_flags & PG_ZERO) 376 uvmexp.zeropages -= sz; 377 atomic_clearbits_int(&pg->pg_flags, 378 PG_ZERO|PQ_FREE); 379 380 pg->uobject = NULL; 381 pg->uanon = NULL; 382 pg->pg_version++; 383 384 /* 385 * Next. 386 */ 387 pg++; 388 sz--; 389 } 390 391 /* Return. */ 392 uvm_unlock_fpageq(); 393 return 0; 394 } 395 396 /* 397 * Allocate a piglet area. 398 * 399 * This is as low as possible. 400 * Piglets are aligned. 401 * 402 * sz and align in bytes. 403 * 404 * The call will sleep for the pagedaemon to attempt to free memory. 405 * The pagedaemon may decide its not possible to free enough memory, causing 406 * the allocation to fail. 407 */ 408 int 409 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 410 { 411 paddr_t pg_addr, piglet_addr; 412 struct uvm_pmemrange *pmr; 413 struct vm_page *pig_pg, *pg; 414 struct pglist pageq; 415 int pdaemon_woken; 416 vaddr_t piglet_va; 417 418 KASSERT((align & (align - 1)) == 0); 419 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 420 421 /* 422 * Fixup arguments: align must be at least PAGE_SIZE, 423 * sz will be converted to pagecount, since that is what 424 * pmemrange uses internally. 425 */ 426 if (align < PAGE_SIZE) 427 align = PAGE_SIZE; 428 sz = round_page(sz); 429 430 uvm_lock_fpageq(); 431 432 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 433 pmr_use) { 434 retry: 435 /* 436 * Search for a range with enough space. 437 * Use the address tree, to ensure the range is as low as 438 * possible. 439 */ 440 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 441 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 442 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 443 444 if (atop(pg_addr) + pig_pg->fpgsz >= 445 atop(piglet_addr) + atop(sz)) 446 goto found; 447 } 448 } 449 450 /* 451 * Try to coerse the pagedaemon into freeing memory 452 * for the piglet. 453 * 454 * pdaemon_woken is set to prevent the code from 455 * falling into an endless loop. 456 */ 457 if (!pdaemon_woken) { 458 pdaemon_woken = 1; 459 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 460 sz, UVM_PLA_FAILOK) == 0) 461 goto retry; 462 } 463 464 /* Return failure. */ 465 uvm_unlock_fpageq(); 466 return ENOMEM; 467 468 found: 469 /* 470 * Extract piglet from pigpen. 471 */ 472 TAILQ_INIT(&pageq); 473 uvm_pmr_extract_range(pmr, pig_pg, 474 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 475 476 *pa = piglet_addr; 477 uvmexp.free -= atop(sz); 478 479 /* 480 * Update pg flags. 481 * 482 * Note that we trash the sz argument now. 483 */ 484 TAILQ_FOREACH(pg, &pageq, pageq) { 485 KASSERT(pg->pg_flags & PQ_FREE); 486 487 atomic_clearbits_int(&pg->pg_flags, 488 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 489 490 if (pg->pg_flags & PG_ZERO) 491 uvmexp.zeropages--; 492 atomic_clearbits_int(&pg->pg_flags, 493 PG_ZERO|PQ_FREE); 494 495 pg->uobject = NULL; 496 pg->uanon = NULL; 497 pg->pg_version++; 498 } 499 500 uvm_unlock_fpageq(); 501 502 /* 503 * Now allocate a va. 504 * Use direct mappings for the pages. 505 */ 506 507 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 508 if (!piglet_va) { 509 uvm_pglistfree(&pageq); 510 return ENOMEM; 511 } 512 513 /* 514 * Map piglet to va. 515 */ 516 TAILQ_FOREACH(pg, &pageq, pageq) { 517 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 518 piglet_va += PAGE_SIZE; 519 } 520 pmap_update(pmap_kernel()); 521 522 return 0; 523 } 524 525 /* 526 * Free a piglet area. 527 */ 528 void 529 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 530 { 531 paddr_t pa; 532 struct vm_page *pg; 533 534 /* 535 * Fix parameters. 536 */ 537 sz = round_page(sz); 538 539 /* 540 * Find the first page in piglet. 541 * Since piglets are contiguous, the first pg is all we need. 542 */ 543 if (!pmap_extract(pmap_kernel(), va, &pa)) 544 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 545 pg = PHYS_TO_VM_PAGE(pa); 546 if (pg == NULL) 547 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 548 549 /* 550 * Unmap. 551 */ 552 pmap_kremove(va, sz); 553 pmap_update(pmap_kernel()); 554 555 /* 556 * Free the physical and virtual memory. 557 */ 558 uvm_pmr_freepages(pg, atop(sz)); 559 km_free((void *)va, sz, &kv_any, &kp_none); 560 } 561 562 /* 563 * Physmem RLE compression support. 564 * 565 * Given a physical page address, it will return the number of pages 566 * starting at the address, that are free. Clamps to the number of pages in 567 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 568 */ 569 int 570 uvm_page_rle(paddr_t addr) 571 { 572 struct vm_page *pg, *pg_end; 573 struct vm_physseg *vmp; 574 int pseg_idx, off_idx; 575 576 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 577 if (pseg_idx == -1) 578 return 0; 579 580 vmp = &vm_physmem[pseg_idx]; 581 pg = &vmp->pgs[off_idx]; 582 if (!