1 /* $OpenBSD: subr_hibernate.c,v 1.75 2013/11/06 19:47:30 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hib, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hib->io_func = get_hibernate_io_function(); 650 if (hib->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hib->dev = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 667 return (1); 668 669 /* Make sure the signature can fit in one block */ 670 if(sizeof(union hibernate_info) > DEV_BSIZE) 671 return (1); 672 673 /* Magic number */ 674 hib->magic = HIBERNATE_MAGIC; 675 676 /* Calculate signature block location */ 677 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 678 sizeof(union hibernate_info)/DEV_BSIZE; 679 680 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 681 682 /* Stash kernel version information */ 683 bzero(&hib->kernel_version, 128); 684 bcopy(version, &hib->kernel_version, 685 min(strlen(version), sizeof(hib->kernel_version)-1)); 686 687 if (suspend) { 688 /* Allocate piglet region */ 689 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 690 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 691 HIBERNATE_CHUNK_SIZE)) { 692 printf("Hibernate failed to allocate the piglet\n"); 693 return (1); 694 } 695 hib->io_page = (void *)hib->piglet_va; 696 697 /* 698 * Initialization of the hibernate IO function for drivers 699 * that need to do prep work (such as allocating memory or 700 * setting up data structures that cannot safely be done 701 * during suspend without causing side effects). There is 702 * a matching HIB_DONE call performed after the write is 703 * completed. 704 */ 705 if (hib->io_func(hib->dev, 706 DL_GETPOFFSET(&dl.d_partitions[1]), 707 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 708 HIB_INIT, hib->io_page)) 709 goto fail; 710 711 } else { 712 /* 713 * Resuming kernels use a regular I/O page since we won't 714 * have access to the suspended kernel's piglet VA at this 715 * point. No need to free this I/O page as it will vanish 716 * as part of the resume. 717 */ 718 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 719 if (!hib->io_page) 720 return (1); 721 } 722 723 724 if (get_hibernate_info_md(hib)) 725 goto fail; 726 727 728 return (0); 729 fail: 730 if (suspend) 731 uvm_pmr_free_piglet(hib->piglet_va, 732 HIBERNATE_CHUNK_SIZE * 3); 733 734 return (1); 735 } 736 737 /* 738 * Allocate nitems*size bytes from the hiballoc area presently in use 739 */ 740 void * 741 hibernate_zlib_alloc(void *unused, int nitems, int size) 742 { 743 struct hibernate_zlib_state *hibernate_state; 744 745 hibernate_state = 746 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 747 748 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 749 } 750 751 /* 752 * Free the memory pointed to by addr in the hiballoc area presently in 753 * use 754 */ 755 void 756 hibernate_zlib_free(void *unused, void *addr) 757 { 758 struct hibernate_zlib_state *hibernate_state; 759 760 hibernate_state = 761 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 762 763 hib_free(&hibernate_state->hiballoc_arena, addr); 764 } 765 766 /* 767 * Gets the next RLE value from the image stream 768 */ 769 int 770 hibernate_get_next_rle(void) 771 { 772 int rle, i; 773 struct hibernate_zlib_state *hibernate_state; 774 775 hibernate_state = 776 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 777 778 /* Read RLE code */ 779 hibernate_state->hib_stream.next_out = (char *)&rle; 780 hibernate_state->hib_stream.avail_out = sizeof(rle); 781 782 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 783 if (i != Z_OK && i != Z_STREAM_END) { 784 /* 785 * XXX - this will likely reboot/hang most machines 786 * since the console output buffer will be unmapped, 787 * but there's not much else we can do here. 788 */ 789 panic("inflate rle error"); 790 } 791 792 /* Sanity check what RLE value we got */ 793 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 794 panic("invalid RLE code"); 795 796 if (i == Z_STREAM_END) 797 rle = -1; 798 799 return rle; 800 } 801 802 /* 803 * Inflate next page of data from the image stream 804 */ 805 int 806 hibernate_inflate_page(void) 807 { 808 struct hibernate_zlib_state *hibernate_state; 809 int i; 810 811 hibernate_state = 812 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 813 814 /* Set up the stream for inflate */ 815 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 816 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 817 818 /* Process next block of data */ 819 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 820 if (i != Z_OK && i != Z_STREAM_END) { 821 /* 822 * XXX - this will likely reboot/hang most machines 823 * since the console output buffer will be unmapped, 824 * but there's not much else we can do here. 825 */ 826 panic("inflate error"); 827 } 828 829 /* We should always have extracted a full page ... */ 830 if (hibernate_state->hib_stream.avail_out != 0) { 831 /* 832 * XXX - this will likely reboot/hang most machines 833 * since the console output buffer will be unmapped, 834 * but there's not much else we can do here. 835 */ 836 panic("incomplete page"); 837 } 838 839 return (i == Z_STREAM_END); 840 } 841 842 /* 843 * Inflate size bytes from src into dest, skipping any pages in 844 * [src..dest] that are special (see hibernate_inflate_skip) 845 * 846 * This function executes while using the resume-time stack 847 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 848 * will likely hang or reset the machine since the console output buffer 849 * will be unmapped. 