1 /* $OpenBSD: subr_hibernate.c,v 1.63 2013/10/20 09:44:17 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hiber_info; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hiber_info->io_func = get_hibernate_io_function(); 650 if (hiber_info->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hiber_info->device = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 dl.d_partitions[1].p_size == 0) 667 return (1); 668 669 hiber_info->secsize = dl.d_secsize; 670 671 /* Make sure the signature can fit in one block */ 672 if(sizeof(union hibernate_info) > hiber_info->secsize) 673 return (1); 674 675 /* Magic number */ 676 hiber_info->magic = HIBERNATE_MAGIC; 677 678 /* Calculate swap offset from start of disk */ 679 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 680 681 /* Calculate signature block location */ 682 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 683 dl.d_partitions[1].p_size - 684 sizeof(union hibernate_info)/hiber_info->secsize; 685 686 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 687 688 /* Stash kernel version information */ 689 bzero(&hiber_info->kernel_version, 128); 690 bcopy(version, &hiber_info->kernel_version, 691 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 692 693 if (suspend) { 694 /* Allocate piglet region */ 695 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 696 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 697 HIBERNATE_CHUNK_SIZE)) { 698 printf("Hibernate failed to allocate the piglet\n"); 699 return (1); 700 } 701 hiber_info->io_page = (void *)hiber_info->piglet_va; 702 703 /* 704 * Initialization of the hibernate IO function for drivers 705 * that need to do prep work (such as allocating memory or 706 * setting up data structures that cannot safely be done 707 * during suspend without causing side effects). There is 708 * a matching HIB_DONE call performed after the write is 709 * completed. 710 */ 711 if (hiber_info->io_func(hiber_info->device, 0, 712 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 713 goto fail; 714 715 } else { 716 /* 717 * Resuming kernels use a regular I/O page since we won't 718 * have access to the suspended kernel's piglet VA at this 719 * point. No need to free this I/O page as it will vanish 720 * as part of the resume. 721 */ 722 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 723 if (!hiber_info->io_page) 724 return (1); 725 } 726 727 728 if (get_hibernate_info_md(hiber_info)) 729 goto fail; 730 731 /* Calculate memory image location in swap */ 732 hiber_info->image_offset = dl.d_partitions[1].p_offset + 733 dl.d_partitions[1].p_size - 734 (hiber_info->image_size / hiber_info->secsize) - 735 sizeof(union hibernate_info)/hiber_info->secsize - 736 chunktable_size; 737 738 return (0); 739 fail: 740 if (suspend) 741 uvm_pmr_free_piglet(hiber_info->piglet_va, 742 HIBERNATE_CHUNK_SIZE * 3); 743 744 return (1); 745 } 746 747 /* 748 * Allocate nitems*size bytes from the hiballoc area presently in use 749 */ 750 void * 751 hibernate_zlib_alloc(void *unused, int nitems, int size) 752 { 753 struct hibernate_zlib_state *hibernate_state; 754 755 hibernate_state = 756 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 757 758 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 759 } 760 761 /* 762 * Free the memory pointed to by addr in the hiballoc area presently in 763 * use 764 */ 765 void 766 hibernate_zlib_free(void *unused, void *addr) 767 { 768 struct hibernate_zlib_state *hibernate_state; 769 770 hibernate_state = 771 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 772 773 hib_free(&hibernate_state->hiballoc_arena, addr); 774 } 775 776 /* 777 * Gets the next RLE value from the image stream 778 */ 779 int 780 hibernate_get_next_rle(void) 781 { 782 int rle, i; 783 struct hibernate_zlib_state *hibernate_state; 784 785 hibernate_state = 786 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 787 788 /* Read RLE code */ 789 hibernate_state->hib_stream.next_out = (char *)&rle; 790 hibernate_state->hib_stream.avail_out = sizeof(rle); 791 792 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 793 if (i != Z_OK && i != Z_STREAM_END) { 794 /* 795 * XXX - this will likely reboot/hang most machines 796 * since the console output buffer will be unmapped, 797 * but there's not much else we can do here. 798 */ 799 panic("inflate rle error"); 800 } 801 802 /* Sanity check what RLE value we got */ 803 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 804 panic("invalid RLE code"); 805 806 if (i == Z_STREAM_END) 807 rle = -1; 808 809 return rle; 810 } 811 812 /* 813 * Inflate next page of data from the image stream 814 */ 815 int 816 hibernate_inflate_page(void) 817 { 818 struct hibernate_zlib_state *hibernate_state; 819 int i; 820 821 hibernate_state = 822 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 823 824 /* Set up the stream for inflate */ 825 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 826 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 827 828 /* Process next block of data */ 829 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 830 if (i != Z_OK && i != Z_STREAM_END) { 