xref: /openbsd-src/sys/kern/subr_hibernate.c (revision c963b6c1dc9a3891cd73a535c9612f47db094fc6)
1 /*	$OpenBSD: subr_hibernate.c,v 1.45 2012/07/16 12:31:15 stsp Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/types.h>
25 #include <sys/systm.h>
26 #include <sys/disklabel.h>
27 #include <sys/disk.h>
28 #include <sys/conf.h>
29 #include <sys/buf.h>
30 #include <sys/fcntl.h>
31 #include <sys/stat.h>
32 #include <uvm/uvm.h>
33 #include <uvm/uvm_swap.h>
34 #include <machine/hibernate.h>
35 
36 /* Temporary vaddr ranges used during hibernate */
37 vaddr_t hibernate_temp_page;
38 vaddr_t hibernate_copy_page;
39 
40 /* Hibernate info as read from disk during resume */
41 union hibernate_info disk_hiber_info;
42 paddr_t global_pig_start;
43 vaddr_t global_piglet_va;
44 
45 /*
46  * Hib alloc enforced alignment.
47  */
48 #define HIB_ALIGN		8 /* bytes alignment */
49 
50 /*
51  * sizeof builtin operation, but with alignment constraint.
52  */
53 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
54 
55 struct hiballoc_entry {
56 	size_t			hibe_use;
57 	size_t			hibe_space;
58 	RB_ENTRY(hiballoc_entry) hibe_entry;
59 };
60 
61 /*
62  * Compare hiballoc entries based on the address they manage.
63  *
64  * Since the address is fixed, relative to struct hiballoc_entry,
65  * we just compare the hiballoc_entry pointers.
66  */
67 static __inline int
68 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
69 {
70 	return l < r ? -1 : (l > r);
71 }
72 
73 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
74 
75 /*
76  * Given a hiballoc entry, return the address it manages.
77  */
78 static __inline void *
79 hib_entry_to_addr(struct hiballoc_entry *entry)
80 {
81 	caddr_t addr;
82 
83 	addr = (caddr_t)entry;
84 	addr += HIB_SIZEOF(struct hiballoc_entry);
85 	return addr;
86 }
87 
88 /*
89  * Given an address, find the hiballoc that corresponds.
90  */
91 static __inline struct hiballoc_entry*
92 hib_addr_to_entry(void *addr_param)
93 {
94 	caddr_t addr;
95 
96 	addr = (caddr_t)addr_param;
97 	addr -= HIB_SIZEOF(struct hiballoc_entry);
98 	return (struct hiballoc_entry*)addr;
99 }
100 
101 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
102 
103 /*
104  * Allocate memory from the arena.
105  *
106  * Returns NULL if no memory is available.
107  */
108 void *
109 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
110 {
111 	struct hiballoc_entry *entry, *new_entry;
112 	size_t find_sz;
113 
114 	/*
115 	 * Enforce alignment of HIB_ALIGN bytes.
116 	 *
117 	 * Note that, because the entry is put in front of the allocation,
118 	 * 0-byte allocations are guaranteed a unique address.
119 	 */
120 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
121 
122 	/*
123 	 * Find an entry with hibe_space >= find_sz.
124 	 *
125 	 * If the root node is not large enough, we switch to tree traversal.
126 	 * Because all entries are made at the bottom of the free space,
127 	 * traversal from the end has a slightly better chance of yielding
128 	 * a sufficiently large space.
129 	 */
130 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
131 	entry = RB_ROOT(&arena->hib_addrs);
132 	if (entry != NULL && entry->hibe_space < find_sz) {
133 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
134 			if (entry->hibe_space >= find_sz)
135 				break;
136 		}
137 	}
138 
139 	/*
140 	 * Insufficient or too fragmented memory.
141 	 */
142 	if (entry == NULL)
143 		return NULL;
144 
145 	/*
146 	 * Create new entry in allocated space.
147 	 */
148 	new_entry = (struct hiballoc_entry*)(
149 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
150 	new_entry->hibe_space = entry->hibe_space - find_sz;
151 	new_entry->hibe_use = alloc_sz;
152 
153 	/*
154 	 * Insert entry.
155 	 */
156 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
157 		panic("hib_alloc: insert failure");
158 	entry->hibe_space = 0;
159 
160 	/* Return address managed by entry. */
161 	return hib_entry_to_addr(new_entry);
162 }
163 
164 /*
165  * Free a pointer previously allocated from this arena.
166  *
167  * If addr is NULL, this will be silently accepted.
168  */
169 void
170 hib_free(struct hiballoc_arena *arena, void *addr)
171 {
172 	struct hiballoc_entry *entry, *prev;
173 
174 	if (addr == NULL)
175 		return;
176 
177 	/*
178 	 * Derive entry from addr and check it is really in this arena.
179 	 */
180 	entry = hib_addr_to_entry(addr);
181 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
182 		panic("hib_free: freed item %p not in hib arena", addr);
183 
184 	/*
185 	 * Give the space in entry to its predecessor.
186 	 *
187 	 * If entry has no predecessor, change its used space into free space
188 	 * instead.
189 	 */
190 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
191 	if (prev != NULL &&
192 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
193 	    prev->hibe_use + prev->hibe_space) == entry) {
194 		/* Merge entry. */
195 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
196 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
197 		    entry->hibe_use + entry->hibe_space;
198 	} else {
199 		/* Flip used memory to free space. */
200 		entry->hibe_space += entry->hibe_use;
201 		entry->hibe_use = 0;
202 	}
203 }
204 
205 /*
206  * Initialize hiballoc.
207  *
208  * The allocator will manage memmory at ptr, which is len bytes.
209  */
210 int
211 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
212 {
213 	struct hiballoc_entry *entry;
214 	caddr_t ptr;
215 	size_t len;
216 
217 	RB_INIT(&arena->hib_addrs);
218 
219 	/*
220 	 * Hib allocator enforces HIB_ALIGN alignment.
221 	 * Fixup ptr and len.
222 	 */
223 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
224 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
225 	len &= ~((size_t)HIB_ALIGN - 1);
226 
227 	/*
228 	 * Insufficient memory to be able to allocate and also do bookkeeping.
229 	 */
230 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
231 		return ENOMEM;
232 
233 	/*
234 	 * Create entry describing space.
235 	 */
236 	entry = (struct hiballoc_entry*)ptr;
237 	entry->hibe_use = 0;
238 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
239 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
240 
241 	return 0;
242 }
243 
244 /*
245  * Zero all free memory.
246  */
247 void
248 uvm_pmr_zero_everything(void)
249 {
250 	struct uvm_pmemrange	*pmr;
251 	struct vm_page		*pg;
252 	int			 i;
253 
254 	uvm_lock_fpageq();
255 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
256 		/* Zero single pages. */
257 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
258 		    != NULL) {
259 			uvm_pmr_remove(pmr, pg);
260 			uvm_pagezero(pg);
261 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
262 			uvmexp.zeropages++;
263 			uvm_pmr_insert(pmr, pg, 0);
264 		}
265 
266 		/* Zero multi page ranges. */
267 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
268 		    != NULL) {
269 			pg--; /* Size tree always has second page. */
270 			uvm_pmr_remove(pmr, pg);
271 			for (i = 0; i < pg->fpgsz; i++) {
272 				uvm_pagezero(&pg[i]);
273 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
274 				uvmexp.zeropages++;
275 			}
276 			uvm_pmr_insert(pmr, pg, 0);
277 		}
278 	}
279 	uvm_unlock_fpageq();
280 }
281 
282 /*
283  * Mark all memory as dirty.