850 */ 851 void 852 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 853 paddr_t src, size_t size) 854 { 855 int end_stream = 0 ; 856 struct hibernate_zlib_state *hibernate_state; 857 858 hibernate_state = 859 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 860 861 hibernate_state->hib_stream.next_in = (char *)src; 862 hibernate_state->hib_stream.avail_in = size; 863 864 do { 865 /* Flush cache and TLB */ 866 hibernate_flush(); 867 868 /* 869 * Is this a special page? If yes, redirect the 870 * inflate output to a scratch page (eg, discard it) 871 */ 872 if (hibernate_inflate_skip(hib, dest)) { 873 hibernate_enter_resume_mapping( 874 HIBERNATE_INFLATE_PAGE, 875 HIBERNATE_INFLATE_PAGE, 0); 876 } else { 877 hibernate_enter_resume_mapping( 878 HIBERNATE_INFLATE_PAGE, dest, 0); 879 } 880 881 hibernate_flush(); 882 end_stream = hibernate_inflate_page(); 883 884 dest += PAGE_SIZE; 885 } while (!end_stream); 886 } 887 888 /* 889 * deflate from src into the I/O page, up to 'remaining' bytes 890 * 891 * Returns number of input bytes consumed, and may reset 892 * the 'remaining' parameter if not all the output space was consumed 893 * (this information is needed to know how much to write to disk 894 */ 895 size_t 896 hibernate_deflate(union hibernate_info *hib, paddr_t src, 897 size_t *remaining) 898 { 899 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 900 struct hibernate_zlib_state *hibernate_state; 901 902 hibernate_state = 903 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 904 905 /* Set up the stream for deflate */ 906 hibernate_state->hib_stream.next_in = (caddr_t)src; 907 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 908 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 909 (PAGE_SIZE - *remaining); 910 hibernate_state->hib_stream.avail_out = *remaining; 911 912 /* Process next block of data */ 913 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 914 panic("hibernate zlib deflate error"); 915 916 /* Update pointers and return number of bytes consumed */ 917 *remaining = hibernate_state->hib_stream.avail_out; 918 return (PAGE_SIZE - (src & PAGE_MASK)) - 919 hibernate_state->hib_stream.avail_in; 920 } 921 922 /* 923 * Write the hibernation information specified in hiber_info 924 * to the location in swap previously calculated (last block of 925 * swap), called the "signature block". 926 */ 927 int 928 hibernate_write_signature(union hibernate_info *hib) 929 { 930 /* Write hibernate info to disk */ 931 return (hib->io_func(hib->dev, hib->sig_offset, 932 (vaddr_t)hib, DEV_BSIZE, HIB_W, 933 hib->io_page)); 934 } 935 936 /* 937 * Write the memory chunk table to the area in swap immediately 938 * preceding the signature block. The chunk table is stored 939 * in the piglet when this function is called. Returns errno. 940 */ 941 int 942 hibernate_write_chunktable(union hibernate_info *hib) 943 { 944 struct hibernate_disk_chunk *chunks; 945 vaddr_t hibernate_chunk_table_start; 946 size_t hibernate_chunk_table_size; 947 daddr_t chunkbase; 948 int i, err; 949 950 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 951 952 chunkbase = hib->sig_offset - 953 (hibernate_chunk_table_size / DEV_BSIZE); 954 955 hibernate_chunk_table_start = hib->piglet_va + 956 HIBERNATE_CHUNK_SIZE; 957 958 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 959 HIBERNATE_CHUNK_SIZE); 960 961 /* Write chunk table */ 962 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 963 if ((err = hib->io_func(hib->dev, 964 chunkbase + (i/DEV_BSIZE), 965 (vaddr_t)(hibernate_chunk_table_start + i), 966 MAXPHYS, HIB_W, hib->io_page))) { 967 DPRINTF("chunktable write error: %d\n", err); 968 return (err); 969 } 970 } 971 972 return (0); 973 } 974 975 /* 976 * Write an empty hiber_info to the swap signature block, which is 977 * guaranteed to not match any valid hib. 978 */ 979 int 980 hibernate_clear_signature(void) 981 { 982 union hibernate_info blank_hiber_info; 983 union hibernate_info hib; 984 985 /* Zero out a blank hiber_info */ 986 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 987 988 /* Get the signature block location */ 989 if (get_hibernate_info(&hib, 0)) 990 return (1); 991 992 /* Write (zeroed) hibernate info to disk */ 993 DPRINTF("clearing hibernate signature block location: %lld\n", 994 hib.sig_offset); 995 if (hibernate_block_io(&hib, 996 hib.sig_offset, 997 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 998 printf("Warning: could not clear hibernate signature\n"); 999 1000 return (0); 1001 } 1002 1003 /* 1004 * Check chunk range overlap when calculating whether or not to copy a 1005 * compressed chunk to the piglet area before decompressing. 