xref: /openbsd-src/sys/kern/subr_hibernate.c (revision c92a73ed072974f910cad030ce4c9fbbd4772014)
1 /*	$OpenBSD: subr_hibernate.c,v 1.42 2012/07/12 09:44:09 mlarkin Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/types.h>
25 #include <sys/systm.h>
26 #include <sys/disklabel.h>
27 #include <sys/disk.h>
28 #include <sys/conf.h>
29 #include <sys/buf.h>
30 #include <sys/fcntl.h>
31 #include <sys/stat.h>
32 #include <uvm/uvm.h>
33 #include <uvm/uvm_swap.h>
34 #include <machine/hibernate.h>
35 
36 /* Temporary vaddr ranges used during hibernate */
37 vaddr_t hibernate_temp_page;
38 vaddr_t hibernate_copy_page;
39 
40 /* Hibernate info as read from disk during resume */
41 union hibernate_info disk_hiber_info;
42 paddr_t global_pig_start;
43 vaddr_t global_piglet_va;
44 
45 /*
46  * Hib alloc enforced alignment.
47  */
48 #define HIB_ALIGN		8 /* bytes alignment */
49 
50 /*
51  * sizeof builtin operation, but with alignment constraint.
52  */
53 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
54 
55 struct hiballoc_entry {
56 	size_t			hibe_use;
57 	size_t			hibe_space;
58 	RB_ENTRY(hiballoc_entry) hibe_entry;
59 };
60 
61 /*
62  * Compare hiballoc entries based on the address they manage.
63  *
64  * Since the address is fixed, relative to struct hiballoc_entry,
65  * we just compare the hiballoc_entry pointers.
66  */
67 static __inline int
68 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
69 {
70 	return l < r ? -1 : (l > r);
71 }
72 
73 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
74 
75 /*
76  * Given a hiballoc entry, return the address it manages.
77  */
78 static __inline void *
79 hib_entry_to_addr(struct hiballoc_entry *entry)
80 {
81 	caddr_t addr;
82 
83 	addr = (caddr_t)entry;
84 	addr += HIB_SIZEOF(struct hiballoc_entry);
85 	return addr;
86 }
87 
88 /*
89  * Given an address, find the hiballoc that corresponds.
90  */
91 static __inline struct hiballoc_entry*
92 hib_addr_to_entry(void *addr_param)
93 {
94 	caddr_t addr;
95 
96 	addr = (caddr_t)addr_param;
97 	addr -= HIB_SIZEOF(struct hiballoc_entry);
98 	return (struct hiballoc_entry*)addr;
99 }
100 
101 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
102 
103 /*
104  * Allocate memory from the arena.
105  *
106  * Returns NULL if no memory is available.
107  */
108 void *
109 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
110 {
111 	struct hiballoc_entry *entry, *new_entry;
112 	size_t find_sz;
113 
114 	/*
115 	 * Enforce alignment of HIB_ALIGN bytes.
116 	 *
117 	 * Note that, because the entry is put in front of the allocation,
118 	 * 0-byte allocations are guaranteed a unique address.
119 	 */
120 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
121 
122 	/*
123 	 * Find an entry with hibe_space >= find_sz.
124 	 *
125 	 * If the root node is not large enough, we switch to tree traversal.
126 	 * Because all entries are made at the bottom of the free space,
127 	 * traversal from the end has a slightly better chance of yielding
128 	 * a sufficiently large space.
129 	 */
130 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
131 	entry = RB_ROOT(&arena->hib_addrs);
132 	if (entry != NULL && entry->hibe_space < find_sz) {
133 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
134 			if (entry->hibe_space >= find_sz)
135 				break;
136 		}
137 	}
138 
139 	/*
140 	 * Insufficient or too fragmented memory.
141 	 */
142 	if (entry == NULL)
143 		return NULL;
144 
145 	/*
146 	 * Create new entry in allocated space.
147 	 */
148 	new_entry = (struct hiballoc_entry*)(
149 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
150 	new_entry->hibe_space = entry->hibe_space - find_sz;
151 	new_entry->hibe_use = alloc_sz;
152 
153 	/*
154 	 * Insert entry.
155 	 */
156 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
157 		panic("hib_alloc: insert failure");
158 	entry->hibe_space = 0;
159 
160 	/* Return address managed by entry. */
161 	return hib_entry_to_addr(new_entry);
162 }
163 
164 /*
165  * Free a pointer previously allocated from this arena.
166  *
167  * If addr is NULL, this will be silently accepted.
168  */
169 void
170 hib_free(struct hiballoc_arena *arena, void *addr)
171 {
172 	struct hiballoc_entry *entry, *prev;
173 
174 	if (addr == NULL)
175 		return;
176 
177 	/*
178 	 * Derive entry from addr and check it is really in this arena.
179 	 */
180 	entry = hib_addr_to_entry(addr);
181 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
182 		panic("hib_free: freed item %p not in hib arena", addr);
183 
184 	/*
185 	 * Give the space in entry to its predecessor.
186 	 *
187 	 * If entry has no predecessor, change its used space into free space
188 	 * instead.
189 	 */
190 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
191 	if (prev != NULL &&
192 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
193 	    prev->hibe_use + prev->hibe_space) == entry) {
194 		/* Merge entry. */
195 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
196 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
197 		    entry->hibe_use + entry->hibe_space;
198 	} else {
199 		/* Flip used memory to free space. */
200 		entry->hibe_space += entry->hibe_use;
201 		entry->hibe_use = 0;
202 	}
203 }
204 
205 /*
206  * Initialize hiballoc.
207  *
208  * The allocator will manage memmory at ptr, which is len bytes.
209  */
210 int
211 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
212 {
213 	struct hiballoc_entry *entry;
214 	caddr_t ptr;
215 	size_t len;
216 
217 	RB_INIT(&arena->hib_addrs);
218 
219 	/*
220 	 * Hib allocator enforces HIB_ALIGN alignment.
221 	 * Fixup ptr and len.
222 	 */
223 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
224 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
225 	len &= ~((size_t)HIB_ALIGN - 1);
226 
227 	/*
228 	 * Insufficient memory to be able to allocate and also do bookkeeping.
229 	 */
230 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
231 		return ENOMEM;
232 
233 	/*
234 	 * Create entry describing space.
235 	 */
236 	entry = (struct hiballoc_entry*)ptr;
237 	entry->hibe_use = 0;
238 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
239 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
240 
241 	return 0;
242 }
243 
244 /*
245  * Zero all free memory.
246  */
247 void
248 uvm_pmr_zero_everything(void)
249 {
250 	struct uvm_pmemrange	*pmr;
251 	struct vm_page		*pg;
252 	int			 i;
253 
254 	uvm_lock_fpageq();
255 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
256 		/* Zero single pages. */
257 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
258 		    != NULL) {
259 			uvm_pmr_remove(pmr, pg);
260 			uvm_pagezero(pg);
261 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
262 			uvmexp.zeropages++;
263 			uvm_pmr_insert(pmr, pg, 0);
264 		}
265 
266 		/* Zero multi page ranges. */
267 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
268 		    != NULL) {
269 			pg--; /* Size tree always has second page. */
270 			uvm_pmr_remove(pmr, pg);
271 			for (i = 0; i < pg->fpgsz; i++) {
272 				uvm_pagezero(&pg[i]);
273 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
274 				uvmexp.zeropages++;
275 			}
276 			uvm_pmr_insert(pmr, pg, 0);
277 		}
278 	}
279 	uvm_unlock_fpageq();
280 }
281 
282 /*
283  * Mark all memory as dirty.