(pg->pg_flags & PQ_FREE)) 583 return 0; 584 585 /* 586 * Search for the first non-free page after pg. 587 * Note that the page may not be the first page in a free pmemrange, 588 * therefore pg->fpgsz cannot be used. 589 */ 590 for (pg_end = pg; pg_end <= vmp->lastpg && 591 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 592 ; 593 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 594 } 595 596 /* 597 * Fills out the hibernate_info union pointed to by hiber_info 598 * with information about this machine (swap signature block 599 * offsets, number of memory ranges, kernel in use, etc) 600 */ 601 int 602 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 603 { 604 int chunktable_size; 605 struct disklabel dl; 606 char err_string[128], *dl_ret; 607 608 /* Determine I/O function to use */ 609 hiber_info->io_func = get_hibernate_io_function(); 610 if (hiber_info->io_func == NULL) 611 return (1); 612 613 /* Calculate hibernate device */ 614 hiber_info->device = swdevt[0].sw_dev; 615 616 /* Read disklabel (used to calculate signature and image offsets) */ 617 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 618 619 if (dl_ret) { 620 printf("Hibernate error reading disklabel: %s\n", dl_ret); 621 return (1); 622 } 623 624 hiber_info->secsize = dl.d_secsize; 625 626 /* Make sure the signature can fit in one block */ 627 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 628 629 /* Calculate swap offset from start of disk */ 630 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 631 632 /* Calculate signature block location */ 633 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 634 dl.d_partitions[1].p_size - 635 sizeof(union hibernate_info)/hiber_info->secsize; 636 637 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 638 639 /* Stash kernel version information */ 640 bzero(&hiber_info->kernel_version, 128); 641 bcopy(version, &hiber_info->kernel_version, 642 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 643 644 if (suspend) { 645 /* Allocate piglet region */ 646 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 647 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 648 HIBERNATE_CHUNK_SIZE)) { 649 printf("Hibernate failed to allocate the piglet\n"); 650 return (1); 651 } 652 hiber_info->io_page = (void *)hiber_info->piglet_va; 653 654 /* 655 * Initialize of the hibernate IO function (for drivers which 656 * need that) 657 */ 658 if (hiber_info->io_func(hiber_info->device, 0, 659 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 660 goto fail; 661 662 } else { 663 /* 664 * Resuming kernels use a regular I/O page since we won't 665 * have access to the suspended kernel's piglet VA at this 666 * point. No need to free this I/O page as it will vanish 667 * as part of the resume. 668 */ 669 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 670 if (!hiber_info->io_page) 671 return (1); 672 } 673 674 675 if (get_hibernate_info_md(hiber_info)) 676 goto fail; 677 678 /* Calculate memory image location */ 679 hiber_info->image_offset = dl.d_partitions[1].p_offset + 680 dl.d_partitions[1].p_size - 681 (hiber_info->image_size / hiber_info->secsize) - 682 sizeof(union hibernate_info)/hiber_info->secsize - 683 chunktable_size; 684 685 return (0); 686 fail: 687 if (suspend) 688 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 689 690 return (1); 691 } 692 693 /* 694 * Allocate nitems*size bytes from the hiballoc area presently in use 695 */ 696 void 697 *hibernate_zlib_alloc(void *unused, int nitems, int size) 698 { 699 struct hibernate_zlib_state *hibernate_state; 700 701 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 702 703 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 704 } 705 706 /* 707 * Free the memory pointed to by addr in the hiballoc area presently in 708 * use 709 */ 710 void 711 hibernate_zlib_free(void *unused, void *addr) 712 { 713 struct hibernate_zlib_state *hibernate_state; 714 715 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 716 717 hib_free(&hibernate_state->hiballoc_arena, addr); 718 } 719 720 /* 721 * Gets the next RLE value from the image stream 722 */ 723 int 724 hibernate_get_next_rle(void) 725 { 726 int rle, i; 727 struct hibernate_zlib_state *hibernate_state; 728 729 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 730 731 /* Read RLE code */ 732 hibernate_state->hib_stream.next_out = (char *)&rle; 733 hibernate_state->hib_stream.avail_out = sizeof(rle); 734 735 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 736 if (i != Z_OK && i != Z_STREAM_END) { 737 /* 738 * XXX - this will likely reboot/hang most machines, 739 * but there's not much else we can do here. 740 */ 741 panic("inflate rle error"); 742 } 743 744 /* Sanity check what RLE value we got */ 745 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 746 panic("invalid RLE code"); 747 748 if (i == Z_STREAM_END) 749 rle = -1; 750 751 return rle; 752 } 753 754 /* 755 * Inflate next page of data from the image stream 756 */ 757 int 758 hibernate_inflate_page(void) 759 { 760 struct hibernate_zlib_state *hibernate_state; 761 int i; 762 763 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 764 765 /* Set up the stream for inflate */ 766 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 767 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 768 769 /* Process next block of data */ 770 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 771 if (i != Z_OK && i != Z_STREAM_END) { 772 /* 773 * XXX - this will likely reboot/hang most machines, 774 * but there's not much else we can do here. 775 */ 776 777 panic("inflate error"); 778 } 779 780 /* We should always have extracted a full page ... */ 781 if (hibernate_state->hib_stream.avail_out != 0) 782 panic("incomplete page"); 783 784 return (i == Z_STREAM_END); 785 } 786 787 /* 788 * Inflate size bytes from src into dest, skipping any pages in 789 * [src..dest] that are special (see hibernate_inflate_skip) 790 * 791 * This function executes while using the resume-time stack 792 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 793 * will likely hang or reset the machine. 