831 /* 832 * XXX - this will likely reboot/hang most machines 833 * since the console output buffer will be unmapped, 834 * but there's not much else we can do here. 835 */ 836 panic("inflate error"); 837 } 838 839 /* We should always have extracted a full page ... */ 840 if (hibernate_state->hib_stream.avail_out != 0) { 841 /* 842 * XXX - this will likely reboot/hang most machines 843 * since the console output buffer will be unmapped, 844 * but there's not much else we can do here. 845 */ 846 panic("incomplete page"); 847 } 848 849 return (i == Z_STREAM_END); 850 } 851 852 /* 853 * Inflate size bytes from src into dest, skipping any pages in 854 * [src..dest] that are special (see hibernate_inflate_skip) 855 * 856 * This function executes while using the resume-time stack 857 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 858 * will likely hang or reset the machine since the console output buffer 859 * will be unmapped. 860 */ 861 void 862 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 863 paddr_t src, size_t size) 864 { 865 int end_stream = 0 ; 866 struct hibernate_zlib_state *hibernate_state; 867 868 hibernate_state = 869 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 870 871 hibernate_state->hib_stream.next_in = (char *)src; 872 hibernate_state->hib_stream.avail_in = size; 873 874 do { 875 /* Flush cache and TLB */ 876 hibernate_flush(); 877 878 /* 879 * Is this a special page? If yes, redirect the 880 * inflate output to a scratch page (eg, discard it) 881 */ 882 if (hibernate_inflate_skip(hiber_info, dest)) { 883 hibernate_enter_resume_mapping( 884 HIBERNATE_INFLATE_PAGE, 885 HIBERNATE_INFLATE_PAGE, 0); 886 } else { 887 hibernate_enter_resume_mapping( 888 HIBERNATE_INFLATE_PAGE, dest, 0); 889 } 890 891 hibernate_flush(); 892 end_stream = hibernate_inflate_page(); 893 894 dest += PAGE_SIZE; 895 } while (!end_stream); 896 } 897 898 /* 899 * deflate from src into the I/O page, up to 'remaining' bytes 900 * 901 * Returns number of input bytes consumed, and may reset 902 * the 'remaining' parameter if not all the output space was consumed 903 * (this information is needed to know how much to write to disk 904 */ 905 size_t 906 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 907 size_t *remaining) 908 { 909 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 910 struct hibernate_zlib_state *hibernate_state; 911 912 hibernate_state = 913 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 914 915 /* Set up the stream for deflate */ 916 hibernate_state->hib_stream.next_in = (caddr_t)src; 917 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 918 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 919 (PAGE_SIZE - *remaining); 920 hibernate_state->hib_stream.avail_out = *remaining; 921 922 /* Process next block of data */ 923 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 924 panic("hibernate zlib deflate error"); 925 926 /* Update pointers and return number of bytes consumed */ 927 *remaining = hibernate_state->hib_stream.avail_out; 928 return (PAGE_SIZE - (src & PAGE_MASK)) - 929 hibernate_state->hib_stream.avail_in; 930 } 931 932 /* 933 * Write the hibernation information specified in hiber_info 934 * to the location in swap previously calculated (last block of 935 * swap), called the "signature block". 936 */ 937 int 938 hibernate_write_signature(union hibernate_info *hiber_info) 939 { 940 /* Write hibernate info to disk */ 941 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 942 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 943 hiber_info->io_page)); 944 } 945 946 /* 947 * Write the memory chunk table to the area in swap immediately 948 * preceding the signature block. The chunk table is stored 949 * in the piglet when this function is called. 950 * 951 * Return values: 952 * 953 * 0 - success 954 * EIO - I/O error writing the chunktable 955 */ 956 int 957 hibernate_write_chunktable(union hibernate_info *hiber_info) 958 { 959 struct hibernate_disk_chunk *chunks; 960 vaddr_t hibernate_chunk_table_start; 961 size_t hibernate_chunk_table_size; 962 daddr_t chunkbase; 963 int i, err; 964 965 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 966 967 chunkbase = hiber_info->sig_offset - 968 (hibernate_chunk_table_size / hiber_info->secsize); 969 970 hibernate_chunk_table_start = hiber_info->piglet_va + 971 HIBERNATE_CHUNK_SIZE; 972 973 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 974 HIBERNATE_CHUNK_SIZE); 975 976 /* Write chunk table */ 977 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 978 if ((err = hiber_info->io_func(hiber_info->device, 979 chunkbase + (i/hiber_info->secsize), 980 (vaddr_t)(hibernate_chunk_table_start + i), 981 MAXPHYS, HIB_W, hiber_info->io_page))) { 982 DPRINTF("chunktable write error: %d\n", err); 983 return (EIO); 984 } 985 } 986 987 return (0); 988 } 989 990 /* 991 * Write an empty hiber_info to the swap signature block, which is 992 * guaranteed to not match any valid hiber_info. 993 */ 994 int 995 hibernate_clear_signature(void) 996 { 997 union hibernate_info blank_hiber_info; 998 union hibernate_info hiber_info; 