284  *
285  * Used to inform the system that the clean memory isn't clean for some
286  * reason, for example because we just came back from hibernate.
287  */
288 void
289 uvm_pmr_dirty_everything(void)
290 {
291 	struct uvm_pmemrange	*pmr;
292 	struct vm_page		*pg;
293 	int			 i;
294 
295 	uvm_lock_fpageq();
296 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
297 		/* Dirty single pages. */
298 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
299 		    != NULL) {
300 			uvm_pmr_remove(pmr, pg);
301 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
302 			uvm_pmr_insert(pmr, pg, 0);
303 		}
304 
305 		/* Dirty multi page ranges. */
306 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
307 		    != NULL) {
308 			pg--; /* Size tree always has second page. */
309 			uvm_pmr_remove(pmr, pg);
310 			for (i = 0; i < pg->fpgsz; i++)
311 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
312 			uvm_pmr_insert(pmr, pg, 0);
313 		}
314 	}
315 
316 	uvmexp.zeropages = 0;
317 	uvm_unlock_fpageq();
318 }
319 
320 /*
321  * Allocate the highest address that can hold sz.
322  *
323  * sz in bytes.
324  */
325 int
326 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
327 {
328 	struct uvm_pmemrange	*pmr;
329 	struct vm_page		*pig_pg, *pg;
330 
331 	/*
332 	 * Convert sz to pages, since that is what pmemrange uses internally.
333 	 */
334 	sz = atop(round_page(sz));
335 
336 	uvm_lock_fpageq();
337 
338 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
339 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
340 			if (pig_pg->fpgsz >= sz) {
341 				goto found;
342 			}
343 		}
344 	}
345 
346 	/*
347 	 * Allocation failure.
348 	 */
349 	uvm_unlock_fpageq();
350 	return ENOMEM;
351 
352 found:
353 	/* Remove page from freelist. */
354 	uvm_pmr_remove_size(pmr, pig_pg);
355 	pig_pg->fpgsz -= sz;
356 	pg = pig_pg + pig_pg->fpgsz;
357 	if (pig_pg->fpgsz == 0)
358 		uvm_pmr_remove_addr(pmr, pig_pg);
359 	else
360 		uvm_pmr_insert_size(pmr, pig_pg);
361 
362 	uvmexp.free -= sz;
363 	*addr = VM_PAGE_TO_PHYS(pg);
364 
365 	/*
366 	 * Update pg flags.
367 	 *
368 	 * Note that we trash the sz argument now.
369 	 */
370 	while (sz > 0) {
371 		KASSERT(pg->pg_flags & PQ_FREE);
372 
373 		atomic_clearbits_int(&pg->pg_flags,
374 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
375 
376 		if (pg->pg_flags & PG_ZERO)
377 			uvmexp.zeropages -= sz;
378 		atomic_clearbits_int(&pg->pg_flags,
379 		    PG_ZERO|PQ_FREE);
380 
381 		pg->uobject = NULL;
382 		pg->uanon = NULL;
383 		pg->pg_version++;
384 
385 		/*
386 		 * Next.
387 		 */
388 		pg++;
389 		sz--;
390 	}
391 
392 	/* Return. */
393 	uvm_unlock_fpageq();
394 	return 0;
395 }
396 
397 /*
398  * Allocate a piglet area.
399  *
400  * This is as low as possible.
401  * Piglets are aligned.
402  *
403  * sz and align in bytes.
404  *
405  * The call will sleep for the pagedaemon to attempt to free memory.
406  * The pagedaemon may decide its not possible to free enough memory, causing
407  * the allocation to fail.
408  */
409 int
410 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
411 {
412 	paddr_t			 pg_addr, piglet_addr;
413 	struct uvm_pmemrange	*pmr;
414 	struct vm_page		*pig_pg, *pg;
415 	struct pglist		 pageq;
416 	int			 pdaemon_woken;
417 	vaddr_t			 piglet_va;
418 
419 	KASSERT((align & (align - 1)) == 0);
420 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
421 
422 	/*
423 	 * Fixup arguments: align must be at least PAGE_SIZE,
424 	 * sz will be converted to pagecount, since that is what
425 	 * pmemrange uses internally.
426 	 */
427 	if (align < PAGE_SIZE)
428 		align = PAGE_SIZE;
429 	sz = round_page(sz);
430 
431 	uvm_lock_fpageq();
432 
433 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
434 	    pmr_use) {
435 retry:
436 		/*
437 		 * Search for a range with enough space.
438 		 * Use the address tree, to ensure the range is as low as
439 		 * possible.
440 		 */
441 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
442 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
443 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
444 
445 			if (atop(pg_addr) + pig_pg->fpgsz >=
446 			    atop(piglet_addr) + atop(sz))
447 				goto found;
448 		}
449 	}
450 
451 	/*
452 	 * Try to coerse the pagedaemon into freeing memory
453 	 * for the piglet.
454 	 *
455 	 * pdaemon_woken is set to prevent the code from
456 	 * falling into an endless loop.
457 	 */
458 	if (!pdaemon_woken) {
459 		pdaemon_woken = 1;
460 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
461 		    sz, UVM_PLA_FAILOK) == 0)
462 			goto retry;
463 	}
464 
465 	/* Return failure. */
466 	uvm_unlock_fpageq();
467 	return ENOMEM;
468 
469 found:
470 	/*
471 	 * Extract piglet from pigpen.
472 	 */
473 	TAILQ_INIT(&pageq);
474 	uvm_pmr_extract_range(pmr, pig_pg,
475 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
476 
477 	*pa = piglet_addr;
478 	uvmexp.free -= atop(sz);
479 
480 	/*
481 	 * Update pg flags.
482 	 *
483 	 * Note that we trash the sz argument now.
484 	 */
485 	TAILQ_FOREACH(pg, &pageq, pageq) {
486 		KASSERT(pg->pg_flags & PQ_FREE);
487 
488 		atomic_clearbits_int(&pg->pg_flags,
489 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
490 
491 		if (pg->pg_flags & PG_ZERO)
492 			uvmexp.zeropages--;
493 		atomic_clearbits_int(&pg->pg_flags,
494 		    PG_ZERO|PQ_FREE);
495 
496 		pg->uobject = NULL;
497 		pg->uanon = NULL;
498 		pg->pg_version++;
499 	}
500 
501 	uvm_unlock_fpageq();
502 
503 	/*
504 	 * Now allocate a va.
505 	 * Use direct mappings for the pages.
506 	 */
507 
508 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
509 	if (!piglet_va) {
510 		uvm_pglistfree(&pageq);
511 		return ENOMEM;
512 	}
513 
514 	/*
515 	 * Map piglet to va.