794 */ 795 void 796 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 797 paddr_t src, size_t size) 798 { 799 int rle, end_stream = 0 ; 800 struct hibernate_zlib_state *hibernate_state; 801 802 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 803 804 hibernate_state->hib_stream.next_in = (char *)src; 805 hibernate_state->hib_stream.avail_in = size; 806 807 do { 808 /* Flush cache and TLB */ 809 hibernate_flush(); 810 811 /* Consume RLE skipped pages */ 812 do { 813 rle = hibernate_get_next_rle(); 814 if (rle == -1) { 815 end_stream = 1; 816 goto next_page; 817 } 818 819 if (rle != 0) 820 dest += (rle * PAGE_SIZE); 821 822 } while (rle != 0); 823 824 /* 825 * Is this a special page? If yes, redirect the 826 * inflate output to a scratch page (eg, discard it) 827 */ 828 if (hibernate_inflate_skip(hiber_info, dest)) { 829 hibernate_enter_resume_mapping( 830 HIBERNATE_INFLATE_PAGE, 831 HIBERNATE_INFLATE_PAGE, 0); 832 } else { 833 hibernate_enter_resume_mapping( 834 HIBERNATE_INFLATE_PAGE, dest, 0); 835 } 836 837 hibernate_flush(); 838 end_stream = hibernate_inflate_page(); 839 840 next_page: 841 dest += PAGE_SIZE; 842 } while (!end_stream); 843 } 844 845 /* 846 * deflate from src into the I/O page, up to 'remaining' bytes 847 * 848 * Returns number of input bytes consumed, and may reset 849 * the 'remaining' parameter if not all the output space was consumed 850 * (this information is needed to know how much to write to disk 851 */ 852 size_t 853 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 854 size_t *remaining) 855 { 856 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 857 struct hibernate_zlib_state *hibernate_state; 858 859 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 860 861 /* Set up the stream for deflate */ 862 hibernate_state->hib_stream.next_in = (caddr_t)src; 863 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 864 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 865 (PAGE_SIZE - *remaining); 866 hibernate_state->hib_stream.avail_out = *remaining; 867 868 /* Process next block of data */ 869 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 870 panic("hibernate zlib deflate error"); 871 872 /* Update pointers and return number of bytes consumed */ 873 *remaining = hibernate_state->hib_stream.avail_out; 874 return (PAGE_SIZE - (src & PAGE_MASK)) - 875 hibernate_state->hib_stream.avail_in; 876 } 877 878 /* 879 * Write the hibernation information specified in hiber_info 880 * to the location in swap previously calculated (last block of 881 * swap), called the "signature block". 882 * 883 * Write the memory chunk table to the area in swap immediately 884 * preceding the signature block. 885 */ 886 int 887 hibernate_write_signature(union hibernate_info *hiber_info) 888 { 889 /* Write hibernate info to disk */ 890 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 891 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 892 hiber_info->io_page)); 893 } 894 895 /* 896 * Write the memory chunk table to the area in swap immediately 897 * preceding the signature block. The chunk table is stored 898 * in the piglet when this function is called. 899 */ 900 int 901 hibernate_write_chunktable(union hibernate_info *hiber_info) 902 { 903 struct hibernate_disk_chunk *chunks; 904 vaddr_t hibernate_chunk_table_start; 905 size_t hibernate_chunk_table_size; 906 daddr_t chunkbase; 907 int i; 908 909 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 910 911 chunkbase = hiber_info->sig_offset - 912 (hibernate_chunk_table_size / hiber_info->secsize); 913 914 hibernate_chunk_table_start = hiber_info->piglet_va + 915 HIBERNATE_CHUNK_SIZE; 916 917 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 918 HIBERNATE_CHUNK_SIZE); 919 920 /* Write chunk table */ 921 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 922 if (hiber_info->io_func(hiber_info->device, 923 chunkbase + (i/hiber_info->secsize), 924 (vaddr_t)(hibernate_chunk_table_start + i), 925 MAXPHYS, HIB_W, hiber_info->io_page)) 926 return (1); 927 } 928 929 return (0); 930 } 931 932 /* 933 * Write an empty hiber_info to the swap signature block, which is 934 * guaranteed to not match any valid hiber_info. 935 */ 936 int 937 hibernate_clear_signature(void) 938 { 939 union hibernate_info blank_hiber_info; 940 union hibernate_info hiber_info; 941 942 /* Zero out a blank hiber_info */ 943 bzero(&blank_hiber_info, sizeof(hiber_info)); 944 945 if (get_hibernate_info(&hiber_info, 0)) 946 return (1); 947 948 /* Write (zeroed) hibernate info to disk */ 949 if (hibernate_block_io(&hiber_info, 950 hiber_info.sig_offset - hiber_info.swap_offset, 951 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 952 panic("error hibernate write 6"); 953 954 return (0); 955 } 956 957 /* 958 * Check chunk range overlap when calculating whether or not to copy a 959 * compressed chunk to the piglet area before decompressing. 960 * 961 * returns zero if the ranges do not overlap, non-zero otherwise. 962 */ 963 int 964 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 965 { 966 /* case A : end of r1 overlaps start of r2 */ 967 if (r1s < r2s && r1e > r2s) 968 return (1); 969 970 /* case B : r1 entirely inside r2 */ 971 if (r1s >= r2s && r1e <= r2e) 972 return (1); 973 974 /* case C : r2 entirely inside r1 */ 975 if (r2s >= r1s && r2e <= r1e) 976 return (1); 977 978 /* case D : end of r2 overlaps start of r1 */ 979 if (r2s < r1s && r2e > r1s) 980 return (1); 981 982 return (0); 983 } 984 985 /* 986 * Compare two hibernate_infos to determine if they are the same (eg, 987 * we should be performing a hibernate resume on this machine. 988 * Not all fields are checked - just enough to verify that the machine 989 * has the same memory configuration and kernel as the one that 990 * wrote the signature previously. 