284  *
285  * Used to inform the system that the clean memory isn't clean for some
286  * reason, for example because we just came back from hibernate.
287  */
288 void
289 uvm_pmr_dirty_everything(void)
290 {
291 	struct uvm_pmemrange	*pmr;
292 	struct vm_page		*pg;
293 	int			 i;
294 
295 	uvm_lock_fpageq();
296 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
297 		/* Dirty single pages. */
298 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
299 		    != NULL) {
300 			uvm_pmr_remove(pmr, pg);
301 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
302 			uvm_pmr_insert(pmr, pg, 0);
303 		}
304 
305 		/* Dirty multi page ranges. */
306 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
307 		    != NULL) {
308 			pg--; /* Size tree always has second page. */
309 			uvm_pmr_remove(pmr, pg);
310 			for (i = 0; i < pg->fpgsz; i++)
311 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
312 			uvm_pmr_insert(pmr, pg, 0);
313 		}
314 	}
315 
316 	uvmexp.zeropages = 0;
317 	uvm_unlock_fpageq();
318 }
319 
320 /*
321  * Allocate the highest address that can hold sz.
322  *
323  * sz in bytes.
324  */
325 int
326 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
327 {
328 	struct uvm_pmemrange	*pmr;
329 	struct vm_page		*pig_pg, *pg;
330 
331 	/*
332 	 * Convert sz to pages, since that is what pmemrange uses internally.
333 	 */
334 	sz = atop(round_page(sz));
335 
336 	uvm_lock_fpageq();
337 
338 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
339 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
340 			if (pig_pg->fpgsz >= sz) {
341 				goto found;
342 			}
343 		}
344 	}
345 
346 	/*
347 	 * Allocation failure.
348 	 */
349 	uvm_unlock_fpageq();
350 	return ENOMEM;
351 
352 found:
353 	/* Remove page from freelist. */
354 	uvm_pmr_remove_size(pmr, pig_pg);
355 	pig_pg->fpgsz -= sz;
356 	pg = pig_pg + pig_pg->fpgsz;
357 	if (pig_pg->fpgsz == 0)
358 		uvm_pmr_remove_addr(pmr, pig_pg);
359 	else
360 		uvm_pmr_insert_size(pmr, pig_pg);
361 
362 	uvmexp.free -= sz;
363 	*addr = VM_PAGE_TO_PHYS(pg);
364 
365 	/*
366 	 * Update pg flags.
367 	 *
368 	 * Note that we trash the sz argument now.
369 	 */
370 	while (sz > 0) {
371 		KASSERT(pg->pg_flags & PQ_FREE);
372 
373 		atomic_clearbits_int(&pg->pg_flags,
374 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
375 
376 		if (pg->pg_flags & PG_ZERO)
377 			uvmexp.zeropages -= sz;
378 		atomic_clearbits_int(&pg->pg_flags,
379 		    PG_ZERO|PQ_FREE);
380 
381 		pg->uobject = NULL;
382 		pg->uanon = NULL;
383 		pg->pg_version++;
384 
385 		/*
386 		 * Next.
387 		 */
388 		pg++;
389 		sz--;
390 	}
391 
392 	/* Return. */
393 	uvm_unlock_fpageq();
394 	return 0;
395 }
396 
397 /*
398  * Allocate a piglet area.
399  *
400  * This is as low as possible.
401  * Piglets are aligned.
402  *
403  * sz and align in bytes.
404  *
405  * The call will sleep for the pagedaemon to attempt to free memory.
406  * The pagedaemon may decide its not possible to free enough memory, causing
407  * the allocation to fail.
408  */
409 int
410 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
411 {
412 	paddr_t			 pg_addr, piglet_addr;
413 	struct uvm_pmemrange	*pmr;
414 	struct vm_page		*pig_pg, *pg;
415 	struct pglist		 pageq;
416 	int			 pdaemon_woken;
417 	vaddr_t			 piglet_va;
418 
419 	KASSERT((align & (align - 1)) == 0);
420 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
421 
422 	/*
423 	 * Fixup arguments: align must be at least PAGE_SIZE,
424 	 * sz will be converted to pagecount, since that is what
425 	 * pmemrange uses internally.
426 	 */
427 	if (align < PAGE_SIZE)
428 		align = PAGE_SIZE;
429 	sz = round_page(sz);
430 
431 	uvm_lock_fpageq();
432 
433 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
434 	    pmr_use) {
435 retry:
436 		/*
437 		 * Search for a range with enough space.
438 		 * Use the address tree, to ensure the range is as low as
439 		 * possible.
440 		 */
441 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
442 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
443 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
444 
445 			if (atop(pg_addr) + pig_pg->fpgsz >=
446 			    atop(piglet_addr) + atop(sz))
447 				goto found;
448 		}
449 	}
450 
451 	/*
452 	 * Try to coerse the pagedaemon into freeing memory
453 	 * for the piglet.
454 	 *
455 	 * pdaemon_woken is set to prevent the code from
456 	 * falling into an endless loop.
457 	 */
458 	if (!pdaemon_woken) {
459 		pdaemon_woken = 1;
460 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
461 		    sz, UVM_PLA_FAILOK) == 0)
462 			goto retry;
463 	}
464 
465 	/* Return failure. */
466 	uvm_unlock_fpageq();
467 	return ENOMEM;
468 
469 found:
470 	/*
471 	 * Extract piglet from pigpen.
472 	 */
473 	TAILQ_INIT(&pageq);
474 	uvm_pmr_extract_range(pmr, pig_pg,
475 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
476 
477 	*pa = piglet_addr;
478 	uvmexp.free -= atop(sz);
479 
480 	/*
481 	 * Update pg flags.
482 	 *
483 	 * Note that we trash the sz argument now.
484 	 */
485 	TAILQ_FOREACH(pg, &pageq, pageq) {
486 		KASSERT(pg->pg_flags & PQ_FREE);
487 
488 		atomic_clearbits_int(&pg->pg_flags,
489 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
490 
491 		if (pg->pg_flags & PG_ZERO)
492 			uvmexp.zeropages--;
493 		atomic_clearbits_int(&pg->pg_flags,
494 		    PG_ZERO|PQ_FREE);
495 
496 		pg->uobject = NULL;
497 		pg->uanon = NULL;
498 		pg->pg_version++;
499 	}
500 
501 	uvm_unlock_fpageq();
502 
503 	/*
504 	 * Now allocate a va.
505 	 * Use direct mappings for the pages.
506 	 */
507 
508 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
509 	if (!piglet_va) {
510 		uvm_pglistfree(&pageq);
511 		return ENOMEM;
512 	}
513 
514 	/*
515 	 * Map piglet to va.