1006 * 1007 * returns zero if the ranges do not overlap, non-zero otherwise. 1008 */ 1009 int 1010 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1011 { 1012 /* case A : end of r1 overlaps start of r2 */ 1013 if (r1s < r2s && r1e > r2s) 1014 return (1); 1015 1016 /* case B : r1 entirely inside r2 */ 1017 if (r1s >= r2s && r1e <= r2e) 1018 return (1); 1019 1020 /* case C : r2 entirely inside r1 */ 1021 if (r2s >= r1s && r2e <= r1e) 1022 return (1); 1023 1024 /* case D : end of r2 overlaps start of r1 */ 1025 if (r2s < r1s && r2e > r1s) 1026 return (1); 1027 1028 return (0); 1029 } 1030 1031 /* 1032 * Compare two hibernate_infos to determine if they are the same (eg, 1033 * we should be performing a hibernate resume on this machine. 1034 * Not all fields are checked - just enough to verify that the machine 1035 * has the same memory configuration and kernel as the one that 1036 * wrote the signature previously. 1037 */ 1038 int 1039 hibernate_compare_signature(union hibernate_info *mine, 1040 union hibernate_info *disk) 1041 { 1042 u_int i; 1043 1044 if (mine->nranges != disk->nranges) { 1045 DPRINTF("hibernate memory range count mismatch\n"); 1046 return (1); 1047 } 1048 1049 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1050 DPRINTF("hibernate kernel version mismatch\n"); 1051 return (1); 1052 } 1053 1054 for (i = 0; i < mine->nranges; i++) { 1055 if ((mine->ranges[i].base != disk->ranges[i].base) || 1056 (mine->ranges[i].end != disk->ranges[i].end) ) { 1057 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1058 i, mine->ranges[i].base, mine->ranges[i].end, 1059 disk->ranges[i].base, disk->ranges[i].end); 1060 return (1); 1061 } 1062 } 1063 1064 return (0); 1065 } 1066 1067 /* 1068 * Transfers xfer_size bytes between the hibernate device specified in 1069 * hib_info at offset blkctr and the vaddr specified at dest. 1070 * 1071 * Separate offsets and pages are used to handle misaligned reads (reads 1072 * that span a page boundary). 1073 * 1074 * blkctr specifies a relative offset (relative to the start of swap), 1075 * not an absolute disk offset 1076 * 1077 */ 1078 int 1079 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1080 size_t xfer_size, vaddr_t dest, int iswrite) 1081 { 1082 struct buf *bp; 1083 struct bdevsw *bdsw; 1084 int error; 1085 1086 bp = geteblk(xfer_size); 1087 bdsw = &bdevsw[major(hib->dev)]; 1088 1089 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1090 if (error) { 1091 printf("hibernate_block_io open failed\n"); 1092 return (1); 1093 } 1094 1095 if (iswrite) 1096 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1097 1098 bp->b_bcount = xfer_size; 1099 bp->b_blkno = blkctr; 1100 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1101 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1102 bp->b_dev = hib->dev; 1103 bp->b_cylinder = 0; 1104 (*bdsw->d_strategy)(bp); 1105 1106 error = biowait(bp); 1107 if (error) { 1108 printf("hib block_io biowait error %d blk %lld size %zu\n", 1109 error, (long long)blkctr, xfer_size); 1110 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1111 curproc); 1112 if (error) 1113 printf("hibernate_block_io error close failed\n"); 1114 return (1); 1115 } 1116 1117 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1118 if (error) { 1119 printf("hibernate_block_io close failed\n"); 1120 return (1); 1121 } 1122 1123 if (!iswrite) 1124 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1125 1126 bp->b_flags |= B_INVAL; 1127 brelse(bp); 1128 1129 return (0); 1130 } 1131 1132 /* 1133 * Reads the signature block from swap, checks against the current machine's 1134 * information. If the information matches, perform a resume by reading the 1135 * saved image into the pig area, and unpacking. 1136 */ 1137 void 1138 hibernate_resume(void) 1139 { 1140 union hibernate_info hib; 1141 int s; 1142 1143 /* Get current running machine's hibernate info */ 1144 bzero(&hib, sizeof(hib)); 1145 if (get_hibernate_info(&hib, 0)) { 1146 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1147 return; 1148 } 1149 1150 /* Read hibernate info from disk */ 1151 s = splbio(); 1152 1153 DPRINTF("reading hibernate signature block location: %lld\n", 1154 hib.sig_offset); 1155 1156 if (hibernate_block_io(&hib, 1157 hib.sig_offset, 1158 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1159 DPRINTF("error in hibernate read"); 1160 splx(s); 1161 return; 1162 } 1163 1164 /* Check magic number */ 1165 if (disk_hib.magic != HIBERNATE_MAGIC) { 1166 DPRINTF("wrong magic number in hibernate signature: %x\n", 1167 disk_hib.magic); 1168 splx(s); 1169 return; 1170 } 1171 1172 /* 1173 * We (possibly) found a hibernate signature. Clear signature first, 1174 * to prevent accidental resume or endless resume cycles later. 