516 	 */
517 	TAILQ_FOREACH(pg, &pageq, pageq) {
518 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
519 		piglet_va += PAGE_SIZE;
520 	}
521 	pmap_update(pmap_kernel());
522 
523 	return 0;
524 }
525 
526 /*
527  * Free a piglet area.
528  */
529 void
530 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
531 {
532 	paddr_t			 pa;
533 	struct vm_page		*pg;
534 
535 	/*
536 	 * Fix parameters.
537 	 */
538 	sz = round_page(sz);
539 
540 	/*
541 	 * Find the first page in piglet.
542 	 * Since piglets are contiguous, the first pg is all we need.
543 	 */
544 	if (!pmap_extract(pmap_kernel(), va, &pa))
545 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
546 	pg = PHYS_TO_VM_PAGE(pa);
547 	if (pg == NULL)
548 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
549 
550 	/*
551 	 * Unmap.
552 	 */
553 	pmap_kremove(va, sz);
554 	pmap_update(pmap_kernel());
555 
556 	/*
557 	 * Free the physical and virtual memory.
558 	 */
559 	uvm_pmr_freepages(pg, atop(sz));
560 	km_free((void *)va, sz, &kv_any, &kp_none);
561 }
562 
563 /*
564  * Physmem RLE compression support.
565  *
566  * Given a physical page address, it will return the number of pages
567  * starting at the address, that are free.  Clamps to the number of pages in
568  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
569  */
570 int
571 uvm_page_rle(paddr_t addr)
572 {
573 	struct vm_page		*pg, *pg_end;
574 	struct vm_physseg	*vmp;
575 	int			 pseg_idx, off_idx;
576 
577 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
578 	if (pseg_idx == -1)
579 		return 0;
580 
581 	vmp = &vm_physmem[pseg_idx];
582 	pg = &vmp->pgs[off_idx];
583 	if (!(pg->pg_flags & PQ_FREE))
584 		return 0;
585 
586 	/*
587 	 * Search for the first non-free page after pg.
588 	 * Note that the page may not be the first page in a free pmemrange,
589 	 * therefore pg->fpgsz cannot be used.
590 	 */
591 	for (pg_end = pg; pg_end <= vmp->lastpg &&
592 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
593 		;
594 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
595 }
596 
597 /*
598  * Fills out the hibernate_info union pointed to by hiber_info
599  * with information about this machine (swap signature block
600  * offsets, number of memory ranges, kernel in use, etc)
601  */
602 int
603 get_hibernate_info(union hibernate_info *hiber_info, int suspend)
604 {
605 	int chunktable_size;
606 	struct disklabel dl;
607 	char err_string[128], *dl_ret;
608 
609 	/* Determine I/O function to use */
610 	hiber_info->io_func = get_hibernate_io_function();
611 	if (hiber_info->io_func == NULL)
612 		return (1);
613 
614 	/* Calculate hibernate device */
615 	hiber_info->device = swdevt[0].sw_dev;
616 
617 	/* Read disklabel (used to calculate signature and image offsets) */
618 	dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128);
619 
620 	if (dl_ret) {
621 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
622 		return (1);
623 	}
624 
625 	hiber_info->secsize = dl.d_secsize;
626 
627 	/* Make sure the signature can fit in one block */
628 	KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1);
629 
630 	/* Calculate swap offset from start of disk */
631 	hiber_info->swap_offset = dl.d_partitions[1].p_offset;
632 
633 	/* Calculate signature block location */
634 	hiber_info->sig_offset = dl.d_partitions[1].p_offset +
635 	    dl.d_partitions[1].p_size -
636 	    sizeof(union hibernate_info)/hiber_info->secsize;
637 
638 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
639 
640 	/* Stash kernel version information */
641 	bzero(&hiber_info->kernel_version, 128);
642 	bcopy(version, &hiber_info->kernel_version,
643 	    min(strlen(version), sizeof(hiber_info->kernel_version)-1));
644 
645 	if (suspend) {
646 		/* Allocate piglet region */
647 		if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va,
648 		    &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
649 		    HIBERNATE_CHUNK_SIZE)) {
650 			printf("Hibernate failed to allocate the piglet\n");
651 			return (1);
652 		}
653 		hiber_info->io_page = (void *)hiber_info->piglet_va;
654 
655 		/*
656 		 * Initialize of the hibernate IO function (for drivers which
657 		 * need that)
658 		 */
659 		if (hiber_info->io_func(hiber_info->device, 0,
660 		    (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page))
661 			goto fail;
662 
663 	} else {
664 		/*
665 		 * Resuming kernels use a regular I/O page since we won't
666 		 * have access to the suspended kernel's piglet VA at this
667 		 * point. No need to free this I/O page as it will vanish
668 		 * as part of the resume.
669 		 */
670 		hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
671 		if (!hiber_info->io_page)
672 			return (1);
673 	}
674 
675 
676 	if (get_hibernate_info_md(hiber_info))
677 		goto fail;
678 
679 	/* Calculate memory image location */
680 	hiber_info->image_offset = dl.d_partitions[1].p_offset +
681 	    dl.d_partitions[1].p_size -
682 	    (hiber_info->image_size / hiber_info->secsize) -
683 	    sizeof(union hibernate_info)/hiber_info->secsize -
684 	    chunktable_size;
685 
686 	return (0);
687 fail:
688 	if (suspend)
689 		uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3);
690 
691 	return (1);
692 }
693 
694 /*
695  * Allocate nitems*size bytes from the hiballoc area presently in use
696  */
697 void
698 *hibernate_zlib_alloc(void *unused, int nitems, int size)
699 {
700 	struct hibernate_zlib_state *hibernate_state;
701 
702 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
703 
704 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
705 }
706 
707 /*
708  * Free the memory pointed to by addr in the hiballoc area presently in
709  * use
710  */
711 void
712 hibernate_zlib_free(void *unused, void *addr)
713 {
714 	struct hibernate_zlib_state *hibernate_state;
715 
716 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
717 
718 	hib_free(&hibernate_state->hiballoc_arena, addr);
719 }
720 
721 /*
722  * Gets the next RLE value from the image stream
723  */
724 int
725 hibernate_get_next_rle(void)
726 {
727 	int rle, i;
728 	struct hibernate_zlib_state *hibernate_state;
729 
730 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
731 
732 	/* Read RLE code */
733 	hibernate_state->hib_stream.next_out = (char *)&rle;
734 	hibernate_state->hib_stream.avail_out = sizeof(rle);
735 
736 	i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH);
737 	if (i != Z_OK && i != Z_STREAM_END) {
738 		/*
739 		 * XXX - this will likely reboot/hang most machines,
740 		 *       but there's not much else we can do here.