999 1000 /* Zero out a blank hiber_info */ 1001 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 1002 1003 /* Get the signature block location */ 1004 if (get_hibernate_info(&hiber_info, 0)) 1005 return (1); 1006 1007 /* Write (zeroed) hibernate info to disk */ 1008 DPRINTF("clearing hibernate signature block location: %lld\n", 1009 hiber_info.sig_offset - hiber_info.swap_offset); 1010 if (hibernate_block_io(&hiber_info, 1011 hiber_info.sig_offset - hiber_info.swap_offset, 1012 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 1013 printf("Warning: could not clear hibernate signature\n"); 1014 1015 return (0); 1016 } 1017 1018 /* 1019 * Check chunk range overlap when calculating whether or not to copy a 1020 * compressed chunk to the piglet area before decompressing. 1021 * 1022 * returns zero if the ranges do not overlap, non-zero otherwise. 1023 */ 1024 int 1025 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1026 { 1027 /* case A : end of r1 overlaps start of r2 */ 1028 if (r1s < r2s && r1e > r2s) 1029 return (1); 1030 1031 /* case B : r1 entirely inside r2 */ 1032 if (r1s >= r2s && r1e <= r2e) 1033 return (1); 1034 1035 /* case C : r2 entirely inside r1 */ 1036 if (r2s >= r1s && r2e <= r1e) 1037 return (1); 1038 1039 /* case D : end of r2 overlaps start of r1 */ 1040 if (r2s < r1s && r2e > r1s) 1041 return (1); 1042 1043 return (0); 1044 } 1045 1046 /* 1047 * Compare two hibernate_infos to determine if they are the same (eg, 1048 * we should be performing a hibernate resume on this machine. 1049 * Not all fields are checked - just enough to verify that the machine 1050 * has the same memory configuration and kernel as the one that 1051 * wrote the signature previously. 1052 */ 1053 int 1054 hibernate_compare_signature(union hibernate_info *mine, 1055 union hibernate_info *disk) 1056 { 1057 u_int i; 1058 1059 if (mine->nranges != disk->nranges) { 1060 DPRINTF("hibernate memory range count mismatch\n"); 1061 return (1); 1062 } 1063 1064 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1065 DPRINTF("hibernate kernel version mismatch\n"); 1066 return (1); 1067 } 1068 1069 for (i = 0; i < mine->nranges; i++) { 1070 if ((mine->ranges[i].base != disk->ranges[i].base) || 1071 (mine->ranges[i].end != disk->ranges[i].end) ) { 1072 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1073 i, mine->ranges[i].base, mine->ranges[i].end, 1074 disk->ranges[i].base, disk->ranges[i].end); 1075 return (1); 1076 } 1077 } 1078 1079 return (0); 1080 } 1081 1082 /* 1083 * Transfers xfer_size bytes between the hibernate device specified in 1084 * hib_info at offset blkctr and the vaddr specified at dest. 1085 * 1086 * Separate offsets and pages are used to handle misaligned reads (reads 1087 * that span a page boundary). 1088 * 1089 * blkctr specifies a relative offset (relative to the start of swap), 1090 * not an absolute disk offset 1091 * 1092 */ 1093 int 1094 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1095 size_t xfer_size, vaddr_t dest, int iswrite) 1096 { 1097 struct buf *bp; 1098 struct bdevsw *bdsw; 1099 int error; 1100 1101 bp = geteblk(xfer_size); 1102 bdsw = &bdevsw[major(hib_info->device)]; 1103 1104 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1105 if (error) { 1106 printf("hibernate_block_io open failed\n"); 1107 return (1); 1108 } 1109 1110 if (iswrite) 1111 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1112 1113 bp->b_bcount = xfer_size; 1114 bp->b_blkno = blkctr; 1115 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1116 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1117 bp->b_dev = hib_info->device; 1118 bp->b_cylinder = 0; 1119 (*bdsw->d_strategy)(bp); 1120 1121 error = biowait(bp); 1122 if (error) { 1123 printf("hibernate_block_io biowait failed %d\n", error); 1124 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1125 curproc); 1126 if (error) 1127 printf("hibernate_block_io error close failed\n"); 1128 return (1); 1129 } 1130 1131 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1132 if (error) { 1133 printf("hibernate_block_io close failed\n"); 1134 return (1); 1135 } 1136 1137 if (!iswrite) 1138 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1139 1140 bp->b_flags |= B_INVAL; 1141 brelse(bp); 1142 1143 return (0); 1144 } 1145 1146 /* 1147 * Reads the signature block from swap, checks against the current machine's 1148 * information. If the information matches, perform a resume by reading the 1149 * saved image into the pig area, and unpacking. 1150 */ 1151 void 1152 hibernate_resume(void) 1153 { 1154 union hibernate_info hiber_info; 1155 int s; 1156 1157 /* Get current running machine's hibernate info */ 1158 bzero(&hiber_info, sizeof(hiber_info)); 1159 if (get_hibernate_info(&hiber_info, 0)) 1160 return; 1161 1162 /* Read hibernate info from disk */ 1163 s = splbio(); 1164 1165 DPRINTF("reading hibernate signature block location: %lld\n", 1166 hiber_info.sig_offset - hiber_info.swap_offset); 1167 1168 if (hibernate_block_io(&hiber_info, 1169 hiber_info.sig_offset - hiber_info.swap_offset, 1170 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1171 panic("error in hibernate read"); 1172 1173 /* Check magic number */ 1174 if (disk_hiber_info.magic != HIBERNATE_MAGIC) { 1175 splx(s); 1176 return; 1177 } 1178 1179 /* 1180 * We (possibly) found a hibernate signature. Clear signature first, 1181 * to prevent accidental resume or endless resume cycles later. 