1175 */ 1176 if (hibernate_clear_signature()) { 1177 DPRINTF("error clearing hibernate signature block\n"); 1178 splx(s); 1179 return; 1180 } 1181 1182 /* 1183 * If on-disk and in-memory hibernate signatures match, 1184 * this means we should do a resume from hibernate. 1185 */ 1186 if (hibernate_compare_signature(&hib, &disk_hib)) { 1187 DPRINTF("mismatched hibernate signature block\n"); 1188 splx(s); 1189 return; 1190 } 1191 1192 #ifdef MULTIPROCESSOR 1193 hibernate_quiesce_cpus(); 1194 #endif /* MULTIPROCESSOR */ 1195 1196 /* Read the image from disk into the image (pig) area */ 1197 if (hibernate_read_image(&disk_hib)) 1198 goto fail; 1199 1200 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1201 goto fail; 1202 1203 (void) splhigh(); 1204 hibernate_disable_intr_machdep(); 1205 cold = 1; 1206 1207 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1208 cold = 0; 1209 hibernate_enable_intr_machdep(); 1210 goto fail; 1211 } 1212 1213 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1214 VM_PROT_ALL); 1215 pmap_activate(curproc); 1216 1217 printf("Unpacking image...\n"); 1218 1219 /* Switch stacks */ 1220 hibernate_switch_stack_machdep(); 1221 1222 /* Unpack and resume */ 1223 hibernate_unpack_image(&disk_hib); 1224 1225 fail: 1226 splx(s); 1227 printf("\nUnable to resume hibernated image\n"); 1228 } 1229 1230 /* 1231 * Unpack image from pig area to original location by looping through the 1232 * list of output chunks in the order they should be restored (fchunks). 1233 * 1234 * Note that due to the stack smash protector and the fact that we have 1235 * switched stacks, it is not permitted to return from this function. 1236 */ 1237 void 1238 hibernate_unpack_image(union hibernate_info *hib) 1239 { 1240 struct hibernate_disk_chunk *chunks; 1241 union hibernate_info local_hib; 1242 paddr_t image_cur = global_pig_start; 1243 short i, *fchunks; 1244 char *pva = (char *)hib->piglet_va; 1245 struct hibernate_zlib_state *hibernate_state; 1246 1247 hibernate_state = 1248 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1249 1250 /* Mask off based on arch-specific piglet page size */ 1251 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1252 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1253 1254 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1255 1256 /* Can't use hiber_info that's passed in after this point */ 1257 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1258 1259 /* 1260 * Point of no return. Once we pass this point, only kernel code can 1261 * be accessed. No global variables or other kernel data structures 1262 * are guaranteed to be coherent after unpack starts. 1263 * 1264 * The image is now in high memory (pig area), we unpack from the pig 1265 * to the correct location in memory. We'll eventually end up copying 1266 * on top of ourself, but we are assured the kernel code here is the 1267 * same between the hibernated and resuming kernel, and we are running 1268 * on our own stack, so the overwrite is ok. 1269 */ 1270 hibernate_activate_resume_pt_machdep(); 1271 1272 for (i = 0; i < local_hib.chunk_ctr; i++) { 1273 /* Reset zlib for inflate */ 1274 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1275 panic("hibernate failed to reset zlib for inflate"); 1276 1277 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1278 image_cur); 1279 1280 image_cur += chunks[fchunks[i]].compressed_size; 1281 1282 } 1283 1284 /* 1285 * Resume the loaded kernel by jumping to the MD resume vector. 1286 * We won't be returning from this call. 1287 */ 1288 hibernate_resume_machdep(); 1289 } 1290 1291 /* 1292 * Bounce a compressed image chunk to the piglet, entering mappings for the 1293 * copied pages as needed 1294 */ 1295 void 1296 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1297 { 1298 size_t ct, ofs; 1299 paddr_t src = img_cur; 1300 vaddr_t dest = piglet; 1301 1302 /* Copy first partial page */ 1303 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1304 ofs = (src & PAGE_MASK); 1305 1306 if (ct < PAGE_SIZE) { 1307 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1308 (src - ofs), 0); 1309 hibernate_flush(); 1310 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1311 src += ct; 1312 dest += ct; 1313 } 1314 wbinvd(); 1315 1316 /* Copy remaining pages */ 1317 while (src < size + img_cur) { 1318 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1319 hibernate_flush(); 1320 ct = PAGE_SIZE; 1321 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1322 hibernate_flush(); 1323 src += ct; 1324 dest += ct; 1325 } 1326 1327 hibernate_flush(); 1328 wbinvd(); 1329 } 1330 1331 /* 1332 * Process a chunk by bouncing it to the piglet, followed by unpacking 1333 */ 1334 void 1335 hibernate_process_chunk(union hibernate_info *hib, 1336 