741 		 */
742 		panic("inflate rle error");
743 	}
744 
745 	/* Sanity check what RLE value we got */
746 	if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0)
747 		panic("invalid RLE code");
748 
749 	if (i == Z_STREAM_END)
750 		rle = -1;
751 
752 	return rle;
753 }
754 
755 /*
756  * Inflate next page of data from the image stream
757  */
758 int
759 hibernate_inflate_page(void)
760 {
761 	struct hibernate_zlib_state *hibernate_state;
762 	int i;
763 
764 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
765 
766 	/* Set up the stream for inflate */
767 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
768 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
769 
770 	/* Process next block of data */
771 	i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
772 	if (i != Z_OK && i != Z_STREAM_END) {
773 		/*
774 		 * XXX - this will likely reboot/hang most machines,
775 		 *       but there's not much else we can do here.
776 		 */
777 
778 		panic("inflate error");
779 	}
780 
781 	/* We should always have extracted a full page ... */
782 	if (hibernate_state->hib_stream.avail_out != 0)
783 		panic("incomplete page");
784 
785 	return (i == Z_STREAM_END);
786 }
787 
788 /*
789  * Inflate size bytes from src into dest, skipping any pages in
790  * [src..dest] that are special (see hibernate_inflate_skip)
791  *
792  * This function executes while using the resume-time stack
793  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
794  * will likely hang or reset the machine.
795  */
796 void
797 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest,
798     paddr_t src, size_t size)
799 {
800 	int end_stream = 0 ;
801 	struct hibernate_zlib_state *hibernate_state;
802 
803 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
804 
805 	hibernate_state->hib_stream.next_in = (char *)src;
806 	hibernate_state->hib_stream.avail_in = size;
807 
808 	do {
809 		/* Flush cache and TLB */
810 		hibernate_flush();
811 
812 		/*
813 		 * Is this a special page? If yes, redirect the
814 		 * inflate output to a scratch page (eg, discard it)
815 		 */
816 		if (hibernate_inflate_skip(hiber_info, dest)) {
817 			hibernate_enter_resume_mapping(
818 			    HIBERNATE_INFLATE_PAGE,
819 			    HIBERNATE_INFLATE_PAGE, 0);
820 		} else {
821 			hibernate_enter_resume_mapping(
822 			    HIBERNATE_INFLATE_PAGE, dest, 0);
823 		}
824 
825 		hibernate_flush();
826 		end_stream = hibernate_inflate_page();
827 
828 		dest += PAGE_SIZE;
829 	} while (!end_stream);
830 }
831 
832 /*
833  * deflate from src into the I/O page, up to 'remaining' bytes
834  *
835  * Returns number of input bytes consumed, and may reset
836  * the 'remaining' parameter if not all the output space was consumed
837  * (this information is needed to know how much to write to disk
838  */
839 size_t
840 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src,
841     size_t *remaining)
842 {
843 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
844 	struct hibernate_zlib_state *hibernate_state;
845 
846 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
847 
848 	/* Set up the stream for deflate */
849 	hibernate_state->hib_stream.next_in = (caddr_t)src;
850 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
851 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
852 	    (PAGE_SIZE - *remaining);
853 	hibernate_state->hib_stream.avail_out = *remaining;
854 
855 	/* Process next block of data */
856 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
857 		panic("hibernate zlib deflate error");
858 
859 	/* Update pointers and return number of bytes consumed */
860 	*remaining = hibernate_state->hib_stream.avail_out;
861 	return (PAGE_SIZE - (src & PAGE_MASK)) -
862 	    hibernate_state->hib_stream.avail_in;
863 }
864 
865 /*
866  * Write the hibernation information specified in hiber_info
867  * to the location in swap previously calculated (last block of
868  * swap), called the "signature block".
869  *
870  * Write the memory chunk table to the area in swap immediately
871  * preceding the signature block.
872  */
873 int
874 hibernate_write_signature(union hibernate_info *hiber_info)
875 {
876 	/* Write hibernate info to disk */
877 	return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset,
878 	    (vaddr_t)hiber_info, hiber_info->secsize, HIB_W,
879 	    hiber_info->io_page));
880 }
881 
882 /*
883  * Write the memory chunk table to the area in swap immediately
884  * preceding the signature block. The chunk table is stored
885  * in the piglet when this function is called.
886  */
887 int
888 hibernate_write_chunktable(union hibernate_info *hiber_info)
889 {
890 	struct hibernate_disk_chunk *chunks;
891 	vaddr_t hibernate_chunk_table_start;
892 	size_t hibernate_chunk_table_size;
893 	daddr_t chunkbase;
894 	int i;
895 
896 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
897 
898 	chunkbase = hiber_info->sig_offset -
899 	    (hibernate_chunk_table_size / hiber_info->secsize);
900 
901 	hibernate_chunk_table_start = hiber_info->piglet_va +
902 	    HIBERNATE_CHUNK_SIZE;
903 
904 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
905 	    HIBERNATE_CHUNK_SIZE);
906 
907 	/* Write chunk table */
908 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
909 		if (hiber_info->io_func(hiber_info->device,
910 		    chunkbase + (i/hiber_info->secsize),
911 		    (vaddr_t)(hibernate_chunk_table_start + i),
912 		    MAXPHYS, HIB_W, hiber_info->io_page))
913 			return (1);
914 	}
915 
916 	return (0);
917 }
918 
919 /*
920  * Write an empty hiber_info to the swap signature block, which is
921  * guaranteed to not match any valid hiber_info.
922  */
923 int
924 hibernate_clear_signature(void)
925 {
926 	union hibernate_info blank_hiber_info;
927 	union hibernate_info hiber_info;
928 
929 	/* Zero out a blank hiber_info */
930 	bzero(&blank_hiber_info, sizeof(hiber_info));
931 
932 	if (get_hibernate_info(&hiber_info, 0))
933 		return (1);
934 
935 	/* Write (zeroed) hibernate info to disk */
936 	if (hibernate_block_io(&hiber_info,
937 	    hiber_info.sig_offset - hiber_info.swap_offset,
938 	    hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1))
939 		panic("error hibernate write 6");
940 
941 	return (0);
942 }
943 
944 /*
945  * Check chunk range overlap when calculating whether or not to copy a
946  * compressed chunk to the piglet area before decompressing.
947  *
948  * returns zero if the ranges do not overlap, non-zero otherwise.
949  */
950 int
951 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
952 {
953 	/* case A : end of r1 overlaps start of r2 */
954 	if (r1s < r2s && r1e > r2s)
955 		return (1);
956 
957 	/* case B : r1 entirely inside r2 */
958 	if (r1s >= r2s && r1e <= r2e)
959 		return (1);
960 
961 	/* case C : r2 entirely inside r1 */
962 	if (r2s >= r1s && r2e <= r1e)
963 		return (1);
964 
965 	/* case D : end of r2 overlaps start of r1 */
966 	if (r2s < r1s && r2e > r1s)
967 		return (1);
968 
969 	return (0);
970 }
971 
972 /*
973  * Compare two hibernate_infos to determine if they are the same (eg,
974  * we should be performing a hibernate resume on this machine.
975  * Not all fields are checked - just enough to verify that the machine
976  * has the same memory configuration and kernel as the one that
977  * wrote the signature previously.