1182 */ 1183 if (hibernate_clear_signature()) { 1184 splx(s); 1185 return; 1186 } 1187 1188 /* 1189 * If on-disk and in-memory hibernate signatures match, 1190 * this means we should do a resume from hibernate. 1191 */ 1192 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1193 splx(s); 1194 return; 1195 } 1196 1197 #ifdef MULTIPROCESSOR 1198 hibernate_quiesce_cpus(); 1199 #endif /* MULTIPROCESSOR */ 1200 1201 printf("Unhibernating..."); 1202 1203 /* Read the image from disk into the image (pig) area */ 1204 if (hibernate_read_image(&disk_hiber_info)) 1205 goto fail; 1206 1207 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1208 goto fail; 1209 1210 (void) splhigh(); 1211 hibernate_disable_intr_machdep(); 1212 cold = 1; 1213 1214 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1215 cold = 0; 1216 hibernate_enable_intr_machdep(); 1217 goto fail; 1218 } 1219 1220 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1221 VM_PROT_ALL); 1222 pmap_activate(curproc); 1223 1224 /* Switch stacks */ 1225 hibernate_switch_stack_machdep(); 1226 1227 /* Unpack and resume */ 1228 hibernate_unpack_image(&disk_hiber_info); 1229 1230 fail: 1231 splx(s); 1232 printf("\nUnable to resume hibernated image\n"); 1233 } 1234 1235 /* 1236 * Unpack image from pig area to original location by looping through the 1237 * list of output chunks in the order they should be restored (fchunks). 1238 * 1239 * Note that due to the stack smash protector and the fact that we have 1240 * switched stacks, it is not permitted to return from this function. 1241 */ 1242 void 1243 hibernate_unpack_image(union hibernate_info *hiber_info) 1244 { 1245 struct hibernate_disk_chunk *chunks; 1246 union hibernate_info local_hiber_info; 1247 paddr_t image_cur = global_pig_start; 1248 short i, *fchunks; 1249 char *pva = (char *)hiber_info->piglet_va; 1250 struct hibernate_zlib_state *hibernate_state; 1251 1252 hibernate_state = 1253 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1254 1255 /* Mask off based on arch-specific piglet page size */ 1256 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1257 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1258 1259 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1260 1261 /* Can't use hiber_info that's passed in after this point */ 1262 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1263 1264 /* 1265 * Point of no return. Once we pass this point, only kernel code can 1266 * be accessed. No global variables or other kernel data structures 1267 * are guaranteed to be coherent after unpack starts. 1268 * 1269 * The image is now in high memory (pig area), we unpack from the pig 1270 * to the correct location in memory. We'll eventually end up copying 1271 * on top of ourself, but we are assured the kernel code here is the 1272 * same between the hibernated and resuming kernel, and we are running 1273 * on our own stack, so the overwrite is ok. 1274 */ 1275 hibernate_activate_resume_pt_machdep(); 1276 1277 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1278 /* Reset zlib for inflate */ 1279 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1280 panic("hibernate failed to reset zlib for inflate"); 1281 1282 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1283 image_cur); 1284 1285 image_cur += chunks[fchunks[i]].compressed_size; 1286 1287 } 1288 1289 /* 1290 * Resume the loaded kernel by jumping to the MD resume vector. 1291 * We won't be returning from this call. 1292 */ 1293 hibernate_resume_machdep(); 1294 } 1295 1296 /* 1297 * Bounce a compressed image chunk to the piglet, entering mappings for the 1298 * copied pages as needed 1299 */ 1300 void 1301 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1302 { 1303 size_t ct, ofs; 1304 paddr_t src = img_cur; 1305 vaddr_t dest = piglet; 1306 1307 /* Copy first partial page */ 1308 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1309 ofs = (src & PAGE_MASK); 1310 1311 if (ct < PAGE_SIZE) { 1312 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1313 (src - ofs), 0); 1314 hibernate_flush(); 1315 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1316 src += ct; 1317 dest += ct; 1318 } 1319 wbinvd(); 1320 1321 /* Copy remaining pages */ 1322 while (src < size + img_cur) { 1323 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1324 hibernate_flush(); 1325 ct = PAGE_SIZE; 1326 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1327 hibernate_flush(); 1328 src += ct; 1329 dest += ct; 1330 } 1331 1332 hibernate_flush(); 1333 wbinvd(); 1334 } 1335 1336 /* 1337 * Process a chunk by bouncing it to the piglet, followed by unpacking 1338 */ 1339 void 1340 hibernate_process_chunk(union hibernate_info *hiber_info, 1341 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1342 { 1343 char *pva = (char *)hiber_info->piglet_va; 