991 */ 992 int 993 hibernate_compare_signature(union hibernate_info *mine, 994 union hibernate_info *disk) 995 { 996 u_int i; 997 998 if (mine->nranges != disk->nranges) 999 return (1); 1000 1001 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 1002 return (1); 1003 1004 for (i = 0; i < mine->nranges; i++) { 1005 if ((mine->ranges[i].base != disk->ranges[i].base) || 1006 (mine->ranges[i].end != disk->ranges[i].end) ) 1007 return (1); 1008 } 1009 1010 return (0); 1011 } 1012 1013 /* 1014 * Transfers xfer_size bytes between the hibernate device specified in 1015 * hib_info at offset blkctr and the vaddr specified at dest. 1016 * 1017 * Separate offsets and pages are used to handle misaligned reads (reads 1018 * that span a page boundary). 1019 * 1020 * blkctr specifies a relative offset (relative to the start of swap), 1021 * not an absolute disk offset 1022 * 1023 */ 1024 int 1025 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1026 size_t xfer_size, vaddr_t dest, int iswrite) 1027 { 1028 struct buf *bp; 1029 struct bdevsw *bdsw; 1030 int error; 1031 1032 bp = geteblk(xfer_size); 1033 bdsw = &bdevsw[major(hib_info->device)]; 1034 1035 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1036 if (error) { 1037 printf("hibernate_block_io open failed\n"); 1038 return (1); 1039 } 1040 1041 if (iswrite) 1042 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1043 1044 bp->b_bcount = xfer_size; 1045 bp->b_blkno = blkctr; 1046 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1047 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1048 bp->b_dev = hib_info->device; 1049 bp->b_cylinder = 0; 1050 (*bdsw->d_strategy)(bp); 1051 1052 error = biowait(bp); 1053 if (error) { 1054 printf("hibernate_block_io biowait failed %d\n", error); 1055 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1056 curproc); 1057 if (error) 1058 printf("hibernate_block_io error close failed\n"); 1059 return (1); 1060 } 1061 1062 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1063 if (error) { 1064 printf("hibernate_block_io close failed\n"); 1065 return (1); 1066 } 1067 1068 if (!iswrite) 1069 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1070 1071 bp->b_flags |= B_INVAL; 1072 brelse(bp); 1073 1074 return (0); 1075 } 1076 1077 /* 1078 * Reads the signature block from swap, checks against the current machine's 1079 * information. If the information matches, perform a resume by reading the 1080 * saved image into the pig area, and unpacking. 1081 */ 1082 void 1083 hibernate_resume(void) 1084 { 1085 union hibernate_info hiber_info; 1086 int s; 1087 1088 /* Get current running machine's hibernate info */ 1089 bzero(&hiber_info, sizeof(hiber_info)); 1090 if (get_hibernate_info(&hiber_info, 0)) 1091 return; 1092 1093 /* Read hibernate info from disk */ 1094 s = splbio(); 1095 1096 if (hibernate_block_io(&hiber_info, 1097 hiber_info.sig_offset - hiber_info.swap_offset, 1098 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1099 panic("error in hibernate read"); 1100 1101 /* 1102 * If on-disk and in-memory hibernate signatures match, 1103 * this means we should do a resume from hibernate. 1104 */ 1105 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1106 splx(s); 1107 return; 1108 } 1109 1110 /* Read the image from disk into the image (pig) area */ 1111 if (hibernate_read_image(&disk_hiber_info)) 1112 goto fail; 1113 1114 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1115 goto fail; 1116 1117 (void) splhigh(); 1118 disable_intr(); 1119 cold = 1; 1120 1121 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1122 cold = 0; 1123 enable_intr(); 1124 goto fail; 1125 } 1126 1127 /* Point of no return ... */ 1128 1129 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1130 VM_PROT_ALL); 1131 pmap_activate(curproc); 1132 1133 /* Switch stacks */ 1134 hibernate_switch_stack_machdep(); 1135 1136 /* 1137 * Image is now in high memory (pig area), copy to correct location 1138 * in memory. We'll eventually end up copying on top of ourself, but 1139 * we are assured the kernel code here is the same between the 1140 * hibernated and resuming kernel, and we are running on our own 1141 * stack, so the overwrite is ok. 1142 */ 1143 hibernate_unpack_image(&disk_hiber_info); 1144 1145 /* 1146 * Resume the loaded kernel by jumping to the MD resume vector. 1147 * We won't be returning from this call. 1148 */ 1149 hibernate_resume_machdep(); 1150 1151 fail: 1152 splx(s); 1153 printf("Unable to resume hibernated image\n"); 1154 } 1155 1156 /* 1157 * Unpack image from pig area to original location by looping through the 1158 * list of output chunks in the order they should be restored (fchunks). 1159 * This ordering is used to avoid having inflate overwrite a chunk in the 1160 * middle of processing that chunk. This will, of course, happen during the 1161 * final output chunk, where we copy the chunk to the piglet area first, 1162 * before inflating. 