978  */
979 int
980 hibernate_compare_signature(union hibernate_info *mine,
981     union hibernate_info *disk)
982 {
983 	u_int i;
984 
985 	if (mine->nranges != disk->nranges)
986 		return (1);
987 
988 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0)
989 		return (1);
990 
991 	for (i = 0; i < mine->nranges; i++) {
992 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
993 		    (mine->ranges[i].end != disk->ranges[i].end) )
994 			return (1);
995 	}
996 
997 	return (0);
998 }
999 
1000 /*
1001  * Transfers xfer_size bytes between the hibernate device specified in
1002  * hib_info at offset blkctr and the vaddr specified at dest.
1003  *
1004  * Separate offsets and pages are used to handle misaligned reads (reads
1005  * that span a page boundary).
1006  *
1007  * blkctr specifies a relative offset (relative to the start of swap),
1008  * not an absolute disk offset
1009  *
1010  */
1011 int
1012 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr,
1013     size_t xfer_size, vaddr_t dest, int iswrite)
1014 {
1015 	struct buf *bp;
1016 	struct bdevsw *bdsw;
1017 	int error;
1018 
1019 	bp = geteblk(xfer_size);
1020 	bdsw = &bdevsw[major(hib_info->device)];
1021 
1022 	error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc);
1023 	if (error) {
1024 		printf("hibernate_block_io open failed\n");
1025 		return (1);
1026 	}
1027 
1028 	if (iswrite)
1029 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1030 
1031 	bp->b_bcount = xfer_size;
1032 	bp->b_blkno = blkctr;
1033 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1034 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1035 	bp->b_dev = hib_info->device;
1036 	bp->b_cylinder = 0;
1037 	(*bdsw->d_strategy)(bp);
1038 
1039 	error = biowait(bp);
1040 	if (error) {
1041 		printf("hibernate_block_io biowait failed %d\n", error);
1042 		error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR,
1043 		    curproc);
1044 		if (error)
1045 			printf("hibernate_block_io error close failed\n");
1046 		return (1);
1047 	}
1048 
1049 	error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc);
1050 	if (error) {
1051 		printf("hibernate_block_io close failed\n");
1052 		return (1);
1053 	}
1054 
1055 	if (!iswrite)
1056 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1057 
1058 	bp->b_flags |= B_INVAL;
1059 	brelse(bp);
1060 
1061 	return (0);
1062 }
1063 
1064 /*
1065  * Reads the signature block from swap, checks against the current machine's
1066  * information. If the information matches, perform a resume by reading the
1067  * saved image into the pig area, and unpacking.
1068  */
1069 void
1070 hibernate_resume(void)
1071 {
1072 	union hibernate_info hiber_info;
1073 	int s;
1074 
1075 	/* Get current running machine's hibernate info */
1076 	bzero(&hiber_info, sizeof(hiber_info));
1077 	if (get_hibernate_info(&hiber_info, 0))
1078 		return;
1079 
1080 	/* Read hibernate info from disk */
1081 	s = splbio();
1082 
1083 	if (hibernate_block_io(&hiber_info,
1084 	    hiber_info.sig_offset - hiber_info.swap_offset,
1085 	    hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0))
1086 		panic("error in hibernate read");
1087 
1088 	/*
1089 	 * If on-disk and in-memory hibernate signatures match,
1090 	 * this means we should do a resume from hibernate.
1091 	 */
1092 	if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) {
1093 		splx(s);
1094 		return;
1095 	}
1096 
1097 	/* Read the image from disk into the image (pig) area */
1098 	if (hibernate_read_image(&disk_hiber_info))
1099 		goto fail;
1100 
1101 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0)
1102 		goto fail;
1103 
1104 	(void) splhigh();
1105 	disable_intr();
1106 	cold = 1;
1107 
1108 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) {
1109 		cold = 0;
1110 		enable_intr();
1111 		goto fail;
1112 	}
1113 
1114 	/* Point of no return ... */
1115 
1116 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1117 	    VM_PROT_ALL);
1118 	pmap_activate(curproc);
1119 
1120 	/* Switch stacks */
1121 	hibernate_switch_stack_machdep();
1122 
1123 	/*
1124 	 * Image is now in high memory (pig area), copy to correct location
1125 	 * in memory. We'll eventually end up copying on top of ourself, but
1126 	 * we are assured the kernel code here is the same between the
1127 	 * hibernated and resuming kernel, and we are running on our own
1128 	 * stack, so the overwrite is ok.
1129 	 */
1130 	hibernate_unpack_image(&disk_hiber_info);
1131 
1132 	/*
1133 	 * Resume the loaded kernel by jumping to the MD resume vector.
1134 	 * We won't be returning from this call.
1135 	 */
1136 	hibernate_resume_machdep();
1137 
1138 fail:
1139 	splx(s);
1140 	printf("Unable to resume hibernated image\n");
1141 }
1142 
1143 /*
1144  * Unpack image from pig area to original location by looping through the
1145  * list of output chunks in the order they should be restored (fchunks).
1146  * This ordering is used to avoid having inflate overwrite a chunk in the
1147  * middle of processing that chunk. This will, of course, happen during the
1148  * final output chunk, where we copy the chunk to the piglet area first,
1149  * before inflating.
1150  */
1151 void
1152 hibernate_unpack_image(union hibernate_info *hiber_info)
1153 {
1154 	struct hibernate_disk_chunk *chunks;
1155 	union hibernate_info local_hiber_info;
1156 	paddr_t image_cur = global_pig_start;
1157 	int *fchunks, i;
1158 	char *pva = (char *)hiber_info->piglet_va;
1159 	struct hibernate_zlib_state *hibernate_state;
1160 
1161 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1162 
1163 	/* Mask off based on arch-specific piglet page size */
1164 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1165 	fchunks = (int *)(pva + (6 * PAGE_SIZE));
1166 
1167 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1168 
1169 	/* Can't use hiber_info that's passed in after this point */
1170 	bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info));
1171 
1172 	hibernate_activate_resume_pt_machdep();
1173 
1174 	for (i = 0; i < local_hiber_info.chunk_ctr; i++) {
1175 		/* Reset zlib for inflate */
1176 		if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK)
1177 			panic("hibernate failed to reset zlib for inflate");
1178 
1179 		hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]],
1180 		    image_cur);
1181 
1182 		image_cur += chunks[fchunks[i]].compressed_size;
1183 
1184 	}
1185 }
1186 
1187 /*
1188  * Process a chunk by ensuring its proper placement, followed by unpacking
1189  */
1190 void
1191 hibernate_process_chunk(union hibernate_info *hiber_info,
1192     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1193 {
1194 	char *pva = (char *)hiber_info->piglet_va;
1195 
1196 	/*
1197 	 * If there is a conflict, copy the chunk to the piglet area
1198 	 * before unpacking it to its original location.