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1337 { 1338 char *pva = (char *)hib->piglet_va; 1339 1340 hibernate_copy_chunk_to_piglet(img_cur, 1341 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1342 1343 hibernate_inflate_region(hib, chunk->base, 1344 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1345 chunk->compressed_size); 1346 } 1347 1348 /* 1349 * Write a compressed version of this machine's memory to disk, at the 1350 * precalculated swap offset: 1351 * 1352 * end of swap - signature block size - chunk table size - memory size 1353 * 1354 * The function begins by looping through each phys mem range, cutting each 1355 * one into MD sized chunks. These chunks are then compressed individually 1356 * and written out to disk, in phys mem order. Some chunks might compress 1357 * more than others, and for this reason, each chunk's size is recorded 1358 * in the chunk table, which is written to disk after the image has 1359 * properly been compressed and written (in hibernate_write_chunktable). 1360 * 1361 * When this function is called, the machine is nearly suspended - most 1362 * devices are quiesced/suspended, interrupts are off, and cold has 1363 * been set. This means that there can be no side effects once the 1364 * write has started, and the write function itself can also have no 1365 * side effects. This also means no printfs are permitted (since printf 1366 * has side effects.) 1367 * 1368 * Return values : 1369 * 1370 * 0 - success 1371 * EIO - I/O error occurred writing the chunks 1372 * EINVAL - Failed to write a complete range 1373 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1374 */ 1375 int 1376 hibernate_write_chunks(union hibernate_info *hib) 1377 { 1378 paddr_t range_base, range_end, inaddr, temp_inaddr; 1379 size_t nblocks, out_remaining, used; 1380 struct hibernate_disk_chunk *chunks; 1381 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1382 daddr_t blkctr = hib->image_offset, offset = 0; 1383 int i, err; 1384 struct hibernate_zlib_state *hibernate_state; 1385 1386 hibernate_state = 1387 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1388 1389 hib->chunk_ctr = 0; 1390 1391 /* 1392 * Allocate VA for the temp and copy page. 1393 * 1394 * These will become part of the suspended kernel and will 1395 * be freed in hibernate_free, upon resume. 1396 */ 1397 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1398 &kp_none, &kd_nowait); 1399 if (!hibernate_temp_page) 1400 return (ENOMEM); 1401 1402 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1403 &kp_none, &kd_nowait); 1404 if (!hibernate_copy_page) { 1405 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1406 return (ENOMEM); 1407 } 1408 1409 pmap_kenter_pa(hibernate_copy_page, 1410 (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1411 1412 pmap_activate(curproc); 1413 1414 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1415 HIBERNATE_CHUNK_SIZE); 1416 1417 /* Calculate the chunk regions */ 1418 for (i = 0; i < hib->nranges; i++) { 1419 range_base = hib->ranges[i].base; 1420 range_end = hib->ranges[i].end; 1421 1422 inaddr = range_base; 1423 1424 while (inaddr < range_end) { 1425 chunks[hib->chunk_ctr].base = inaddr; 1426 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1427 chunks[hib->chunk_ctr].end = inaddr + 1428 HIBERNATE_CHUNK_SIZE; 1429 else 1430 chunks[hib->chunk_ctr].end = range_end; 1431 1432 inaddr += HIBERNATE_CHUNK_SIZE; 1433 hib->chunk_ctr ++; 1434 } 1435 } 1436 1437 /* Compress and write the chunks in the chunktable */ 1438 for (i = 0; i < hib->chunk_ctr; i++) { 1439 range_base = chunks[i].base; 1440 range_end = chunks[i].end; 1441 1442 chunks[i].offset = blkctr; 1443 1444 /* Reset zlib for deflate */ 1445 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1446 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1447 return (ENOMEM); 1448 } 1449 1450 inaddr = range_base; 1451 1452 /* 1453 * For each range, loop through its phys mem region 1454 * and write out the chunks (the last chunk might be 1455 * smaller than the chunk size). 1456 */ 1457 while (inaddr < range_end) { 1458 out_remaining = PAGE_SIZE; 1459 while (out_remaining > 0 && inaddr < range_end) { 1460 1461 /* 1462 * Adjust for regions that are not evenly 1463 * divisible by PAGE_SIZE or overflowed 1464 * pages from the previous iteration. 