1163 */ 1164 void 1165 hibernate_unpack_image(union hibernate_info *hiber_info) 1166 { 1167 struct hibernate_disk_chunk *chunks; 1168 union hibernate_info local_hiber_info; 1169 paddr_t image_cur = global_pig_start; 1170 int *fchunks, i; 1171 char *pva = (char *)hiber_info->piglet_va; 1172 struct hibernate_zlib_state *hibernate_state; 1173 1174 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1175 1176 /* Mask off based on arch-specific piglet page size */ 1177 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1178 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1179 1180 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1181 1182 /* Can't use hiber_info that's passed in after this point */ 1183 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1184 1185 hibernate_activate_resume_pt_machdep(); 1186 1187 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1188 /* Reset zlib for inflate */ 1189 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1190 panic("hibernate failed to reset zlib for inflate"); 1191 1192 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1193 image_cur); 1194 1195 image_cur += chunks[fchunks[i]].compressed_size; 1196 1197 } 1198 } 1199 1200 /* 1201 * Process a chunk by ensuring its proper placement, followed by unpacking 1202 */ 1203 void 1204 hibernate_process_chunk(union hibernate_info *hiber_info, 1205 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1206 { 1207 char *pva = (char *)hiber_info->piglet_va; 1208 1209 /* 1210 * If there is a conflict, copy the chunk to the piglet area 1211 * before unpacking it to its original location. 1212 */ 1213 if ((chunk->flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1214 hibernate_inflate_region(hiber_info, chunk->base, 1215 img_cur, chunk->compressed_size); 1216 else { 1217 bcopy((caddr_t)img_cur, 1218 pva + (HIBERNATE_CHUNK_SIZE * 2), 1219 chunk->compressed_size); 1220 hibernate_inflate_region(hiber_info, chunk->base, 1221 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1222 chunk->compressed_size); 1223 } 1224 } 1225 1226 /* 1227 * Write a compressed version of this machine's memory to disk, at the 1228 * precalculated swap offset: 1229 * 1230 * end of swap - signature block size - chunk table size - memory size 1231 * 1232 * The function begins by looping through each phys mem range, cutting each 1233 * one into MD sized chunks. These chunks are then compressed individually 1234 * and written out to disk, in phys mem order. Some chunks might compress 1235 * more than others, and for this reason, each chunk's size is recorded 1236 * in the chunk table, which is written to disk after the image has 1237 * properly been compressed and written (in hibernate_write_chunktable). 1238 * 1239 * When this function is called, the machine is nearly suspended - most 1240 * devices are quiesced/suspended, interrupts are off, and cold has 1241 * been set. This means that there can be no side effects once the 1242 * write has started, and the write function itself can also have no 1243 * side effects. This also means no printfs are permitted (since it 1244 * has side effects.) 1245 */ 1246 int 1247 hibernate_write_chunks(union hibernate_info *hiber_info) 1248 { 1249 paddr_t range_base, range_end, inaddr, temp_inaddr; 1250 size_t nblocks, out_remaining, used; 1251 struct hibernate_disk_chunk *chunks; 1252 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1253 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1254 int i, rle; 1255 struct hibernate_zlib_state *hibernate_state; 1256 1257 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1258 1259 hiber_info->chunk_ctr = 0; 1260 1261 /* 1262 * Allocate VA for the temp and copy page. 1263 * These will becomee part of the suspended kernel and will 1264 * be freed in hibernate_free, upon resume. 1265 */ 1266 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1267 &kp_none, &kd_nowait); 1268 if (!hibernate_temp_page) 1269 return (1); 1270 1271 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1272 &kp_none, &kd_nowait); 1273 if (!hibernate_copy_page) 1274 return (1); 1275 1276 pmap_kenter_pa(hibernate_copy_page, 1277 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1278 1279 /* XXX - not needed on all archs */ 1280 pmap_activate(curproc); 1281 1282 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1283 HIBERNATE_CHUNK_SIZE); 1284 1285 /* Calculate the chunk regions */ 1286 for (i = 0; i < hiber_info->nranges; i++) { 1287 range_base = hiber_info->ranges[i].base; 1288 range_end = hiber_info->ranges[i].end; 1289 1290 inaddr = range_base; 1291 1292 while (inaddr < range_end) { 1293 chunks[hiber_info->chunk_ctr].base = inaddr; 1294 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1295 chunks[hiber_info->chunk_ctr].end = inaddr + 1296 HIBERNATE_CHUNK_SIZE; 1297 else 1298 chunks[hiber_info->chunk_ctr].end = range_end; 1299 1300 inaddr += HIBERNATE_CHUNK_SIZE; 1301 hiber_info->chunk_ctr ++; 1302 } 1303 } 1304 1305 /* Compress and write the chunks in the chunktable */ 1306 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1307 range_base = chunks[i].base; 1308 range_end = chunks[i].end; 1309 1310 chunks[i].offset = blkctr; 1311 1312 /* Reset zlib for deflate */ 1313 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1314 return (1); 1315 1316 inaddr = range_base; 1317 1318 /* 1319 * For each range, loop through its phys mem region 1320 * and write out the chunks (the last chunk might be 1321 * smaller than the chunk size). 1322 */ 1323 while (inaddr < range_end) { 1324 out_remaining = PAGE_SIZE; 1325 while (out_remaining > 0 && inaddr < range_end) { 1326 1327 /* 1328 * Adjust for regions that are not evenly 1329 * divisible by PAGE_SIZE or overflowed 1330 * pages from the previous iteration. 