1199 	 */
1200 	if ((chunk->flags & HIBERNATE_CHUNK_CONFLICT) == 0)
1201 		hibernate_inflate_region(hiber_info, chunk->base,
1202 		    img_cur, chunk->compressed_size);
1203 	else {
1204 		bcopy((caddr_t)img_cur,
1205 		    pva + (HIBERNATE_CHUNK_SIZE * 2),
1206 		    chunk->compressed_size);
1207 		hibernate_inflate_region(hiber_info, chunk->base,
1208 		    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1209 		    chunk->compressed_size);
1210 	}
1211 }
1212 
1213 /*
1214  * Write a compressed version of this machine's memory to disk, at the
1215  * precalculated swap offset:
1216  *
1217  * end of swap - signature block size - chunk table size - memory size
1218  *
1219  * The function begins by looping through each phys mem range, cutting each
1220  * one into MD sized chunks. These chunks are then compressed individually
1221  * and written out to disk, in phys mem order. Some chunks might compress
1222  * more than others, and for this reason, each chunk's size is recorded
1223  * in the chunk table, which is written to disk after the image has
1224  * properly been compressed and written (in hibernate_write_chunktable).
1225  *
1226  * When this function is called, the machine is nearly suspended - most
1227  * devices are quiesced/suspended, interrupts are off, and cold has
1228  * been set. This means that there can be no side effects once the
1229  * write has started, and the write function itself can also have no
1230  * side effects. This also means no printfs are permitted (since it
1231  * has side effects.)
1232  */
1233 int
1234 hibernate_write_chunks(union hibernate_info *hiber_info)
1235 {
1236 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1237 	size_t nblocks, out_remaining, used;
1238 	struct hibernate_disk_chunk *chunks;
1239 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
1240 	daddr_t blkctr = hiber_info->image_offset, offset = 0;
1241 	int i;
1242 	struct hibernate_zlib_state *hibernate_state;
1243 
1244 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1245 
1246 	hiber_info->chunk_ctr = 0;
1247 
1248 	/*
1249 	 * Allocate VA for the temp and copy page.
1250 	 * These will becomee part of the suspended kernel and will
1251 	 * be freed in hibernate_free, upon resume.
1252 	 */
1253 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1254 	    &kp_none, &kd_nowait);
1255 	if (!hibernate_temp_page)
1256 		return (1);
1257 
1258 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1259 	    &kp_none, &kd_nowait);
1260 	if (!hibernate_copy_page)
1261 		return (1);
1262 
1263 	pmap_kenter_pa(hibernate_copy_page,
1264 	    (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1265 
1266 	/* XXX - not needed on all archs */
1267 	pmap_activate(curproc);
1268 
1269 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
1270 	    HIBERNATE_CHUNK_SIZE);
1271 
1272 	/* Calculate the chunk regions */
1273 	for (i = 0; i < hiber_info->nranges; i++) {
1274 		range_base = hiber_info->ranges[i].base;
1275 		range_end = hiber_info->ranges[i].end;
1276 
1277 		inaddr = range_base;
1278 
1279 		while (inaddr < range_end) {
1280 			chunks[hiber_info->chunk_ctr].base = inaddr;
1281 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1282 				chunks[hiber_info->chunk_ctr].end = inaddr +
1283 				    HIBERNATE_CHUNK_SIZE;
1284 			else
1285 				chunks[hiber_info->chunk_ctr].end = range_end;
1286 
1287 			inaddr += HIBERNATE_CHUNK_SIZE;
1288 			hiber_info->chunk_ctr ++;
1289 		}
1290 	}
1291 
1292 	/* Compress and write the chunks in the chunktable */
1293 	for (i = 0; i < hiber_info->chunk_ctr; i++) {
1294 		range_base = chunks[i].base;
1295 		range_end = chunks[i].end;
1296 
1297 		chunks[i].offset = blkctr;
1298 
1299 		/* Reset zlib for deflate */
1300 		if (hibernate_zlib_reset(hiber_info, 1) != Z_OK)
1301 			return (1);
1302 
1303 		inaddr = range_base;
1304 
1305 		/*
1306 		 * For each range, loop through its phys mem region
1307 		 * and write out the chunks (the last chunk might be
1308 		 * smaller than the chunk size).
1309 		 */
1310 		while (inaddr < range_end) {
1311 			out_remaining = PAGE_SIZE;
1312 			while (out_remaining > 0 && inaddr < range_end) {
1313 
1314 				/*
1315 				 * Adjust for regions that are not evenly
1316 				 * divisible by PAGE_SIZE or overflowed
1317 				 * pages from the previous iteration.
1318 				 */
1319 				temp_inaddr = (inaddr & PAGE_MASK) +
1320 				    hibernate_copy_page;
1321 
1322 				/* Deflate from temp_inaddr to IO page */
1323 				if (inaddr != range_end) {
1324 					pmap_kenter_pa(hibernate_temp_page,
1325 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1326 
1327 					/* XXX - not needed on all archs */
1328 					pmap_activate(curproc);
1329 
1330 					bcopy((caddr_t)hibernate_temp_page,
1331 					    (caddr_t)hibernate_copy_page, PAGE_SIZE);
1332 					inaddr += hibernate_deflate(hiber_info,
1333 					    temp_inaddr, &out_remaining);
1334 				}
1335 
1336 				if (out_remaining == 0) {
1337 					/* Filled up the page */
1338 					nblocks = PAGE_SIZE / hiber_info->secsize;
1339 
1340 					if (hiber_info->io_func(hiber_info->device,
1341 					    blkctr, (vaddr_t)hibernate_io_page,
1342 					    PAGE_SIZE, HIB_W, hiber_info->io_page))
1343 						return (1);
1344 
1345 					blkctr += nblocks;
1346 				}
1347 			}
1348 		}
1349 
1350 		if (inaddr != range_end)
1351 			return (1);
1352 
1353 		/*
1354 		 * End of range. Round up to next secsize bytes
1355 		 * after finishing compress
1356 		 */
1357 		if (out_remaining == 0)
1358 			out_remaining = PAGE_SIZE;
1359 
1360 		/* Finish compress */
1361 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1362 		hibernate_state->hib_stream.avail_in = 0;
1363 		hibernate_state->hib_stream.next_out =
1364 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1365 		hibernate_state->hib_stream.avail_out = out_remaining;
1366 
1367 		if (deflate(&hibernate_state->hib_stream, Z_FINISH) !=
1368 		    Z_STREAM_END)
1369 			return (1);
1370 
1371 		out_remaining = hibernate_state->hib_stream.avail_out;
1372 
1373 		used = PAGE_SIZE - out_remaining;
1374 		nblocks = used / hiber_info->secsize;
1375 
1376 		/* Round up to next block if needed */
1377 		if (used % hiber_info->secsize != 0)
1378 			nblocks ++;
1379 
1380 		/* Write final block(s) for this chunk */
1381 		if (hiber_info->io_func(hiber_info->device, blkctr,
1382 		    (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize,
1383 		    HIB_W, hiber_info->io_page))
1384 			return (1);
1385 
1386 		blkctr += nblocks;
1387 
1388 		offset = blkctr;
1389 		chunks[i].compressed_size = (offset - chunks[i].offset) *
1390 		    hiber_info->secsize;
1391 	}
1392 
1393 	return (0);
1394 }
1395 
1396 /*
1397  * Reset the zlib stream state and allocate a new hiballoc area for either
1398  * inflate or deflate. This function is called once for each hibernate chunk.