516 	 */
517 	TAILQ_FOREACH(pg, &pageq, pageq) {
518 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
519 		piglet_va += PAGE_SIZE;
520 	}
521 	pmap_update(pmap_kernel());
522 
523 	return 0;
524 }
525 
526 /*
527  * Free a piglet area.
528  */
529 void
530 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
531 {
532 	paddr_t			 pa;
533 	struct vm_page		*pg;
534 
535 	/*
536 	 * Fix parameters.
537 	 */
538 	sz = round_page(sz);
539 
540 	/*
541 	 * Find the first page in piglet.
542 	 * Since piglets are contiguous, the first pg is all we need.
543 	 */
544 	if (!pmap_extract(pmap_kernel(), va, &pa))
545 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
546 	pg = PHYS_TO_VM_PAGE(pa);
547 	if (pg == NULL)
548 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
549 
550 	/*
551 	 * Unmap.
552 	 */
553 	pmap_kremove(va, sz);
554 	pmap_update(pmap_kernel());
555 
556 	/*
557 	 * Free the physical and virtual memory.
558 	 */
559 	uvm_pmr_freepages(pg, atop(sz));
560 	km_free((void *)va, sz, &kv_any, &kp_none);
561 }
562 
563 /*
564  * Physmem RLE compression support.
565  *
566  * Given a physical page address, it will return the number of pages
567  * starting at the address, that are free.  Clamps to the number of pages in
568  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
569  */
570 int
571 uvm_page_rle(paddr_t addr)
572 {
573 	struct vm_page		*pg, *pg_end;
574 	struct vm_physseg	*vmp;
575 	int			 pseg_idx, off_idx;
576 
577 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
578 	if (pseg_idx == -1)
579 		return 0;
580 
581 	vmp = &vm_physmem[pseg_idx];
582 	pg = &vmp->pgs[off_idx];
583 	if (!(pg->pg_flags & PQ_FREE))
584 		return 0;
585 
586 	/*
587 	 * Search for the first non-free page after pg.
588 	 * Note that the page may not be the first page in a free pmemrange,
589 	 * therefore pg->fpgsz cannot be used.
590 	 */
591 	for (pg_end = pg; pg_end <= vmp->lastpg &&
592 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
593 		;
594 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
595 }
596 
597 /*
598  * Fills out the hibernate_info union pointed to by hiber_info
599  * with information about this machine (swap signature block
600  * offsets, number of memory ranges, kernel in use, etc)
601  */
602 int
603 get_hibernate_info(union hibernate_info *hiber_info, int suspend)
604 {
605 	int chunktable_size;
606 	struct disklabel dl;
607 	char err_string[128], *dl_ret;
608 
609 	/* Determine I/O function to use */
610 	hiber_info->io_func = get_hibernate_io_function();
611 	if (hiber_info->io_func == NULL)
612 		return (1);
613 
614 	/* Calculate hibernate device */
615 	hiber_info->device = swdevt[0].sw_dev;
616 
617 	/* Read disklabel (used to calculate signature and image offsets) */
618 	dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128);
619 
620 	if (dl_ret) {
621 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
622 		return (1);
623 	}
624 
625 	/* Make sure we have a swap partition. */
626 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
627 	    dl.d_partitions[1].p_size == 0)
628 		return (1);
629 
630 	hiber_info->secsize = dl.d_secsize;
631 
632 	/* Make sure the signature can fit in one block */
633 	KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1);
634 
635 	/* Calculate swap offset from start of disk */
636 	hiber_info->swap_offset = dl.d_partitions[1].p_offset;
637 
638 	/* Calculate signature block location */
639 	hiber_info->sig_offset = dl.d_partitions[1].p_offset +
640 	    dl.d_partitions[1].p_size -
641 	    sizeof(union hibernate_info)/hiber_info->secsize;
642 
643 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
644 
645 	/* Stash kernel version information */
646 	bzero(&hiber_info->kernel_version, 128);
647 	bcopy(version, &hiber_info->kernel_version,
648 	    min(strlen(version), sizeof(hiber_info->kernel_version)-1));
649 
650 	if (suspend) {
651 		/* Allocate piglet region */
652 		if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va,
653 		    &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
654 		    HIBERNATE_CHUNK_SIZE)) {
655 			printf("Hibernate failed to allocate the piglet\n");
656 			return (1);
657 		}
658 		hiber_info->io_page = (void *)hiber_info->piglet_va;
659 
660 		/*
661 		 * Initialize of the hibernate IO function (for drivers which
662 		 * need that)
663 		 */
664 		if (hiber_info->io_func(hiber_info->device, 0,
665 		    (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page))
666 			goto fail;
667 
668 	} else {
669 		/*
670 		 * Resuming kernels use a regular I/O page since we won't
671 		 * have access to the suspended kernel's piglet VA at this
672 		 * point. No need to free this I/O page as it will vanish
673 		 * as part of the resume.
674 		 */
675 		hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
676 		if (!hiber_info->io_page)
677 			return (1);
678 	}
679 
680 
681 	if (get_hibernate_info_md(hiber_info))
682 		goto fail;
683 
684 	/* Calculate memory image location */
685 	hiber_info->image_offset = dl.d_partitions[1].p_offset +
686 	    dl.d_partitions[1].p_size -
687 	    (hiber_info->image_size / hiber_info->secsize) -
688 	    sizeof(union hibernate_info)/hiber_info->secsize -
689 	    chunktable_size;
690 
691 	return (0);
692 fail:
693 	if (suspend)
694 		uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3);
695 
696 	return (1);
697 }
698 
699 /*
700  * Allocate nitems*size bytes from the hiballoc area presently in use
701  */
702 void
703 *hibernate_zlib_alloc(void *unused, int nitems, int size)
704 {
705 	struct hibernate_zlib_state *hibernate_state;
706 
707 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
708 
709 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
710 }
711 
712 /*
713  * Free the memory pointed to by addr in the hiballoc area presently in
714  * use
715  */
716 void
717 hibernate_zlib_free(void *unused, void *addr)
718 {
719 	struct hibernate_zlib_state *hibernate_state;
720 
721 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
722 
723 	hib_free(&hibernate_state->hiballoc_arena, addr);
724 }
725 
726 /*
727  * Gets the next RLE value from the image stream
728  */
729 int
730 hibernate_get_next_rle(void)
731 {
732 	int rle, i;
733 	struct hibernate_zlib_state *hibernate_state;
734 
735 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
736 
737 	/* Read RLE code */
738 	hibernate_state->hib_stream.next_out = (char *)&rle;
739 	hibernate_state->hib_stream.avail_out = sizeof(rle);
740 
741 	i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH);
742 	if (i != Z_OK && i != Z_STREAM_END) {
743 		/*
744 		 * XXX - this will likely reboot/hang most machines,
745 		 *       but there's not much else we can do here.