1331 */ 1332 temp_inaddr = (inaddr & PAGE_MASK) + 1333 hibernate_copy_page; 1334 1335 if (hibernate_inflate_skip(hiber_info, inaddr)) 1336 rle = 1; 1337 else 1338 rle = uvm_page_rle(inaddr); 1339 1340 while (rle != 0 && inaddr < range_end) { 1341 hibernate_state->hib_stream.next_in = 1342 (char *)&rle; 1343 hibernate_state->hib_stream.avail_in = 1344 sizeof(rle); 1345 hibernate_state->hib_stream.next_out = 1346 (caddr_t)hibernate_io_page + 1347 (PAGE_SIZE - out_remaining); 1348 hibernate_state->hib_stream.avail_out = 1349 out_remaining; 1350 1351 if (deflate(&hibernate_state->hib_stream, 1352 Z_PARTIAL_FLUSH) != Z_OK) 1353 return (1); 1354 1355 out_remaining = 1356 hibernate_state->hib_stream.avail_out; 1357 inaddr += (rle * PAGE_SIZE); 1358 if (inaddr > range_end) 1359 inaddr = range_end; 1360 else 1361 rle = uvm_page_rle(inaddr); 1362 } 1363 1364 if (out_remaining == 0) { 1365 /* Filled up the page */ 1366 nblocks = PAGE_SIZE / hiber_info->secsize; 1367 1368 if (hiber_info->io_func(hiber_info->device, 1369 blkctr, (vaddr_t)hibernate_io_page, 1370 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1371 return (1); 1372 1373 blkctr += nblocks; 1374 out_remaining = PAGE_SIZE; 1375 } 1376 1377 /* Write '0' RLE code */ 1378 if (inaddr < range_end) { 1379 hibernate_state->hib_stream.next_in = 1380 (char *)&rle; 1381 hibernate_state->hib_stream.avail_in = 1382 sizeof(rle); 1383 hibernate_state->hib_stream.next_out = 1384 (caddr_t)hibernate_io_page + 1385 (PAGE_SIZE - out_remaining); 1386 hibernate_state->hib_stream.avail_out = 1387 out_remaining; 1388 1389 if (deflate(&hibernate_state->hib_stream, 1390 Z_PARTIAL_FLUSH) != Z_OK) 1391 return (1); 1392 1393 out_remaining = 1394 hibernate_state->hib_stream.avail_out; 1395 } 1396 1397 if (out_remaining == 0) { 1398 /* Filled up the page */ 1399 nblocks = PAGE_SIZE / hiber_info->secsize; 1400 1401 if (hiber_info->io_func(hiber_info->device, 1402 blkctr, (vaddr_t)hibernate_io_page, 1403 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1404 return (1); 1405 1406 blkctr += nblocks; 1407 out_remaining = PAGE_SIZE; 1408 } 1409 1410 /* Deflate from temp_inaddr to IO page */ 1411 if (inaddr != range_end) { 1412 pmap_kenter_pa(hibernate_temp_page, 1413 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1414 1415 /* XXX - not needed on all archs */ 1416 pmap_activate(curproc); 1417 1418 bcopy((caddr_t)hibernate_temp_page, 1419 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1420 inaddr += hibernate_deflate(hiber_info, 1421 temp_inaddr, &out_remaining); 1422 } 1423 } 1424 1425 if (out_remaining == 0) { 1426 /* Filled up the page */ 1427 nblocks = PAGE_SIZE / hiber_info->secsize; 1428 1429 if (hiber_info->io_func(hiber_info->device, 1430 blkctr, (vaddr_t)hibernate_io_page, 1431 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1432 return (1); 1433 1434 blkctr += nblocks; 1435 } 1436 } 1437 1438 if (inaddr != range_end) 1439 return (1); 1440 1441 /* 1442 * End of range. Round up to next secsize bytes 1443 * after finishing compress 1444 */ 1445 if (out_remaining == 0) 1446 out_remaining = PAGE_SIZE; 1447 1448 /* Finish compress */ 1449 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1450 hibernate_state->hib_stream.avail_in = 0; 1451 hibernate_state->hib_stream.next_out = 1452 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1453 hibernate_state->hib_stream.avail_out = out_remaining; 1454 1455 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1456 Z_STREAM_END) 1457 return (1); 1458 1459 out_remaining = hibernate_state->hib_stream.avail_out; 1460 1461 used = PAGE_SIZE - out_remaining; 1462 nblocks = used / hiber_info->secsize; 1463 1464 /* Round up to next block if needed */ 1465 if (used % hiber_info->secsize != 0) 1466 nblocks ++; 1467 1468 /* Write final block(s) for this chunk */ 1469 if (hiber_info->io_func(hiber_info->device, blkctr, 1470 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1471 HIB_W, hiber_info->io_page)) 1472 return (1); 1473 1474 blkctr += nblocks; 1475 1476 offset = blkctr; 1477 chunks[i].compressed_size = (offset - chunks[i].offset) * 1478 hiber_info->secsize; 1479 } 1480 1481 return (0); 1482 } 1483 1484 /* 1485 * Reset the zlib stream state and allocate a new hiballoc area for either 1486 * inflate or deflate. This function is called once for each hibernate chunk. 1487 * Calling hiballoc_init multiple times is acceptable since the memory it is 1488 * provided is unmanaged memory (stolen). We use the memory provided to us 1489 * by the piglet allocated via the supplied hiber_info. 1490 */ 1491 int 1492 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1493 { 1494 vaddr_t hibernate_zlib_start; 1495 size_t hibernate_zlib_size; 1496 char *pva = (char *)hiber_info->piglet_va; 1497 struct hibernate_zlib_state *hibernate_state; 1498 1499 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1500 1501 if(!deflate) 1502 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1503 1504 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1505 hibernate_zlib_size = 80 * PAGE_SIZE; 1506 1507 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1508 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1509 1510 /* Set up stream structure */ 1511 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1512 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1513 1514 /* Initialize the hiballoc arena for zlib allocs/frees */ 1515 hiballoc_init(&hibernate_state->hiballoc_arena, 1516 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1517 1518 if (deflate) { 1519 return deflateInit(&hibernate_state->hib_stream, 1520 Z_BEST_SPEED); 1521 } else 1522 return inflateInit(&hibernate_state->hib_stream); 1523 } 1524 1525 /* 1526 * Reads the hibernated memory image from disk, whose location and 1527 * size are recorded in hiber_info. Begin by reading the persisted 1528 * chunk table, which records the original chunk placement location 1529 * and compressed size for each. Next, allocate a pig region of 1530 * sufficient size to hold the compressed image. Next, read the 1531 * chunks into the pig area (calling hibernate_read_chunks to do this), 1532 * and finally, if all of the above succeeds, clear the hibernate signature. 