1399  * Calling hiballoc_init multiple times is acceptable since the memory it is
1400  * provided is unmanaged memory (stolen). We use the memory provided to us
1401  * by the piglet allocated via the supplied hiber_info.
1402  */
1403 int
1404 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate)
1405 {
1406 	vaddr_t hibernate_zlib_start;
1407 	size_t hibernate_zlib_size;
1408 	char *pva = (char *)hiber_info->piglet_va;
1409 	struct hibernate_zlib_state *hibernate_state;
1410 
1411 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1412 
1413 	if(!deflate)
1414 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1415 
1416 	hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE));
1417 	hibernate_zlib_size = 80 * PAGE_SIZE;
1418 
1419 	bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1420 	bzero((caddr_t)hibernate_state, PAGE_SIZE);
1421 
1422 	/* Set up stream structure */
1423 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1424 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1425 
1426 	/* Initialize the hiballoc arena for zlib allocs/frees */
1427 	hiballoc_init(&hibernate_state->hiballoc_arena,
1428 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1429 
1430 	if (deflate) {
1431 		return deflateInit(&hibernate_state->hib_stream,
1432 		    Z_BEST_SPEED);
1433 	} else
1434 		return inflateInit(&hibernate_state->hib_stream);
1435 }
1436 
1437 /*
1438  * Reads the hibernated memory image from disk, whose location and
1439  * size are recorded in hiber_info. Begin by reading the persisted
1440  * chunk table, which records the original chunk placement location
1441  * and compressed size for each. Next, allocate a pig region of
1442  * sufficient size to hold the compressed image. Next, read the
1443  * chunks into the pig area (calling hibernate_read_chunks to do this),
1444  * and finally, if all of the above succeeds, clear the hibernate signature.
1445  * The function will then return to hibernate_resume, which will proceed
1446  * to unpack the pig image to the correct place in memory.
1447  */
1448 int
1449 hibernate_read_image(union hibernate_info *hiber_info)
1450 {
1451 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1452 	paddr_t image_start, image_end, pig_start, pig_end;
1453 	struct hibernate_disk_chunk *chunks;
1454 	daddr_t blkctr;
1455 	vaddr_t chunktable = (vaddr_t)NULL;
1456 	paddr_t piglet_chunktable = hiber_info->piglet_pa +
1457 	    HIBERNATE_CHUNK_SIZE;
1458 	int i;
1459 
1460 	pmap_activate(curproc);
1461 
1462 	/* Calculate total chunk table size in disk blocks */
1463 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
1464 
1465 	blkctr = hiber_info->sig_offset - chunktable_size -
1466 			hiber_info->swap_offset;
1467 
1468 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1469 	    &kp_none, &kd_nowait);
1470 
1471 	if (!chunktable)
1472 		return (1);
1473 
1474 	/* Read the chunktable from disk into the piglet chunktable */
1475 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1476 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) {
1477 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL);
1478 		pmap_update(pmap_kernel());
1479 		hibernate_block_io(hiber_info, blkctr, PAGE_SIZE,
1480 		    chunktable + i, 0);
1481 	}
1482 
1483 	blkctr = hiber_info->image_offset;
1484 	compressed_size = 0;
1485 
1486 	chunks = (struct hibernate_disk_chunk *)chunktable;
1487 
1488 	for (i = 0; i < hiber_info->chunk_ctr; i++)
1489 		compressed_size += chunks[i].compressed_size;
1490 
1491 	disk_size = compressed_size;
1492 
1493 	/* Allocate the pig area */
1494 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1495 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1496 		return (1);
1497 
1498 	pig_end = pig_start + pig_sz;
1499 
1500 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1501 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1502 	image_start = pig_start;
1503 
1504 	image_start = image_end - disk_size;
1505 
1506 	hibernate_read_chunks(hiber_info, image_start, image_end, disk_size,
1507 	    chunks);
1508 
1509 	pmap_kremove(chunktable, PAGE_SIZE);
1510 	pmap_update(pmap_kernel());
1511 
1512 	/* Prepare the resume time pmap/page table */
1513 	hibernate_populate_resume_pt(hiber_info, image_start, image_end);
1514 
1515 	/* Read complete, clear the signature and return */
1516 	return hibernate_clear_signature();
1517 }
1518 
1519 /*
1520  * Read the hibernated memory chunks from disk (chunk information at this
1521  * point is stored in the piglet) into the pig area specified by
1522  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1523  * only chunk with overlap possibilities.
1524  */
1525 int
1526 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start,
1527     paddr_t pig_end, size_t image_compr_size,
1528     struct hibernate_disk_chunk *chunks)
1529 {
1530 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1531 	paddr_t copy_start, copy_end, piglet_cur;
1532 	paddr_t piglet_base = hib_info->piglet_pa;
1533 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1534 	daddr_t blkctr;
1535 	size_t processed, compressed_size, read_size;
1536 	int i, j, overlap, found, nchunks;
1537 	int nochunks = 0, nfchunks = 0, npchunks = 0;
1538 	int *ochunks, *pchunks, *fchunks;
1539 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1540 
1541 	global_pig_start = pig_start;
1542 
1543 	/* XXX - dont need this on all archs */
1544 	pmap_activate(curproc);
1545 
1546 	/*
1547 	 * These mappings go into the resuming kernel's page table, and are
1548 	 * used only during image read. They dissappear from existence
1549 	 * when the suspended kernel is unpacked on top of us.
1550 	 */
1551 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1552 	if (!tempva)
1553 		return (1);
1554 	hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any,
1555 	    &kp_none, &kd_nowait);
1556 	if (!hibernate_fchunk_area)
1557 		return (1);
1558 
1559 	/* Temporary output chunk ordering VA */
1560 	ochunks = (int *)hibernate_fchunk_area;
1561 
1562 	/* Piglet chunk ordering VA */
1563 	pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE);
1564 
1565 	/* Final chunk ordering VA */
1566 	fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE));
1567 
1568 	/* Map the chunk ordering region */
1569 	pmap_kenter_pa(hibernate_fchunk_area,
1570 	    piglet_base + (4*PAGE_SIZE), VM_PROT_ALL);
1571 	pmap_update(pmap_kernel());
1572 	pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE),
1573 	    VM_PROT_ALL);
1574 	pmap_update(pmap_kernel());
1575 	pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE),
1576 	    VM_PROT_ALL);
1577 	pmap_update(pmap_kernel());
1578 
1579 	nchunks = hib_info->chunk_ctr;
1580 
1581 	/* Initially start all chunks as unplaced */
1582 	for (i = 0; i < nchunks; i++)
1583 		chunks[i].flags = 0;
1584 
1585 	/*
1586 	 * Search the list for chunks that are outside the pig area. These
1587 	 * can be placed first in the final output list.
1588 	 */
1589 	for (i = 0; i < nchunks; i++) {
1590 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1591 			ochunks[nochunks] = i;
1592 			fchunks[nfchunks] = i;
1593 			nochunks++;
1594 			nfchunks++;
1595 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * Walk the ordering, place the chunks in ascending memory order.
1601 	 * Conflicts might arise, these are handled next.