1465 */ 1466 temp_inaddr = (inaddr & PAGE_MASK) + 1467 hibernate_copy_page; 1468 1469 /* Deflate from temp_inaddr to IO page */ 1470 if (inaddr != range_end) { 1471 pmap_kenter_pa(hibernate_temp_page, 1472 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1473 1474 pmap_activate(curproc); 1475 1476 bcopy((caddr_t)hibernate_temp_page, 1477 (caddr_t)hibernate_copy_page, 1478 PAGE_SIZE); 1479 inaddr += hibernate_deflate(hib, 1480 temp_inaddr, &out_remaining); 1481 } 1482 1483 if (out_remaining == 0) { 1484 /* Filled up the page */ 1485 nblocks = 1486 PAGE_SIZE / DEV_BSIZE; 1487 1488 if ((err = hib->io_func( 1489 hib->dev, 1490 blkctr, (vaddr_t)hibernate_io_page, 1491 PAGE_SIZE, HIB_W, 1492 hib->io_page))) { 1493 DPRINTF("hib write error %d\n", 1494 err); 1495 return (err); 1496 } 1497 1498 blkctr += nblocks; 1499 } 1500 } 1501 } 1502 1503 if (inaddr != range_end) { 1504 DPRINTF("deflate range ended prematurely\n"); 1505 return (EINVAL); 1506 } 1507 1508 /* 1509 * End of range. Round up to next secsize bytes 1510 * after finishing compress 1511 */ 1512 if (out_remaining == 0) 1513 out_remaining = PAGE_SIZE; 1514 1515 /* Finish compress */ 1516 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1517 hibernate_state->hib_stream.avail_in = 0; 1518 hibernate_state->hib_stream.next_out = 1519 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1520 1521 /* We have an extra output page available for finalize */ 1522 hibernate_state->hib_stream.avail_out = 1523 out_remaining + PAGE_SIZE; 1524 1525 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1526 Z_STREAM_END) { 1527 DPRINTF("deflate error in output stream: %d\n", err); 1528 return (err); 1529 } 1530 1531 out_remaining = hibernate_state->hib_stream.avail_out; 1532 1533 used = 2*PAGE_SIZE - out_remaining; 1534 nblocks = used / DEV_BSIZE; 1535 1536 /* Round up to next block if needed */ 1537 if (used % DEV_BSIZE != 0) 1538 nblocks ++; 1539 1540 /* Write final block(s) for this chunk */ 1541 if ((err = hib->io_func(hib->dev, blkctr, 1542 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1543 HIB_W, hib->io_page))) { 1544 DPRINTF("hib final write error %d\n", err); 1545 return (err); 1546 } 1547 1548 blkctr += nblocks; 1549 1550 offset = blkctr; 1551 chunks[i].compressed_size = (offset - chunks[i].offset) * 1552 DEV_BSIZE; 1553 } 1554 1555 return (0); 1556 } 1557 1558 /* 1559 * Reset the zlib stream state and allocate a new hiballoc area for either 1560 * inflate or deflate. This function is called once for each hibernate chunk. 1561 * Calling hiballoc_init multiple times is acceptable since the memory it is 1562 * provided is unmanaged memory (stolen). We use the memory provided to us 1563 * by the piglet allocated via the supplied hib. 1564 */ 1565 int 1566 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1567 { 1568 vaddr_t hibernate_zlib_start; 1569 size_t hibernate_zlib_size; 1570 char *pva = (char *)hib->piglet_va; 1571 struct hibernate_zlib_state *hibernate_state; 1572 1573 hibernate_state = 1574 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1575 1576 if(!deflate) 1577 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1578 1579 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1580 hibernate_zlib_size = 80 * PAGE_SIZE; 1581 1582 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1583 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1584 1585 /* Set up stream structure */ 1586 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1587 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1588 1589 /* Initialize the hiballoc arena for zlib allocs/frees */ 1590 hiballoc_init(&hibernate_state->hiballoc_arena, 1591 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1592 1593 if (deflate) { 1594 return deflateInit(&hibernate_state->hib_stream, 1595 Z_BEST_SPEED); 1596 } else 1597 return inflateInit(&hibernate_state->hib_stream); 1598 } 1599 1600 /* 1601 * Reads the hibernated memory image from disk, whose location and 1602 * size are recorded in hib. Begin by reading the persisted 1603 * chunk table, which records the original chunk placement location 1604 * and compressed size for each. Next, allocate a pig region of 1605 * sufficient size to hold the compressed image. Next, read the 1606 * chunks into the pig area (calling hibernate_read_chunks to do this), 1607 * and finally, if all of the above succeeds, clear the hibernate signature. 1608 * The function will then return to hibernate_resume, which will proceed 1609 * to unpack the pig image to the correct place in memory. 1610 */ 1611 int 1612 hibernate_read_image(union hibernate_info *hib) 1613 { 1614 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1615 paddr_t image_start, image_end, pig_start, pig_end; 1616 struct hibernate_disk_chunk *chunks; 1617 daddr_t blkctr; 1618 vaddr_t chunktable = (vaddr_t)NULL; 1619 paddr_t piglet_chunktable = hib->piglet_pa + 1620 HIBERNATE_CHUNK_SIZE; 1621 int i; 1622 1623 pmap_activate(curproc); 1624 1625 /* Calculate total chunk table size in disk blocks */ 1626 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1627 1628 blkctr = hib->sig_offset - chunktable_size; 1629 1630 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1631 &kp_none, &kd_nowait); 1632 1633 if (!chunktable) 1634 return (1); 1635 1636 /* Read the chunktable from disk into the piglet chunktable */ 1637 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1638 i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) { 1639 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1640 