1533 * The function will then return to hibernate_resume, which will proceed 1534 * to unpack the pig image to the correct place in memory. 1535 */ 1536 int 1537 hibernate_read_image(union hibernate_info *hiber_info) 1538 { 1539 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1540 paddr_t image_start, image_end, pig_start, pig_end; 1541 struct hibernate_disk_chunk *chunks; 1542 daddr_t blkctr; 1543 vaddr_t chunktable = (vaddr_t)NULL; 1544 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1545 HIBERNATE_CHUNK_SIZE; 1546 int i; 1547 1548 pmap_activate(curproc); 1549 1550 /* Calculate total chunk table size in disk blocks */ 1551 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1552 1553 blkctr = hiber_info->sig_offset - chunktable_size - 1554 hiber_info->swap_offset; 1555 1556 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1557 &kp_none, &kd_nowait); 1558 1559 if (!chunktable) 1560 return (1); 1561 1562 /* Read the chunktable from disk into the piglet chunktable */ 1563 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1564 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1565 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1566 pmap_update(pmap_kernel()); 1567 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1568 chunktable + i, 0); 1569 } 1570 1571 blkctr = hiber_info->image_offset; 1572 compressed_size = 0; 1573 1574 chunks = (struct hibernate_disk_chunk *)chunktable; 1575 1576 for (i = 0; i < hiber_info->chunk_ctr; i++) 1577 compressed_size += chunks[i].compressed_size; 1578 1579 disk_size = compressed_size; 1580 1581 /* Allocate the pig area */ 1582 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1583 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1584 return (1); 1585 1586 pig_end = pig_start + pig_sz; 1587 1588 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1589 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1590 image_start = pig_start; 1591 1592 image_start = image_end - disk_size; 1593 1594 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1595 chunks); 1596 1597 pmap_kremove(chunktable, PAGE_SIZE); 1598 pmap_update(pmap_kernel()); 1599 1600 /* Prepare the resume time pmap/page table */ 1601 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1602 1603 /* Read complete, clear the signature and return */ 1604 return hibernate_clear_signature(); 1605 } 1606 1607 /* 1608 * Read the hibernated memory chunks from disk (chunk information at this 1609 * point is stored in the piglet) into the pig area specified by 1610 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1611 * only chunk with overlap possibilities. 1612 */ 1613 int 1614 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1615 paddr_t pig_end, size_t image_compr_size, 1616 struct hibernate_disk_chunk *chunks) 1617 { 1618 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1619 paddr_t copy_start, copy_end, piglet_cur; 1620 paddr_t piglet_base = hib_info->piglet_pa; 1621 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1622 daddr_t blkctr; 1623 size_t processed, compressed_size, read_size; 1624 int i, j, overlap, found, nchunks; 1625 int nochunks = 0, nfchunks = 0, npchunks = 0; 1626 int *ochunks, *pchunks, *fchunks; 1627 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1628 1629 global_pig_start = pig_start; 1630 1631 /* XXX - dont need this on all archs */ 1632 pmap_activate(curproc); 1633 1634 /* 1635 * These mappings go into the resuming kernel's page table, and are 1636 * used only during image read. They dissappear from existence 1637 * when the suspended kernel is unpacked on top of us. 1638 */ 1639 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1640 if (!tempva) 1641 return (1); 1642 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1643 &kp_none, &kd_nowait); 1644 if (!hibernate_fchunk_area) 1645 return (1); 1646 1647 /* Temporary output chunk ordering VA */ 1648 ochunks = (int *)hibernate_fchunk_area; 1649 1650 /* Piglet chunk ordering VA */ 1651 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1652 1653 /* Final chunk ordering VA */ 1654 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1655 1656 /* Map the chunk ordering region */ 1657 pmap_kenter_pa(hibernate_fchunk_area, 1658 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1659 pmap_update(pmap_kernel()); 1660 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1661 VM_PROT_ALL); 1662 pmap_update(pmap_kernel()); 1663 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1664 VM_PROT_ALL); 1665 pmap_update(pmap_kernel()); 1666 1667 nchunks = hib_info->chunk_ctr; 1668 1669 /* Initially start all chunks as unplaced */ 1670 for (i = 0; i < nchunks; i++) 1671 chunks[i].flags = 0; 1672 1673 /* 1674 * Search the list for chunks that are outside the pig area. These 1675 * can be placed first in the final output list. 1676 */ 1677 for (i = 0; i < nchunks; i++) { 1678 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1679 ochunks[nochunks] = i; 1680 fchunks[nfchunks] = i; 1681 nochunks++; 1682 nfchunks++; 1683 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1684 } 1685 } 1686 1687 /* 1688 * Walk the ordering, place the chunks in ascending memory order. 