1602 	 */
1603 	do {
1604 		img_index = -1;
1605 		found = 0;
1606 		j = -1;
1607 		for (i = 0; i < nchunks; i++)
1608 			if (chunks[i].base < img_index &&
1609 			    chunks[i].flags == 0 ) {
1610 				j = i;
1611 				img_index = chunks[i].base;
1612 			}
1613 
1614 		if (j != -1) {
1615 			found = 1;
1616 			ochunks[nochunks] = (short)j;
1617 			nochunks++;
1618 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1619 		}
1620 	} while (found);
1621 
1622 	img_index = pig_start;
1623 
1624 	/*
1625 	 * Identify chunk output conflicts (chunks whose pig load area
1626 	 * corresponds to their original memory placement location)
1627 	 */
1628 	for (i = 0; i < nochunks ; i++) {
1629 		overlap = 0;
1630 		r1s = img_index;
1631 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1632 		r2s = chunks[ochunks[i]].base;
1633 		r2e = chunks[ochunks[i]].end;
1634 
1635 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1636 		if (overlap)
1637 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1638 		img_index += chunks[ochunks[i]].compressed_size;
1639 	}
1640 
1641 	/*
1642 	 * Prepare the final output chunk list. Calculate an output
1643 	 * inflate strategy for overlapping chunks if needed.
1644 	 */
1645 	img_index = pig_start;
1646 	for (i = 0; i < nochunks ; i++) {
1647 		/*
1648 		 * If a conflict is detected, consume enough compressed
1649 		 * output chunks to fill the piglet
1650 		 */
1651 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1652 			copy_start = piglet_base;
1653 			copy_end = piglet_end;
1654 			piglet_cur = piglet_base;
1655 			npchunks = 0;
1656 			j = i;
1657 
1658 			while (copy_start < copy_end && j < nochunks) {
1659 				piglet_cur += chunks[ochunks[j]].compressed_size;
1660 				pchunks[npchunks] = ochunks[j];
1661 				npchunks++;
1662 				copy_start += chunks[ochunks[j]].compressed_size;
1663 				img_index += chunks[ochunks[j]].compressed_size;
1664 				i++;
1665 				j++;
1666 			}
1667 
1668 			piglet_cur = piglet_base;
1669 			for (j = 0; j < npchunks; j++) {
1670 				piglet_cur += chunks[pchunks[j]].compressed_size;
1671 				fchunks[nfchunks] = pchunks[j];
1672 				chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED;
1673 				nfchunks++;
1674 			}
1675 		} else {
1676 			/*
1677 			 * No conflict, chunk can be added without copying
1678 			 */
1679 			if ((chunks[ochunks[i]].flags &
1680 			    HIBERNATE_CHUNK_USED) == 0) {
1681 				fchunks[nfchunks] = ochunks[i];
1682 				chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED;
1683 				nfchunks++;
1684 			}
1685 			img_index += chunks[ochunks[i]].compressed_size;
1686 		}
1687 	}
1688 
1689 	img_index = pig_start;
1690 	for (i = 0; i < nfchunks; i++) {
1691 		piglet_cur = piglet_base;
1692 		img_index += chunks[fchunks[i]].compressed_size;
1693 	}
1694 
1695 	img_cur = pig_start;
1696 
1697 	for (i = 0; i < nfchunks; i++) {
1698 		blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset;
1699 		processed = 0;
1700 		compressed_size = chunks[fchunks[i]].compressed_size;
1701 
1702 		while (processed < compressed_size) {
1703 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1704 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1705 			    VM_PROT_ALL);
1706 			pmap_update(pmap_kernel());
1707 
1708 			if (compressed_size - processed >= PAGE_SIZE)
1709 				read_size = PAGE_SIZE;
1710 			else
1711 				read_size = compressed_size - processed;
1712 
1713 			hibernate_block_io(hib_info, blkctr, read_size,
1714 			    tempva + (img_cur & PAGE_MASK), 0);
1715 
1716 			blkctr += (read_size / hib_info->secsize);
1717 
1718 			hibernate_flush();
1719 			pmap_kremove(tempva, PAGE_SIZE);
1720 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1721 			processed += read_size;
1722 			img_cur += read_size;
1723 		}
1724 	}
1725 
1726 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1727 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1728 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1729 	pmap_update(pmap_kernel());
1730 
1731 	return (0);
1732 }
1733 
1734 /*
1735  * Hibernating a machine comprises the following operations:
1736  *  1. Calculating this machine's hibernate_info information
1737  *  2. Allocating a piglet and saving the piglet's physaddr
1738  *  3. Calculating the memory chunks
1739  *  4. Writing the compressed chunks to disk
1740  *  5. Writing the chunk table
1741  *  6. Writing the signature block (hibernate_info)
1742  *
1743  * On most architectures, the function calling hibernate_suspend would
1744  * then power off the machine using some MD-specific implementation.
1745  */
1746 int
1747 hibernate_suspend(void)
1748 {
1749 	union hibernate_info hib_info;
1750 	size_t swap_size;
1751 
1752 	/*
1753 	 * Calculate memory ranges, swap offsets, etc.
1754 	 * This also allocates a piglet whose physaddr is stored in
1755 	 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va
1756 	 */
1757 	if (get_hibernate_info(&hib_info, 1))
1758 		return (1);
1759 
1760 	swap_size = hib_info.image_size + hib_info.secsize +
1761 		HIBERNATE_CHUNK_TABLE_SIZE;
1762 
1763 	if (uvm_swap_check_range(hib_info.device, swap_size)) {
1764 		printf("insufficient swap space for hibernate\n");
1765 		return (1);
1766 	}
1767 
1768 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1769 		VM_PROT_ALL);
1770 	pmap_activate(curproc);
1771 
1772 	/* Stash the piglet VA so we can free it in the resuming kernel */
1773 	global_piglet_va = hib_info.piglet_va;
1774 
1775 	if (hibernate_write_chunks(&hib_info))
1776 		return (1);
1777 
1778 	if (hibernate_write_chunktable(&hib_info))
1779 		return (1);
1780 
1781 	if (hibernate_write_signature(&hib_info))
1782 		return (1);
1783 
1784 	delay(500000);
1785 	return (0);
1786 }
1787 
1788 /*
1789  * Free items allocated by hibernate_suspend()
1790  */
1791 void
1792 hibernate_free(void)
1793 {
1794 	if (global_piglet_va)
1795 		uvm_pmr_free_piglet(global_piglet_va,
1796 		    3*HIBERNATE_CHUNK_SIZE);
1797 
1798 	if (hibernate_copy_page)
1799 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1800 	if (hibernate_temp_page)
1801 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1802 
1803 	pmap_update(pmap_kernel());
1804 
1805 	if (hibernate_copy_page)
1806 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
1807 		    &kv_any, &kp_none);
1808 	if (hibernate_temp_page)
1809 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
1810 		    &kv_any, &kp_none);
1811 
1812 	global_piglet_va = 0;
1813 	hibernate_copy_page = 0;
1814 	hibernate_temp_page = 0;
1815 }
1816