1344 1345 hibernate_copy_chunk_to_piglet(img_cur, 1346 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1347 1348 hibernate_inflate_region(hiber_info, chunk->base, 1349 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1350 chunk->compressed_size); 1351 } 1352 1353 /* 1354 * Write a compressed version of this machine's memory to disk, at the 1355 * precalculated swap offset: 1356 * 1357 * end of swap - signature block size - chunk table size - memory size 1358 * 1359 * The function begins by looping through each phys mem range, cutting each 1360 * one into MD sized chunks. These chunks are then compressed individually 1361 * and written out to disk, in phys mem order. Some chunks might compress 1362 * more than others, and for this reason, each chunk's size is recorded 1363 * in the chunk table, which is written to disk after the image has 1364 * properly been compressed and written (in hibernate_write_chunktable). 1365 * 1366 * When this function is called, the machine is nearly suspended - most 1367 * devices are quiesced/suspended, interrupts are off, and cold has 1368 * been set. This means that there can be no side effects once the 1369 * write has started, and the write function itself can also have no 1370 * side effects. This also means no printfs are permitted (since printf 1371 * has side effects.) 1372 * 1373 * Return values : 1374 * 1375 * 0 - success 1376 * EIO - I/O error occurred writing the chunks 1377 * EINVAL - Failed to write a complete range 1378 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1379 */ 1380 int 1381 hibernate_write_chunks(union hibernate_info *hiber_info) 1382 { 1383 paddr_t range_base, range_end, inaddr, temp_inaddr; 1384 size_t nblocks, out_remaining, used; 1385 struct hibernate_disk_chunk *chunks; 1386 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1387 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1388 int i, err; 1389 struct hibernate_zlib_state *hibernate_state; 1390 1391 hibernate_state = 1392 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1393 1394 hiber_info->chunk_ctr = 0; 1395 1396 /* 1397 * Allocate VA for the temp and copy page. 1398 * 1399 * These will become part of the suspended kernel and will 1400 * be freed in hibernate_free, upon resume. 1401 */ 1402 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1403 &kp_none, &kd_nowait); 1404 if (!hibernate_temp_page) 1405 return (ENOMEM); 1406 1407 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1408 &kp_none, &kd_nowait); 1409 if (!hibernate_copy_page) { 1410 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1411 return (ENOMEM); 1412 } 1413 1414 pmap_kenter_pa(hibernate_copy_page, 1415 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1416 1417 pmap_activate(curproc); 1418 1419 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1420 HIBERNATE_CHUNK_SIZE); 1421 1422 /* Calculate the chunk regions */ 1423 for (i = 0; i < hiber_info->nranges; i++) { 1424 range_base = hiber_info->ranges[i].base; 1425 range_end = hiber_info->ranges[i].end; 1426 1427 inaddr = range_base; 1428 1429 while (inaddr < range_end) { 1430 chunks[hiber_info->chunk_ctr].base = inaddr; 1431 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1432 chunks[hiber_info->chunk_ctr].end = inaddr + 1433 HIBERNATE_CHUNK_SIZE; 1434 else 1435 chunks[hiber_info->chunk_ctr].end = range_end; 1436 1437 inaddr += HIBERNATE_CHUNK_SIZE; 1438 hiber_info->chunk_ctr ++; 1439 } 1440 } 1441 1442 /* Compress and write the chunks in the chunktable */ 1443 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1444 range_base = chunks[i].base; 1445 range_end = chunks[i].end; 1446 1447 chunks[i].offset = blkctr; 1448 1449 /* Reset zlib for deflate */ 1450 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) { 1451 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1452 return (ENOMEM); 1453 } 1454 1455 inaddr = range_base; 1456 1457 /* 1458 * For each range, loop through its phys mem region 1459 * and write out the chunks (the last chunk might be 1460 * smaller than the chunk size). 1461 */ 1462 while (inaddr < range_end) { 1463 out_remaining = PAGE_SIZE; 1464 while (out_remaining > 0 && inaddr < range_end) { 1465 1466 /* 1467 * Adjust for regions that are not evenly 1468 * divisible by PAGE_SIZE or overflowed 1469 * pages from the previous iteration. 1470 */ 1471 temp_inaddr = (inaddr & PAGE_MASK) + 1472 hibernate_copy_page; 1473 1474 /* Deflate from temp_inaddr to IO page */ 1475 if (inaddr != range_end) { 1476 pmap_kenter_pa(hibernate_temp_page, 1477 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1478 1479 pmap_activate(curproc); 1480 1481 bcopy((caddr_t)hibernate_temp_page, 1482 (caddr_t)hibernate_copy_page, 1483 PAGE_SIZE); 1484 inaddr += hibernate_deflate(hiber_info, 1485 temp_inaddr, &out_remaining); 1486 } 1487 1488 if (out_remaining == 0) { 1489 /* Filled up the page */ 1490 nblocks = 1491 PAGE_SIZE / hiber_info->secsize; 1492 1493 if ((err = hiber_info->io_func( 1494 hiber_info->device, 1495 blkctr, (vaddr_t)hibernate_io_page, 1496 PAGE_SIZE, HIB_W, 1497 hiber_info->io_page))) { 1498 DPRINTF("hib write error %d\n", 1499 err); 1500 return (EIO); 1501 } 1502 1503 blkctr += nblocks; 1504 } 1505 } 1506 } 1507 1508 if (inaddr != range_end) { 1509 DPRINTF("deflate range ended prematurely\n"); 1510 return (EINVAL); 1511 } 1512 1513 /* 1514 * End of range. Round up to next secsize bytes 1515 * after finishing compress 1516 */ 1517 if (out_remaining == 0) 1518 out_remaining = PAGE_SIZE; 1519 1520 /* Finish compress */ 1521 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1522 hibernate_state->hib_stream.avail_in = 0; 1523 hibernate_state->hib_stream.next_out = 1524 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1525 1526 /* We have an extra output page available for finalize */ 1527 hibernate_state->hib_stream.avail_out = 1528 out_remaining + PAGE_SIZE; 1529 1530 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1531 Z_STREAM_END) { 1532 DPRINTF("deflate error in output stream: %d\n", err); 1533 return (EIO); 1534 } 1535 1536 out_remaining = hibernate_state->hib_stream.avail_out; 1537 1538 used = 2*PAGE_SIZE - out_remaining; 1539 nblocks = used / hiber_info->secsize; 1540 1541 /* Round up to next block if needed */ 1542 if (used % hiber_info->secsize != 0) 1543 nblocks ++; 1544 1545 /* Write final block(s) for this chunk */ 1546 if ((err = hiber_info->io_func(hiber_info->device, blkctr, 1547 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1548 HIB_W, hiber_info->io_page))) { 1549 DPRINTF("hib final write error %d\n", err); 1550 return (EIO); 1551 } 1552 1553 blkctr += nblocks; 1554 1555 offset = blkctr; 1556 chunks[i].compressed_size = (offset - chunks[i].offset) * 1557 hiber_info->secsize; 1558 } 1559 1560 return (0); 1561 } 1562 1563 /* 1564 * Reset the zlib stream state and allocate a new hiballoc area for either 1565 * inflate or deflate. This function is called once for each hibernate chunk. 1566 * Calling hiballoc_init multiple times is acceptable since the memory it is 1567 * provided is unmanaged memory (stolen). We use the memory provided to us 1568 * by the piglet allocated via the supplied hiber_info. 1569 */ 1570 int 1571 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1572 { 1573 vaddr_t hibernate_zlib_start; 1574 size_t hibernate_zlib_size; 1575 char *pva = (char *)hiber_info->piglet_va; 1576 struct hibernate_zlib_state *hibernate_state; 1577 1578 hibernate_state = 1579 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1580 1581 if(!deflate) 1582 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1583 1584 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1585 hibernate_zlib_size = 80 * PAGE_SIZE; 1586 1587 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1588 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1589 1590 /* Set up stream structure */ 1591 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1592 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1593 1594 /* Initialize the hiballoc arena for zlib allocs/frees */ 1595 hiballoc_init(&hibernate_state->hiballoc_arena, 1596 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1597 1598 if (deflate) { 1599 return deflateInit(&hibernate_state->hib_stream, 1600 Z_BEST_SPEED); 1601 } else 1602 return inflateInit(&hibernate_state->hib_stream); 1603 } 1604 1605 /* 1606 * Reads the hibernated memory image from disk, whose location and 1607 * size are recorded in hiber_info. Begin by reading the persisted 1608 * chunk table, which records the original chunk placement location 1609 * and compressed size for each. Next, allocate a pig region of 1610 * sufficient size to hold the compressed image. Next, read the 1611 * chunks into the pig area (calling hibernate_read_chunks to do this), 1612 * and finally, if all of the above succeeds, clear the hibernate signature. 1613 * The function will then return to hibernate_resume, which will proceed 1614 * to unpack the pig image to the correct place in memory. 1615 */ 1616 int 1617 hibernate_read_image(union hibernate_info *hiber_info) 1618 { 1619 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1620 paddr_t image_start, image_end, pig_start, pig_end; 1621 struct hibernate_disk_chunk *chunks; 1622 daddr_t blkctr; 1623 vaddr_t chunktable = (vaddr_t)NULL; 1624 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1625 HIBERNATE_CHUNK_SIZE; 1626 int i; 1627 1628 pmap_activate(curproc); 1629 1630 /* Calculate total chunk table size in disk blocks */ 1631 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1632 1633 blkctr = hiber_info->sig_offset - chunktable_size - 1634 hiber_info->swap_offset; 1635 1636 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1637 &kp_none, &kd_nowait); 1638 1639 if (!chunktable) 1640 return (1); 1641 1642 /* Read the chunktable from disk into the piglet chunktable */ 1643 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1644 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1645 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1646 VM_PROT_ALL); 1647 pmap_update(pmap_kernel()); 1648 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1649 chunktable + i, 0); 1650 } 1651 1652 blkctr = hiber_info->image_offset; 1653 compressed_size = 0; 1654 