746 		 */
747 		panic("inflate rle error");
748 	}
749 
750 	/* Sanity check what RLE value we got */
751 	if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0)
752 		panic("invalid RLE code");
753 
754 	if (i == Z_STREAM_END)
755 		rle = -1;
756 
757 	return rle;
758 }
759 
760 /*
761  * Inflate next page of data from the image stream
762  */
763 int
764 hibernate_inflate_page(void)
765 {
766 	struct hibernate_zlib_state *hibernate_state;
767 	int i;
768 
769 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
770 
771 	/* Set up the stream for inflate */
772 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
773 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
774 
775 	/* Process next block of data */
776 	i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
777 	if (i != Z_OK && i != Z_STREAM_END) {
778 		/*
779 		 * XXX - this will likely reboot/hang most machines,
780 		 *       but there's not much else we can do here.
781 		 */
782 
783 		panic("inflate error");
784 	}
785 
786 	/* We should always have extracted a full page ... */
787 	if (hibernate_state->hib_stream.avail_out != 0)
788 		panic("incomplete page");
789 
790 	return (i == Z_STREAM_END);
791 }
792 
793 /*
794  * Inflate size bytes from src into dest, skipping any pages in
795  * [src..dest] that are special (see hibernate_inflate_skip)
796  *
797  * This function executes while using the resume-time stack
798  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
799  * will likely hang or reset the machine.
800  */
801 void
802 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest,
803     paddr_t src, size_t size)
804 {
805 	int end_stream = 0 ;
806 	struct hibernate_zlib_state *hibernate_state;
807 
808 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
809 
810 	hibernate_state->hib_stream.next_in = (char *)src;
811 	hibernate_state->hib_stream.avail_in = size;
812 
813 	do {
814 		/* Flush cache and TLB */
815 		hibernate_flush();
816 
817 		/*
818 		 * Is this a special page? If yes, redirect the
819 		 * inflate output to a scratch page (eg, discard it)
820 		 */
821 		if (hibernate_inflate_skip(hiber_info, dest)) {
822 			hibernate_enter_resume_mapping(
823 			    HIBERNATE_INFLATE_PAGE,
824 			    HIBERNATE_INFLATE_PAGE, 0);
825 		} else {
826 			hibernate_enter_resume_mapping(
827 			    HIBERNATE_INFLATE_PAGE, dest, 0);
828 		}
829 
830 		hibernate_flush();
831 		end_stream = hibernate_inflate_page();
832 
833 		dest += PAGE_SIZE;
834 	} while (!end_stream);
835 }
836 
837 /*
838  * deflate from src into the I/O page, up to 'remaining' bytes
839  *
840  * Returns number of input bytes consumed, and may reset
841  * the 'remaining' parameter if not all the output space was consumed
842  * (this information is needed to know how much to write to disk
843  */
844 size_t
845 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src,
846     size_t *remaining)
847 {
848 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
849 	struct hibernate_zlib_state *hibernate_state;
850 
851 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
852 
853 	/* Set up the stream for deflate */
854 	hibernate_state->hib_stream.next_in = (caddr_t)src;
855 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
856 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
857 	    (PAGE_SIZE - *remaining);
858 	hibernate_state->hib_stream.avail_out = *remaining;
859 
860 	/* Process next block of data */
861 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
862 		panic("hibernate zlib deflate error");
863 
864 	/* Update pointers and return number of bytes consumed */
865 	*remaining = hibernate_state->hib_stream.avail_out;
866 	return (PAGE_SIZE - (src & PAGE_MASK)) -
867 	    hibernate_state->hib_stream.avail_in;
868 }
869 
870 /*
871  * Write the hibernation information specified in hiber_info
872  * to the location in swap previously calculated (last block of
873  * swap), called the "signature block".
874  *
875  * Write the memory chunk table to the area in swap immediately
876  * preceding the signature block.
877  */
878 int
879 hibernate_write_signature(union hibernate_info *hiber_info)
880 {
881 	/* Write hibernate info to disk */
882 	return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset,
883 	    (vaddr_t)hiber_info, hiber_info->secsize, HIB_W,
884 	    hiber_info->io_page));
885 }
886 
887 /*
888  * Write the memory chunk table to the area in swap immediately
889  * preceding the signature block. The chunk table is stored
890  * in the piglet when this function is called.
891  */
892 int
893 hibernate_write_chunktable(union hibernate_info *hiber_info)
894 {
895 	struct hibernate_disk_chunk *chunks;
896 	vaddr_t hibernate_chunk_table_start;
897 	size_t hibernate_chunk_table_size;
898 	daddr_t chunkbase;
899 	int i;
900 
901 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
902 
903 	chunkbase = hiber_info->sig_offset -
904 	    (hibernate_chunk_table_size / hiber_info->secsize);
905 
906 	hibernate_chunk_table_start = hiber_info->piglet_va +
907 	    HIBERNATE_CHUNK_SIZE;
908 
909 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
910 	    HIBERNATE_CHUNK_SIZE);
911 
912 	/* Write chunk table */
913 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
914 		if (hiber_info->io_func(hiber_info->device,
915 		    chunkbase + (i/hiber_info->secsize),
916 		    (vaddr_t)(hibernate_chunk_table_start + i),
917 		    MAXPHYS, HIB_W, hiber_info->io_page))
918 			return (1);
919 	}
920 
921 	return (0);
922 }
923 
924 /*
925  * Write an empty hiber_info to the swap signature block, which is
926  * guaranteed to not match any valid hiber_info.
927  */
928 int
929 hibernate_clear_signature(void)
930 {
931 	union hibernate_info blank_hiber_info;
932 	union hibernate_info hiber_info;
933 
934 	/* Zero out a blank hiber_info */
935 	bzero(&blank_hiber_info, sizeof(hiber_info));
936 
937 	if (get_hibernate_info(&hiber_info, 0))
938 		return (1);
939 
940 	/* Write (zeroed) hibernate info to disk */
941 	if (hibernate_block_io(&hiber_info,
942 	    hiber_info.sig_offset - hiber_info.swap_offset,
943 	    hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1))
944 		panic("error hibernate write 6");
945 
946 	return (0);
947 }
948 
949 /*
950  * Check chunk range overlap when calculating whether or not to copy a
951  * compressed chunk to the piglet area before decompressing.
952  *
953  * returns zero if the ranges do not overlap, non-zero otherwise.
954  */
955 int
956 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
957 {
958 	/* case A : end of r1 overlaps start of r2 */
959 	if (r1s < r2s && r1e > r2s)
960 		return (1);
961 
962 	/* case B : r1 entirely inside r2 */
963 	if (r1s >= r2s && r1e <= r2e)
964 		return (1);
965 
966 	/* case C : r2 entirely inside r1 */
967 	if (r2s >= r1s && r2e <= r1e)
968 		return (1);
969 
970 	/* case D : end of r2 overlaps start of r1 */
971 	if (r2s < r1s && r2e > r1s)
972 		return (1);
973 
974 	return (0);
975 }
976 
977 /*
978  * Compare two hibernate_infos to determine if they are the same (eg,
979  * we should be performing a hibernate resume on this machine.
980  * Not all fields are checked - just enough to verify that the machine
981  * has the same memory configuration and kernel as the one that
982  * wrote the signature previously.