VM_PROT_ALL); 1641 pmap_update(pmap_kernel()); 1642 hibernate_block_io(hib, blkctr, PAGE_SIZE, 1643 chunktable + i, 0); 1644 } 1645 1646 blkctr = hib->image_offset; 1647 compressed_size = 0; 1648 1649 chunks = (struct hibernate_disk_chunk *)chunktable; 1650 1651 for (i = 0; i < hib->chunk_ctr; i++) 1652 compressed_size += chunks[i].compressed_size; 1653 1654 disk_size = compressed_size; 1655 1656 printf("unhibernating @ block %lld length %lu blocks\n", 1657 hib->sig_offset - chunktable_size, 1658 compressed_size); 1659 1660 /* Allocate the pig area */ 1661 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1662 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1663 return (1); 1664 1665 pig_end = pig_start + pig_sz; 1666 1667 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1668 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1669 image_start = image_end - disk_size; 1670 1671 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1672 chunks); 1673 1674 pmap_kremove(chunktable, PAGE_SIZE); 1675 pmap_update(pmap_kernel()); 1676 1677 /* Prepare the resume time pmap/page table */ 1678 hibernate_populate_resume_pt(hib, image_start, image_end); 1679 1680 return (0); 1681 } 1682 1683 /* 1684 * Read the hibernated memory chunks from disk (chunk information at this 1685 * point is stored in the piglet) into the pig area specified by 1686 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1687 * only chunk with overlap possibilities. 1688 */ 1689 int 1690 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1691 paddr_t pig_end, size_t image_compr_size, 1692 struct hibernate_disk_chunk *chunks) 1693 { 1694 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1695 paddr_t copy_start, copy_end, piglet_cur; 1696 paddr_t piglet_base = hib->piglet_pa; 1697 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1698 daddr_t blkctr; 1699 size_t processed, compressed_size, read_size; 1700 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1701 short *ochunks, *pchunks, *fchunks, i, j; 1702 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1703 1704 global_pig_start = pig_start; 1705 1706 pmap_activate(curproc); 1707 1708 /* 1709 * These mappings go into the resuming kernel's page table, and are 1710 * used only during image read. They dissappear from existence 1711 * when the suspended kernel is unpacked on top of us. 1712 */ 1713 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1714 if (!tempva) 1715 return (1); 1716 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1717 &kp_none, &kd_nowait); 1718 if (!hibernate_fchunk_area) 1719 return (1); 1720 1721 /* Final output chunk ordering VA */ 1722 fchunks = (short *)hibernate_fchunk_area; 1723 1724 /* Piglet chunk ordering VA */ 1725 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1726 1727 /* Final chunk ordering VA */ 1728 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1729 1730 /* Map the chunk ordering region */ 1731 for(i=0; i<24 ; i++) { 1732 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1733 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1734 pmap_update(pmap_kernel()); 1735 } 1736 1737 nchunks = hib->chunk_ctr; 1738 1739 /* Initially start all chunks as unplaced */ 1740 for (i = 0; i < nchunks; i++) 1741 chunks[i].flags = 0; 1742 1743 /* 1744 * Search the list for chunks that are outside the pig area. These 1745 * can be placed first in the final output list. 1746 */ 1747 for (i = 0; i < nchunks; i++) { 1748 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1749 ochunks[nochunks] = i; 1750 fchunks[nfchunks] = i; 1751 nochunks++; 1752 nfchunks++; 1753 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1754 } 1755 } 1756 1757 /* 1758 * Walk the ordering, place the chunks in ascending memory order. 1759 * Conflicts might arise, these are handled next. 1760 */ 1761 do { 1762 img_index = -1; 1763 found = 0; 1764 j = -1; 1765 for (i = 0; i < nchunks; i++) 1766 if (chunks[i].base < img_index && 1767 chunks[i].flags == 0 ) { 1768 j = i; 1769 img_index = chunks[i].base; 1770 } 1771 1772 if (j != -1) { 1773 found = 1; 1774 ochunks[nochunks] = j; 1775 nochunks++; 1776 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1777 } 1778 } while (found); 1779 1780 img_index = pig_start; 1781 1782 /* 1783 * Identify chunk output conflicts (chunks whose pig load area 1784 * corresponds to their original memory placement location) 1785 */ 1786 for (i = 0; i < nochunks ; i++) { 1787 overlap = 0; 1788 r1s = img_index; 1789 r1e = img_index + chunks[ochunks[i]].compressed_size; 1790 r2s = chunks[ochunks[i]].base; 1791 r2e = chunks[ochunks[i]].end; 1792 1793 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1794 if (overlap) 1795 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1796 img_index += chunks[ochunks[i]].compressed_size; 1797 } 1798 1799 /* 1800 * Prepare the final output chunk list. Calculate an output 1801 * inflate strategy for overlapping chunks if needed. 