1655 chunks = (struct hibernate_disk_chunk *)chunktable; 1656 1657 for (i = 0; i < hiber_info->chunk_ctr; i++) 1658 compressed_size += chunks[i].compressed_size; 1659 1660 disk_size = compressed_size; 1661 1662 printf(" (image size: %zu)\n", compressed_size); 1663 1664 /* Allocate the pig area */ 1665 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1666 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1667 return (1); 1668 1669 pig_end = pig_start + pig_sz; 1670 1671 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1672 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1673 image_start = pig_start; 1674 1675 image_start = image_end - disk_size; 1676 1677 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1678 chunks); 1679 1680 pmap_kremove(chunktable, PAGE_SIZE); 1681 pmap_update(pmap_kernel()); 1682 1683 /* Prepare the resume time pmap/page table */ 1684 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1685 1686 return (0); 1687 } 1688 1689 /* 1690 * Read the hibernated memory chunks from disk (chunk information at this 1691 * point is stored in the piglet) into the pig area specified by 1692 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1693 * only chunk with overlap possibilities. 1694 */ 1695 int 1696 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1697 paddr_t pig_end, size_t image_compr_size, 1698 struct hibernate_disk_chunk *chunks) 1699 { 1700 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1701 paddr_t copy_start, copy_end, piglet_cur; 1702 paddr_t piglet_base = hib_info->piglet_pa; 1703 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1704 daddr_t blkctr; 1705 size_t processed, compressed_size, read_size; 1706 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1707 short *ochunks, *pchunks, *fchunks, i, j; 1708 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1709 1710 global_pig_start = pig_start; 1711 1712 pmap_activate(curproc); 1713 1714 /* 1715 * These mappings go into the resuming kernel's page table, and are 1716 * used only during image read. They dissappear from existence 1717 * when the suspended kernel is unpacked on top of us. 1718 */ 1719 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1720 if (!tempva) 1721 return (1); 1722 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1723 &kp_none, &kd_nowait); 1724 if (!hibernate_fchunk_area) 1725 return (1); 1726 1727 /* Final output chunk ordering VA */ 1728 fchunks = (short *)hibernate_fchunk_area; 1729 1730 /* Piglet chunk ordering VA */ 1731 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1732 1733 /* Final chunk ordering VA */ 1734 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1735 1736 /* Map the chunk ordering region */ 1737 for(i=0; i<24 ; i++) { 1738 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1739 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1740 pmap_update(pmap_kernel()); 1741 } 1742 1743 nchunks = hib_info->chunk_ctr; 1744 1745 /* Initially start all chunks as unplaced */ 1746 for (i = 0; i < nchunks; i++) 1747 chunks[i].flags = 0; 1748 1749 /* 1750 * Search the list for chunks that are outside the pig area. These 1751 * can be placed first in the final output list. 1752 */ 1753 for (i = 0; i < nchunks; i++) { 1754 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1755 ochunks[nochunks] = i; 1756 fchunks[nfchunks] = i; 1757 nochunks++; 1758 nfchunks++; 1759 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1760 } 1761 } 1762 1763 /* 1764 * Walk the ordering, place the chunks in ascending memory order. 1765 * Conflicts might arise, these are handled next. 1766 */ 1767 do { 1768 img_index = -1; 1769 found = 0; 1770 j = -1; 1771 for (i = 0; i < nchunks; i++) 1772 if (chunks[i].base < img_index && 1773 chunks[i].flags == 0 ) { 1774 j = i; 1775 img_index = chunks[i].base; 1776 } 1777 1778 if (j != -1) { 1779 found = 1; 1780 ochunks[nochunks] = j; 1781 nochunks++; 1782 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1783 } 1784 } while (found); 1785 1786 img_index = pig_start; 1787 1788 /* 1789 * Identify chunk output conflicts (chunks whose pig load area 1790 * corresponds to their original memory placement location) 1791 */ 1792 for (i = 0; i < nochunks ; i++) { 1793 overlap = 0; 1794 r1s = img_index; 1795 r1e = img_index + chunks[ochunks[i]].compressed_size; 1796 r2s = chunks[ochunks[i]].base; 1797 r2e = chunks[ochunks[i]].end; 1798 1799 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1800 if (overlap) 1801 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1802 img_index += chunks[ochunks[i]].compressed_size; 1803 } 1804 1805 /* 1806 * Prepare the final output chunk list. Calculate an output 1807 * inflate strategy for overlapping chunks if needed. 