983  */
984 int
985 hibernate_compare_signature(union hibernate_info *mine,
986     union hibernate_info *disk)
987 {
988 	u_int i;
989 
990 	if (mine->nranges != disk->nranges)
991 		return (1);
992 
993 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0)
994 		return (1);
995 
996 	for (i = 0; i < mine->nranges; i++) {
997 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
998 		    (mine->ranges[i].end != disk->ranges[i].end) )
999 			return (1);
1000 	}
1001 
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Transfers xfer_size bytes between the hibernate device specified in
1007  * hib_info at offset blkctr and the vaddr specified at dest.
1008  *
1009  * Separate offsets and pages are used to handle misaligned reads (reads
1010  * that span a page boundary).
1011  *
1012  * blkctr specifies a relative offset (relative to the start of swap),
1013  * not an absolute disk offset
1014  *
1015  */
1016 int
1017 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr,
1018     size_t xfer_size, vaddr_t dest, int iswrite)
1019 {
1020 	struct buf *bp;
1021 	struct bdevsw *bdsw;
1022 	int error;
1023 
1024 	bp = geteblk(xfer_size);
1025 	bdsw = &bdevsw[major(hib_info->device)];
1026 
1027 	error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc);
1028 	if (error) {
1029 		printf("hibernate_block_io open failed\n");
1030 		return (1);
1031 	}
1032 
1033 	if (iswrite)
1034 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1035 
1036 	bp->b_bcount = xfer_size;
1037 	bp->b_blkno = blkctr;
1038 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1039 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1040 	bp->b_dev = hib_info->device;
1041 	bp->b_cylinder = 0;
1042 	(*bdsw->d_strategy)(bp);
1043 
1044 	error = biowait(bp);
1045 	if (error) {
1046 		printf("hibernate_block_io biowait failed %d\n", error);
1047 		error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR,
1048 		    curproc);
1049 		if (error)
1050 			printf("hibernate_block_io error close failed\n");
1051 		return (1);
1052 	}
1053 
1054 	error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc);
1055 	if (error) {
1056 		printf("hibernate_block_io close failed\n");
1057 		return (1);
1058 	}
1059 
1060 	if (!iswrite)
1061 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1062 
1063 	bp->b_flags |= B_INVAL;
1064 	brelse(bp);
1065 
1066 	return (0);
1067 }
1068 
1069 /*
1070  * Reads the signature block from swap, checks against the current machine's
1071  * information. If the information matches, perform a resume by reading the
1072  * saved image into the pig area, and unpacking.
1073  */
1074 void
1075 hibernate_resume(void)
1076 {
1077 	union hibernate_info hiber_info;
1078 	int s;
1079 
1080 	/* Get current running machine's hibernate info */
1081 	bzero(&hiber_info, sizeof(hiber_info));
1082 	if (get_hibernate_info(&hiber_info, 0))
1083 		return;
1084 
1085 	/* Read hibernate info from disk */
1086 	s = splbio();
1087 
1088 	if (hibernate_block_io(&hiber_info,
1089 	    hiber_info.sig_offset - hiber_info.swap_offset,
1090 	    hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0))
1091 		panic("error in hibernate read");
1092 
1093 	/*
1094 	 * If on-disk and in-memory hibernate signatures match,
1095 	 * this means we should do a resume from hibernate.
1096 	 */
1097 	if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) {
1098 		splx(s);
1099 		return;
1100 	}
1101 
1102 	/* Read the image from disk into the image (pig) area */
1103 	if (hibernate_read_image(&disk_hiber_info))
1104 		goto fail;
1105 
1106 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0)
1107 		goto fail;
1108 
1109 	(void) splhigh();
1110 	disable_intr();
1111 	cold = 1;
1112 
1113 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) {
1114 		cold = 0;
1115 		enable_intr();
1116 		goto fail;
1117 	}
1118 
1119 	/* Point of no return ... */
1120 
1121 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1122 	    VM_PROT_ALL);
1123 	pmap_activate(curproc);
1124 
1125 	/* Switch stacks */
1126 	hibernate_switch_stack_machdep();
1127 
1128 	/*
1129 	 * Image is now in high memory (pig area), copy to correct location
1130 	 * in memory. We'll eventually end up copying on top of ourself, but
1131 	 * we are assured the kernel code here is the same between the
1132 	 * hibernated and resuming kernel, and we are running on our own
1133 	 * stack, so the overwrite is ok.
1134 	 */
1135 	hibernate_unpack_image(&disk_hiber_info);
1136 
1137 	/*
1138 	 * Resume the loaded kernel by jumping to the MD resume vector.
1139 	 * We won't be returning from this call.
1140 	 */
1141 	hibernate_resume_machdep();
1142 
1143 fail:
1144 	splx(s);
1145 	printf("Unable to resume hibernated image\n");
1146 }
1147 
1148 /*
1149  * Unpack image from pig area to original location by looping through the
1150  * list of output chunks in the order they should be restored (fchunks).
1151  * This ordering is used to avoid having inflate overwrite a chunk in the
1152  * middle of processing that chunk. This will, of course, happen during the
1153  * final output chunk, where we copy the chunk to the piglet area first,
1154  * before inflating.
1155  */
1156 void
1157 hibernate_unpack_image(union hibernate_info *hiber_info)
1158 {
1159 	struct hibernate_disk_chunk *chunks;
1160 	union hibernate_info local_hiber_info;
1161 	paddr_t image_cur = global_pig_start;
1162 	int *fchunks, i;
1163 	char *pva = (char *)hiber_info->piglet_va;
1164 	struct hibernate_zlib_state *hibernate_state;
1165 
1166 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1167 
1168 	/* Mask off based on arch-specific piglet page size */
1169 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1170 	fchunks = (int *)(pva + (6 * PAGE_SIZE));
1171 
1172 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1173 
1174 	/* Can't use hiber_info that's passed in after this point */
1175 	bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info));
1176 
1177 	hibernate_activate_resume_pt_machdep();
1178 
1179 	for (i = 0; i < local_hiber_info.chunk_ctr; i++) {
1180 		/* Reset zlib for inflate */
1181 		if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK)
1182 			panic("hibernate failed to reset zlib for inflate");
1183 
1184 		hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]],
1185 		    image_cur);
1186 
1187 		image_cur += chunks[fchunks[i]].compressed_size;
1188 
1189 	}
1190 }
1191 
1192 /*
1193  * Process a chunk by ensuring its proper placement, followed by unpacking
1194  */
1195 void
1196 hibernate_process_chunk(union hibernate_info *hiber_info,
1197     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1198 {
1199 	char *pva = (char *)hiber_info->piglet_va;
1200 
1201 	/*
1202 	 * If there is a conflict, copy the chunk to the piglet area
1203 	 * before unpacking it to its original location.