1689 * Conflicts might arise, these are handled next. 1690 */ 1691 do { 1692 img_index = -1; 1693 found = 0; 1694 j = -1; 1695 for (i = 0; i < nchunks; i++) 1696 if (chunks[i].base < img_index && 1697 chunks[i].flags == 0 ) { 1698 j = i; 1699 img_index = chunks[i].base; 1700 } 1701 1702 if (j != -1) { 1703 found = 1; 1704 ochunks[nochunks] = (short)j; 1705 nochunks++; 1706 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1707 } 1708 } while (found); 1709 1710 img_index = pig_start; 1711 1712 /* 1713 * Identify chunk output conflicts (chunks whose pig load area 1714 * corresponds to their original memory placement location) 1715 */ 1716 for (i = 0; i < nochunks ; i++) { 1717 overlap = 0; 1718 r1s = img_index; 1719 r1e = img_index + chunks[ochunks[i]].compressed_size; 1720 r2s = chunks[ochunks[i]].base; 1721 r2e = chunks[ochunks[i]].end; 1722 1723 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1724 if (overlap) 1725 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1726 img_index += chunks[ochunks[i]].compressed_size; 1727 } 1728 1729 /* 1730 * Prepare the final output chunk list. Calculate an output 1731 * inflate strategy for overlapping chunks if needed. 1732 */ 1733 img_index = pig_start; 1734 for (i = 0; i < nochunks ; i++) { 1735 /* 1736 * If a conflict is detected, consume enough compressed 1737 * output chunks to fill the piglet 1738 */ 1739 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1740 copy_start = piglet_base; 1741 copy_end = piglet_end; 1742 piglet_cur = piglet_base; 1743 npchunks = 0; 1744 j = i; 1745 1746 while (copy_start < copy_end && j < nochunks) { 1747 piglet_cur += chunks[ochunks[j]].compressed_size; 1748 pchunks[npchunks] = ochunks[j]; 1749 npchunks++; 1750 copy_start += chunks[ochunks[j]].compressed_size; 1751 img_index += chunks[ochunks[j]].compressed_size; 1752 i++; 1753 j++; 1754 } 1755 1756 piglet_cur = piglet_base; 1757 for (j = 0; j < npchunks; j++) { 1758 piglet_cur += chunks[pchunks[j]].compressed_size; 1759 fchunks[nfchunks] = pchunks[j]; 1760 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1761 nfchunks++; 1762 } 1763 } else { 1764 /* 1765 * No conflict, chunk can be added without copying 1766 */ 1767 if ((chunks[ochunks[i]].flags & 1768 HIBERNATE_CHUNK_USED) == 0) { 1769 fchunks[nfchunks] = ochunks[i]; 1770 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1771 nfchunks++; 1772 } 1773 img_index += chunks[ochunks[i]].compressed_size; 1774 } 1775 } 1776 1777 img_index = pig_start; 1778 for (i = 0; i < nfchunks; i++) { 1779 piglet_cur = piglet_base; 1780 img_index += chunks[fchunks[i]].compressed_size; 1781 } 1782 1783 img_cur = pig_start; 1784 1785 for (i = 0; i < nfchunks; i++) { 1786 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1787 processed = 0; 1788 compressed_size = chunks[fchunks[i]].compressed_size; 1789 1790 while (processed < compressed_size) { 1791 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1792 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1793 VM_PROT_ALL); 1794 pmap_update(pmap_kernel()); 1795 1796 if (compressed_size - processed >= PAGE_SIZE) 1797 read_size = PAGE_SIZE; 1798 else 1799 read_size = compressed_size - processed; 1800 1801 hibernate_block_io(hib_info, blkctr, read_size, 1802 tempva + (img_cur & PAGE_MASK), 0); 1803 1804 blkctr += (read_size / hib_info->secsize); 1805 1806 hibernate_flush(); 1807 pmap_kremove(tempva, PAGE_SIZE); 1808 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1809 processed += read_size; 1810 img_cur += read_size; 1811 } 1812 } 1813 1814 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1815 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1816 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1817 pmap_update(pmap_kernel()); 1818 1819 return (0); 1820 } 1821 1822 /* 1823 * Hibernating a machine comprises the following operations: 1824 * 1. Calculating this machine's hibernate_info information 1825 * 2. Allocating a piglet and saving the piglet's physaddr 1826 * 3. Calculating the memory chunks 1827 * 4. Writing the compressed chunks to disk 1828 * 5. Writing the chunk table 1829 * 6. Writing the signature block (hibernate_info) 1830 * 1831 * On most architectures, the function calling hibernate_suspend would 1832 * then power off the machine using some MD-specific implementation. 1833 */ 1834 int 1835 hibernate_suspend(void) 1836 { 1837 union hibernate_info hib_info; 1838 1839 /* 1840 * Calculate memory ranges, swap offsets, etc. 1841 * This also allocates a piglet whose physaddr is stored in 1842 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1843 */ 1844 if (get_hibernate_info(&hib_info, 1)) 1845 return (1); 1846 1847 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); 1848 pmap_activate(curproc); 1849 1850 /* Stash the piglet VA so we can free it in the resuming kernel */ 1851 global_piglet_va = hib_info.piglet_va; 1852 1853 if (hibernate_write_chunks(&hib_info)) 1854 return (1); 1855 1856 if (hibernate_write_chunktable(&hib_info)) 1857 return (1); 1858 1859 if (hibernate_write_signature(&hib_info)) 1860 return (1); 1861 1862 delay(500000); 1863 return (0); 1864 } 1865 1866 /* 1867 * Free items allocated by hibernate_suspend() 1868 */ 1869 void 1870 hibernate_free(void) 1871 { 1872 if (global_piglet_va) 1873 uvm_pmr_free_piglet(global_piglet_va, 1874 3*HIBERNATE_CHUNK_SIZE); 1875 1876 if (hibernate_copy_page) 1877 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1878 if (hibernate_temp_page) 1879 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1880 1881 pmap_update(pmap_kernel()); 1882 1883 if (hibernate_copy_page) 1884 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1885 &kv_any, &kp_none); 1886 if (hibernate_temp_page) 1887 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1888 &kv_any, &kp_none); 1889 1890 global_piglet_va = 0; 1891 hibernate_copy_page = 0; 1892 hibernate_temp_page = 0; 1893 } 1894