1808 */ 1809 img_index = pig_start; 1810 for (i = 0; i < nochunks ; i++) { 1811 /* 1812 * If a conflict is detected, consume enough compressed 1813 * output chunks to fill the piglet 1814 */ 1815 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1816 copy_start = piglet_base; 1817 copy_end = piglet_end; 1818 piglet_cur = piglet_base; 1819 npchunks = 0; 1820 j = i; 1821 1822 while (copy_start < copy_end && j < nochunks) { 1823 piglet_cur += 1824 chunks[ochunks[j]].compressed_size; 1825 pchunks[npchunks] = ochunks[j]; 1826 npchunks++; 1827 copy_start += 1828 chunks[ochunks[j]].compressed_size; 1829 img_index += chunks[ochunks[j]].compressed_size; 1830 i++; 1831 j++; 1832 } 1833 1834 piglet_cur = piglet_base; 1835 for (j = 0; j < npchunks; j++) { 1836 piglet_cur += 1837 chunks[pchunks[j]].compressed_size; 1838 fchunks[nfchunks] = pchunks[j]; 1839 chunks[pchunks[j]].flags |= 1840 HIBERNATE_CHUNK_USED; 1841 nfchunks++; 1842 } 1843 } else { 1844 /* 1845 * No conflict, chunk can be added without copying 1846 */ 1847 if ((chunks[ochunks[i]].flags & 1848 HIBERNATE_CHUNK_USED) == 0) { 1849 fchunks[nfchunks] = ochunks[i]; 1850 chunks[ochunks[i]].flags |= 1851 HIBERNATE_CHUNK_USED; 1852 nfchunks++; 1853 } 1854 img_index += chunks[ochunks[i]].compressed_size; 1855 } 1856 } 1857 1858 img_index = pig_start; 1859 for (i = 0; i < nfchunks; i++) { 1860 piglet_cur = piglet_base; 1861 img_index += chunks[fchunks[i]].compressed_size; 1862 } 1863 1864 img_cur = pig_start; 1865 1866 for (i = 0; i < nfchunks; i++) { 1867 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1868 processed = 0; 1869 compressed_size = chunks[fchunks[i]].compressed_size; 1870 1871 while (processed < compressed_size) { 1872 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1873 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1874 VM_PROT_ALL); 1875 pmap_update(pmap_kernel()); 1876 1877 if (compressed_size - processed >= PAGE_SIZE) 1878 read_size = PAGE_SIZE; 1879 else 1880 read_size = compressed_size - processed; 1881 1882 hibernate_block_io(hib_info, blkctr, read_size, 1883 tempva + (img_cur & PAGE_MASK), 0); 1884 1885 blkctr += (read_size / hib_info->secsize); 1886 1887 pmap_kremove(tempva, PAGE_SIZE); 1888 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1889 processed += read_size; 1890 img_cur += read_size; 1891 } 1892 } 1893 1894 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1895 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1896 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1897 pmap_update(pmap_kernel()); 1898 1899 return (0); 1900 } 1901 1902 /* 1903 * Hibernating a machine comprises the following operations: 1904 * 1. Calculating this machine's hibernate_info information 1905 * 2. Allocating a piglet and saving the piglet's physaddr 1906 * 3. Calculating the memory chunks 1907 * 4. Writing the compressed chunks to disk 1908 * 5. Writing the chunk table 1909 * 6. Writing the signature block (hibernate_info) 1910 * 1911 * On most architectures, the function calling hibernate_suspend would 1912 * then power off the machine using some MD-specific implementation. 1913 */ 1914 int 1915 hibernate_suspend(void) 1916 { 1917 union hibernate_info hib_info; 1918 size_t swap_size; 1919 1920 /* 1921 * Calculate memory ranges, swap offsets, etc. 1922 * This also allocates a piglet whose physaddr is stored in 1923 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1924 */ 1925 if (get_hibernate_info(&hib_info, 1)) { 1926 DPRINTF("failed to obtain hibernate info\n"); 1927 return (1); 1928 } 1929 1930 swap_size = hib_info.image_size + hib_info.secsize + 1931 HIBERNATE_CHUNK_TABLE_SIZE; 1932 1933 if (uvm_swap_check_range(hib_info.device, swap_size)) { 1934 printf("insufficient swap space for hibernate\n"); 1935 return (1); 1936 } 1937 1938 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1939 VM_PROT_ALL); 1940 pmap_activate(curproc); 1941 1942 /* Stash the piglet VA so we can free it in the resuming kernel */ 1943 global_piglet_va = hib_info.piglet_va; 1944 1945 if (hibernate_write_chunks(&hib_info)) { 1946 DPRINTF("hibernate_write_chunks failed\n"); 1947 return (1); 1948 } 1949 1950 if (hibernate_write_chunktable(&hib_info)) { 1951 DPRINTF("hibernate_write_chunktable failed\n"); 1952 return (1); 1953 } 1954 1955 if (hibernate_write_signature(&hib_info)) { 1956 DPRINTF("hibernate_write_signature failed\n"); 1957 return (1); 1958 } 1959 1960 /* Allow the disk to settle */ 1961 delay(500000); 1962 1963 /* 1964 * Give the device-specific I/O function a notification that we're 1965 * done, and that it can clean up or shutdown as needed. 1966 */ 1967 hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0, 1968 HIB_DONE, hib_info.io_page); 1969 1970 return (0); 1971 } 1972 1973 /* 1974 * Free items allocated by hibernate_suspend() 1975 */ 1976 void 1977 hibernate_free(void) 1978 { 1979 if (global_piglet_va) 1980 uvm_pmr_free_piglet(global_piglet_va, 1981 3*HIBERNATE_CHUNK_SIZE); 1982 1983 if (hibernate_copy_page) 1984 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1985 if (hibernate_temp_page) 1986 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1987 1988 pmap_update(pmap_kernel()); 1989 1990 if (hibernate_copy_page) 1991 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1992 &kv_any, &kp_none); 1993 if (hibernate_temp_page) 1994 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1995 &kv_any, &kp_none); 1996 1997 global_piglet_va = 0; 1998 hibernate_copy_page = 0; 1999 hibernate_temp_page = 0; 2000 } 2001