1204 	 */
1205 	if ((chunk->flags & HIBERNATE_CHUNK_CONFLICT) == 0)
1206 		hibernate_inflate_region(hiber_info, chunk->base,
1207 		    img_cur, chunk->compressed_size);
1208 	else {
1209 		bcopy((caddr_t)img_cur,
1210 		    pva + (HIBERNATE_CHUNK_SIZE * 2),
1211 		    chunk->compressed_size);
1212 		hibernate_inflate_region(hiber_info, chunk->base,
1213 		    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1214 		    chunk->compressed_size);
1215 	}
1216 }
1217 
1218 /*
1219  * Write a compressed version of this machine's memory to disk, at the
1220  * precalculated swap offset:
1221  *
1222  * end of swap - signature block size - chunk table size - memory size
1223  *
1224  * The function begins by looping through each phys mem range, cutting each
1225  * one into MD sized chunks. These chunks are then compressed individually
1226  * and written out to disk, in phys mem order. Some chunks might compress
1227  * more than others, and for this reason, each chunk's size is recorded
1228  * in the chunk table, which is written to disk after the image has
1229  * properly been compressed and written (in hibernate_write_chunktable).
1230  *
1231  * When this function is called, the machine is nearly suspended - most
1232  * devices are quiesced/suspended, interrupts are off, and cold has
1233  * been set. This means that there can be no side effects once the
1234  * write has started, and the write function itself can also have no
1235  * side effects. This also means no printfs are permitted (since it
1236  * has side effects.)
1237  */
1238 int
1239 hibernate_write_chunks(union hibernate_info *hiber_info)
1240 {
1241 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1242 	size_t nblocks, out_remaining, used;
1243 	struct hibernate_disk_chunk *chunks;
1244 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
1245 	daddr_t blkctr = hiber_info->image_offset, offset = 0;
1246 	int i;
1247 	struct hibernate_zlib_state *hibernate_state;
1248 
1249 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1250 
1251 	hiber_info->chunk_ctr = 0;
1252 
1253 	/*
1254 	 * Allocate VA for the temp and copy page.
1255 	 * These will becomee part of the suspended kernel and will
1256 	 * be freed in hibernate_free, upon resume.
1257 	 */
1258 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1259 	    &kp_none, &kd_nowait);
1260 	if (!hibernate_temp_page)
1261 		return (1);
1262 
1263 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1264 	    &kp_none, &kd_nowait);
1265 	if (!hibernate_copy_page)
1266 		return (1);
1267 
1268 	pmap_kenter_pa(hibernate_copy_page,
1269 	    (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1270 
1271 	/* XXX - not needed on all archs */
1272 	pmap_activate(curproc);
1273 
1274 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
1275 	    HIBERNATE_CHUNK_SIZE);
1276 
1277 	/* Calculate the chunk regions */
1278 	for (i = 0; i < hiber_info->nranges; i++) {
1279 		range_base = hiber_info->ranges[i].base;
1280 		range_end = hiber_info->ranges[i].end;
1281 
1282 		inaddr = range_base;
1283 
1284 		while (inaddr < range_end) {
1285 			chunks[hiber_info->chunk_ctr].base = inaddr;
1286 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1287 				chunks[hiber_info->chunk_ctr].end = inaddr +
1288 				    HIBERNATE_CHUNK_SIZE;
1289 			else
1290 				chunks[hiber_info->chunk_ctr].end = range_end;
1291 
1292 			inaddr += HIBERNATE_CHUNK_SIZE;
1293 			hiber_info->chunk_ctr ++;
1294 		}
1295 	}
1296 
1297 	/* Compress and write the chunks in the chunktable */
1298 	for (i = 0; i < hiber_info->chunk_ctr; i++) {
1299 		range_base = chunks[i].base;
1300 		range_end = chunks[i].end;
1301 
1302 		chunks[i].offset = blkctr;
1303 
1304 		/* Reset zlib for deflate */
1305 		if (hibernate_zlib_reset(hiber_info, 1) != Z_OK)
1306 			return (1);
1307 
1308 		inaddr = range_base;
1309 
1310 		/*
1311 		 * For each range, loop through its phys mem region
1312 		 * and write out the chunks (the last chunk might be
1313 		 * smaller than the chunk size).
1314 		 */
1315 		while (inaddr < range_end) {
1316 			out_remaining = PAGE_SIZE;
1317 			while (out_remaining > 0 && inaddr < range_end) {
1318 
1319 				/*
1320 				 * Adjust for regions that are not evenly
1321 				 * divisible by PAGE_SIZE or overflowed
1322 				 * pages from the previous iteration.
1323 				 */
1324 				temp_inaddr = (inaddr & PAGE_MASK) +
1325 				    hibernate_copy_page;
1326 
1327 				/* Deflate from temp_inaddr to IO page */
1328 				if (inaddr != range_end) {
1329 					pmap_kenter_pa(hibernate_temp_page,
1330 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1331 
1332 					/* XXX - not needed on all archs */
1333 					pmap_activate(curproc);
1334 
1335 					bcopy((caddr_t)hibernate_temp_page,
1336 					    (caddr_t)hibernate_copy_page, PAGE_SIZE);
1337 					inaddr += hibernate_deflate(hiber_info,
1338 					    temp_inaddr, &out_remaining);
1339 				}
1340 
1341 				if (out_remaining == 0) {
1342 					/* Filled up the page */
1343 					nblocks = PAGE_SIZE / hiber_info->secsize;
1344 
1345 					if (hiber_info->io_func(hiber_info->device,
1346 					    blkctr, (vaddr_t)hibernate_io_page,
1347 					    PAGE_SIZE, HIB_W, hiber_info->io_page))
1348 						return (1);
1349 
1350 					blkctr += nblocks;
1351 				}
1352 			}
1353 		}
1354 
1355 		if (inaddr != range_end)
1356 			return (1);
1357 
1358 		/*
1359 		 * End of range. Round up to next secsize bytes
1360 		 * after finishing compress
1361 		 */
1362 		if (out_remaining == 0)
1363 			out_remaining = PAGE_SIZE;
1364 
1365 		/* Finish compress */
1366 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1367 		hibernate_state->hib_stream.avail_in = 0;
1368 		hibernate_state->hib_stream.next_out =
1369 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1370 		hibernate_state->hib_stream.avail_out = out_remaining;
1371 
1372 		if (deflate(&hibernate_state->hib_stream, Z_FINISH) !=
1373 		    Z_STREAM_END)
1374 			return (1);
1375 
1376 		out_remaining = hibernate_state->hib_stream.avail_out;
1377 
1378 		used = PAGE_SIZE - out_remaining;
1379 		nblocks = used / hiber_info->secsize;
1380 
1381 		/* Round up to next block if needed */
1382 		if (used % hiber_info->secsize != 0)
1383 			nblocks ++;
1384 
1385 		/* Write final block(s) for this chunk */
1386 		if (hiber_info->io_func(hiber_info->device, blkctr,
1387 		    (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize,
1388 		    HIB_W, hiber_info->io_page))
1389 			return (1);
1390 
1391 		blkctr += nblocks;
1392 
1393 		offset = blkctr;
1394 		chunks[i].compressed_size = (offset - chunks[i].offset) *
1395 		    hiber_info->secsize;
1396 	}
1397 
1398 	return (0);
1399 }
1400 
1401 /*
1402  * Reset the zlib stream state and allocate a new hiballoc area for either
1403  * inflate or deflate. This function is called once for each hibernate chunk.
1404  * Calling hiballoc_init multiple times is acceptable since the memory it is
1405  * provided is unmanaged memory (stolen). We use the memory provided to us
1406  * by the piglet allocated via the supplied hiber_info.
1407  */
1408 int
1409 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate)
1410 {
1411 	vaddr_t hibernate_zlib_start;
1412 	size_t hibernate_zlib_size;
1413 	char *pva = (char *)hiber_info->piglet_va;
1414 	struct hibernate_zlib_state *hibernate_state;
1415 
1416 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1417 
1418 	if(!deflate)
1419 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1420 
1421 	hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE));
1422 	hibernate_zlib_size = 80 * PAGE_SIZE;
1423 
1424 	bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1425 	bzero((caddr_t)hibernate_state, PAGE_SIZE);
1426 
1427 	/* Set up stream structure */
1428 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1429 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1430 
1431 	/* Initialize the hiballoc arena for zlib allocs/frees */
1432 	hiballoc_init(&hibernate_state->hiballoc_arena,
1433 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1434 
1435 	if (deflate) {
1436 		return deflateInit(&hibernate_state->hib_stream,
1437 		    Z_BEST_SPEED);
1438 	} else
1439 		return inflateInit(&hibernate_state->hib_stream);
1440 }
1441 
1442 /*
1443  * Reads the hibernated memory image from disk, whose location and
1444  * size are recorded in hiber_info. Begin by reading the persisted
1445  * chunk table, which records the original chunk placement location
1446  * and compressed size for each. Next, allocate a pig region of
1447  * sufficient size to hold the compressed image. Next, read the
1448  * chunks into the pig area (calling hibernate_read_chunks to do this),
1449  * and finally, if all of the above succeeds, clear the hibernate signature.
1450  * The function will then return to hibernate_resume, which will proceed
1451  * to unpack the pig image to the correct place in memory.
1452  */
1453 int
1454 hibernate_read_image(union hibernate_info *hiber_info)
1455 {
1456 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1457 	paddr_t image_start, image_end, pig_start, pig_end;
1458 	struct hibernate_disk_chunk *chunks;
1459 	daddr_t blkctr;
1460 	vaddr_t chunktable = (vaddr_t)NULL;
1461 	paddr_t piglet_chunktable = hiber_info->piglet_pa +
1462 	    HIBERNATE_CHUNK_SIZE;
1463 	int i;
1464 
1465 	pmap_activate(curproc);
1466 
1467 	/* Calculate total chunk table size in disk blocks */
1468 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
1469 
1470 	blkctr = hiber_info->sig_offset - chunktable_size -
1471 			hiber_info->swap_offset;
1472 
1473 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1474 	    &kp_none, &kd_nowait);
1475 
1476 	if (!chunktable)
1477 		return (1);
1478 
1479 	/* Read the chunktable from disk into the piglet chunktable */
1480 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1481 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) {
1482 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL);
1483 		pmap_update(pmap_kernel());
1484 		hibernate_block_io(hiber_info, blkctr, PAGE_SIZE,
1485 		    chunktable + i, 0);
1486 	}
1487 
1488 	blkctr = hiber_info->image_offset;
1489 	compressed_size = 0;
1490 
1491 	chunks = (struct hibernate_disk_chunk *)chunktable;
1492 
1493 	for (i = 0; i < hiber_info->chunk_ctr; i++)
1494 		compressed_size += chunks[i].compressed_size;
1495 
1496 	disk_size = compressed_size;
1497 
1498 	/* Allocate the pig area */
1499 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1500 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1501 		return (1);
1502 
1503 	pig_end = pig_start + pig_sz;
1504 
1505 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1506 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1507 	image_start = pig_start;
1508 
1509 	image_start = image_end - disk_size;
1510 
1511 	hibernate_read_chunks(hiber_info, image_start, image_end, disk_size,
1512 	    chunks);
1513 
1514 	pmap_kremove(chunktable, PAGE_SIZE);
1515 	pmap_update(pmap_kernel());
1516 
1517 	/* Prepare the resume time pmap/page table */
1518 	hibernate_populate_resume_pt(hiber_info, image_start, image_end);
1519 
1520 	/* Read complete, clear the signature and return */
1521 	return hibernate_clear_signature();
1522 }
1523 
1524 /*
1525  * Read the hibernated memory chunks from disk (chunk information at this
1526  * point is stored in the piglet) into the pig area specified by
1527  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1528  * only chunk with overlap possibilities.
1529  */
1530 int
1531 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start,
1532     paddr_t pig_end, size_t image_compr_size,
1533     struct hibernate_disk_chunk *chunks)
1534 {
1535 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1536 	paddr_t copy_start, copy_end, piglet_cur;
1537 	paddr_t piglet_base = hib_info->piglet_pa;
1538 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1539 	daddr_t blkctr;
1540 	size_t processed, compressed_size, read_size;
1541 	int i, j, overlap, found, nchunks;
1542 	int nochunks = 0, nfchunks = 0, npchunks = 0;
1543 	int *ochunks, *pchunks, *fchunks;
1544 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1545 
1546 	global_pig_start = pig_start;
1547 
1548 	/* XXX - dont need this on all archs */
1549 	pmap_activate(curproc);
1550 
1551 	/*
1552 	 * These mappings go into the resuming kernel's page table, and are
1553 	 * used only during image read. They dissappear from existence
1554 	 * when the suspended kernel is unpacked on top of us.
1555 	 */
1556 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1557 	if (!tempva)
1558 		return (1);
1559 	hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any,
1560 	    &kp_none, &kd_nowait);
1561 	if (!hibernate_fchunk_area)
1562 		return (1);
1563 
1564 	/* Temporary output chunk ordering VA */
1565 	ochunks = (int *)hibernate_fchunk_area;
1566 
1567 	/* Piglet chunk ordering VA */
1568 	pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE);
1569 
1570 	/* Final chunk ordering VA */
1571 	fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE));
1572 
1573 	/* Map the chunk ordering region */
1574 	pmap_kenter_pa(hibernate_fchunk_area,
1575 	    piglet_base + (4*PAGE_SIZE), VM_PROT_ALL);
1576 	pmap_update(pmap_kernel());
1577 	pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE),
1578 	    VM_PROT_ALL);
1579 	pmap_update(pmap_kernel());
1580 	pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE),
1581 	    VM_PROT_ALL);
1582 	pmap_update(pmap_kernel());
1583 
1584 	nchunks = hib_info->chunk_ctr;
1585 
1586 	/* Initially start all chunks as unplaced */
1587 	for (i = 0; i < nchunks; i++)
1588 		chunks[i].flags = 0;
1589 
1590 	/*
1591 	 * Search the list for chunks that are outside the pig area. These
1592 	 * can be placed first in the final output list.
1593 	 */
1594 	for (i = 0; i < nchunks; i++) {
1595 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1596 			ochunks[nochunks] = i;
1597 			fchunks[nfchunks] = i;
1598 			nochunks++;
1599 			nfchunks++;
1600 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * Walk the ordering, place the chunks in ascending memory order.
1606 	 * Conflicts might arise, these are handled next.
1607 	 */
1608 	do {
1609 		img_index = -1;
1610 		found = 0;
1611 		j = -1;
1612 		for (i = 0; i < nchunks; i++)
1613 			if (chunks[i].base < img_index &&
1614 			    chunks[i].flags == 0 ) {
1615 				j = i;
1616 				img_index = chunks[i].base;
1617 			}
1618 
1619 		if (j != -1) {
1620 			found = 1;
1621 			ochunks[nochunks] = (short)j;
1622 			nochunks++;
1623 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1624 		}
1625 	} while (found);
1626 
1627 	img_index = pig_start;
1628 
1629 	/*
1630 	 * Identify chunk output conflicts (chunks whose pig load area
1631 	 * corresponds to their original memory placement location)
1632 	 */
1633 	for (i = 0; i < nochunks ; i++) {
1634 		overlap = 0;
1635 		r1s = img_index;
1636 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1637 		r2s = chunks[ochunks[i]].base;
1638 		r2e = chunks[ochunks[i]].end;
1639 
1640 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1641 		if (overlap)
1642 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1643 		img_index += chunks[ochunks[i]].compressed_size;
1644 	}
1645 
1646 	/*
1647 	 * Prepare the final output chunk list. Calculate an output
1648 	 * inflate strategy for overlapping chunks if needed.
1649 	 */
1650 	img_index = pig_start;
1651 	for (i = 0; i < nochunks ; i++) {
1652 		/*
1653 		 * If a conflict is detected, consume enough compressed
1654 		 * output chunks to fill the piglet
1655 		 */
1656 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1657 			copy_start = piglet_base;
1658 			copy_end = piglet_end;
1659 			piglet_cur = piglet_base;
1660 			npchunks = 0;
1661 			j = i;
1662 
1663 			while (copy_start < copy_end && j < nochunks) {
1664 				piglet_cur += chunks[ochunks[j]].compressed_size;
1665 				pchunks[npchunks] = ochunks[j];
1666 				npchunks++;
1667 				copy_start += chunks[ochunks[j]].compressed_size;
1668 				img_index += chunks[ochunks[j]].compressed_size;
1669 				i++;
1670 				j++;
1671 			}
1672 
1673 			piglet_cur = piglet_base;
1674 			for (j = 0; j < npchunks; j++) {
1675 				piglet_cur += chunks[pchunks[j]].compressed_size;
1676 				fchunks[nfchunks] = pchunks[j];
1677 				chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED;
1678 				nfchunks++;
1679 			}
1680 		} else {
1681 			/*
1682 			 * No conflict, chunk can be added without copying
1683 			 */
1684 			if ((chunks[ochunks[i]].flags &
1685 			    HIBERNATE_CHUNK_USED) == 0) {
1686 				fchunks[nfchunks] = ochunks[i];
1687 				chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED;
1688 				nfchunks++;
1689 			}
1690 			img_index += chunks[ochunks[i]].compressed_size;
1691 		}
1692 	}
1693 
1694 	img_index = pig_start;
1695 	for (i = 0; i < nfchunks; i++) {
1696 		piglet_cur = piglet_base;
1697 		img_index += chunks[fchunks[i]].compressed_size;
1698 	}
1699 
1700 	img_cur = pig_start;
1701 
1702 	for (i = 0; i < nfchunks; i++) {
1703 		blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset;
1704 		processed = 0;
1705 		compressed_size = chunks[fchunks[i]].compressed_size;
1706 
1707 		while (processed < compressed_size) {
1708 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1709 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1710 			    VM_PROT_ALL);
1711 			pmap_update(pmap_kernel());
1712 
1713 			if (compressed_size - processed >= PAGE_SIZE)
1714 				read_size = PAGE_SIZE;
1715 			else
1716 				read_size = compressed_size - processed;
1717 
1718 			hibernate_block_io(hib_info, blkctr, read_size,
1719 			    tempva + (img_cur & PAGE_MASK), 0);
1720 
1721 			blkctr += (read_size / hib_info->secsize);
1722 
1723 			hibernate_flush();
1724 			pmap_kremove(tempva, PAGE_SIZE);
1725 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1726 			processed += read_size;
1727 			img_cur += read_size;
1728 		}
1729 	}
1730 
1731 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1732 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1733 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1734 	pmap_update(pmap_kernel());
1735 
1736 	return (0);
1737 }
1738 
1739 /*
1740  * Hibernating a machine comprises the following operations:
1741  *  1. Calculating this machine's hibernate_info information
1742  *  2. Allocating a piglet and saving the piglet's physaddr
1743  *  3. Calculating the memory chunks
1744  *  4. Writing the compressed chunks to disk
1745  *  5. Writing the chunk table
1746  *  6. Writing the signature block (hibernate_info)
1747  *
1748  * On most architectures, the function calling hibernate_suspend would
1749  * then power off the machine using some MD-specific implementation.
1750  */
1751 int
1752 hibernate_suspend(void)
1753 {
1754 	union hibernate_info hib_info;
1755 	size_t swap_size;
1756 
1757 	/*
1758 	 * Calculate memory ranges, swap offsets, etc.
1759 	 * This also allocates a piglet whose physaddr is stored in
1760 	 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va
1761 	 */
1762 	if (get_hibernate_info(&hib_info, 1))
1763 		return (1);
1764 
1765 	swap_size = hib_info.image_size + hib_info.secsize +
1766 		HIBERNATE_CHUNK_TABLE_SIZE;
1767 
1768 	if (uvm_swap_check_range(hib_info.device, swap_size)) {
1769 		printf("insufficient swap space for hibernate\n");
1770 		return (1);
1771 	}
1772 
1773 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1774 		VM_PROT_ALL);
1775 	pmap_activate(curproc);
1776 
1777 	/* Stash the piglet VA so we can free it in the resuming kernel */
1778 	global_piglet_va = hib_info.piglet_va;
1779 
1780 	if (hibernate_write_chunks(&hib_info))
1781 		return (1);
1782 
1783 	if (hibernate_write_chunktable(&hib_info))
1784 		return (1);
1785 
1786 	if (hibernate_write_signature(&hib_info))
1787 		return (1);
1788 
1789 	delay(500000);
1790 	return (0);
1791 }
1792 
1793 /*
1794  * Free items allocated by hibernate_suspend()
1795  */
1796 void
1797 hibernate_free(void)
1798 {
1799 	if (global_piglet_va)
1800 		uvm_pmr_free_piglet(global_piglet_va,
1801 		    3*HIBERNATE_CHUNK_SIZE);
1802 
1803 	if (hibernate_copy_page)
1804 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1805 	if (hibernate_temp_page)
1806 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1807 
1808 	pmap_update(pmap_kernel());
1809 
1810 	if (hibernate_copy_page)
1811 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
1812 		    &kv_any, &kp_none);
1813 	if (hibernate_temp_page)
1814 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
1815 		    &kv_any, &kp_none);
1816 
1817 	global_piglet_va = 0;
1818 	hibernate_copy_page = 0;
1819 	hibernate_temp_page = 0;
1820 }
1821