1802 */ 1803 img_index = pig_start; 1804 for (i = 0; i < nochunks ; i++) { 1805 /* 1806 * If a conflict is detected, consume enough compressed 1807 * output chunks to fill the piglet 1808 */ 1809 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1810 copy_start = piglet_base; 1811 copy_end = piglet_end; 1812 piglet_cur = piglet_base; 1813 npchunks = 0; 1814 j = i; 1815 1816 while (copy_start < copy_end && j < nochunks) { 1817 piglet_cur += 1818 chunks[ochunks[j]].compressed_size; 1819 pchunks[npchunks] = ochunks[j]; 1820 npchunks++; 1821 copy_start += 1822 chunks[ochunks[j]].compressed_size; 1823 img_index += chunks[ochunks[j]].compressed_size; 1824 i++; 1825 j++; 1826 } 1827 1828 piglet_cur = piglet_base; 1829 for (j = 0; j < npchunks; j++) { 1830 piglet_cur += 1831 chunks[pchunks[j]].compressed_size; 1832 fchunks[nfchunks] = pchunks[j]; 1833 chunks[pchunks[j]].flags |= 1834 HIBERNATE_CHUNK_USED; 1835 nfchunks++; 1836 } 1837 } else { 1838 /* 1839 * No conflict, chunk can be added without copying 1840 */ 1841 if ((chunks[ochunks[i]].flags & 1842 HIBERNATE_CHUNK_USED) == 0) { 1843 fchunks[nfchunks] = ochunks[i]; 1844 chunks[ochunks[i]].flags |= 1845 HIBERNATE_CHUNK_USED; 1846 nfchunks++; 1847 } 1848 img_index += chunks[ochunks[i]].compressed_size; 1849 } 1850 } 1851 1852 img_index = pig_start; 1853 for (i = 0; i < nfchunks; i++) { 1854 piglet_cur = piglet_base; 1855 img_index += chunks[fchunks[i]].compressed_size; 1856 } 1857 1858 img_cur = pig_start; 1859 1860 for (i = 0; i < nfchunks; i++) { 1861 blkctr = chunks[fchunks[i]].offset; 1862 processed = 0; 1863 compressed_size = chunks[fchunks[i]].compressed_size; 1864 1865 while (processed < compressed_size) { 1866 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1867 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1868 VM_PROT_ALL); 1869 pmap_update(pmap_kernel()); 1870 1871 if (compressed_size - processed >= PAGE_SIZE) 1872 read_size = PAGE_SIZE; 1873 else 1874 read_size = compressed_size - processed; 1875 1876 hibernate_block_io(hib, blkctr, read_size, 1877 tempva + (img_cur & PAGE_MASK), 0); 1878 1879 blkctr += (read_size / DEV_BSIZE); 1880 1881 pmap_kremove(tempva, PAGE_SIZE); 1882 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1883 processed += read_size; 1884 img_cur += read_size; 1885 } 1886 } 1887 1888 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1889 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1890 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1891 pmap_update(pmap_kernel()); 1892 1893 return (0); 1894 } 1895 1896 /* 1897 * Hibernating a machine comprises the following operations: 1898 * 1. Calculating this machine's hibernate_info information 1899 * 2. Allocating a piglet and saving the piglet's physaddr 1900 * 3. Calculating the memory chunks 1901 * 4. Writing the compressed chunks to disk 1902 * 5. Writing the chunk table 1903 * 6. Writing the signature block (hibernate_info) 1904 * 1905 * On most architectures, the function calling hibernate_suspend would 1906 * then power off the machine using some MD-specific implementation. 1907 */ 1908 int 1909 hibernate_suspend(void) 1910 { 1911 union hibernate_info hib; 1912 u_long start, end; 1913 1914 /* 1915 * Calculate memory ranges, swap offsets, etc. 1916 * This also allocates a piglet whose physaddr is stored in 1917 * hib->piglet_pa and vaddr stored in hib->piglet_va 1918 */ 1919 if (get_hibernate_info(&hib, 1)) { 1920 DPRINTF("failed to obtain hibernate info\n"); 1921 return (1); 1922 } 1923 1924 /* Find a page-addressed region in swap [start,end] */ 1925 if (uvm_hibswap(hib.dev, &start, &end)) { 1926 printf("cannot find any swap\n"); 1927 return (1); 1928 } 1929 1930 if (end - start < 1000) { 1931 printf("%lu\n is too small", end - start); 1932 return (1); 1933 } 1934 1935 /* Calculate block offsets in swap */ 1936 hib.image_offset = ctod(start); 1937 1938 /* XXX side effect */ 1939 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1940 hib.image_offset, ctod(end) - ctod(start)); 1941 1942 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1943 VM_PROT_ALL); 1944 pmap_activate(curproc); 1945 1946 /* Stash the piglet VA so we can free it in the resuming kernel */ 1947 global_piglet_va = hib.piglet_va; 1948 1949 DPRINTF("hibernate: writing chunks\n"); 1950 if (hibernate_write_chunks(&hib)) { 1951 DPRINTF("hibernate_write_chunks failed\n"); 1952 return (1); 1953 } 1954 1955 DPRINTF("hibernate: writing chunktable\n"); 1956 if (hibernate_write_chunktable(&hib)) { 1957 DPRINTF("hibernate_write_chunktable failed\n"); 1958 return (1); 1959 } 1960 1961 DPRINTF("hibernate: writing signature\n"); 1962 if (hibernate_write_signature(&hib)) { 1963 DPRINTF("hibernate_write_signature failed\n"); 1964 return (1); 1965 } 1966 1967 /* Allow the disk to settle */ 1968 delay(500000); 1969 1970 /* 1971 * Give the device-specific I/O function a notification that we're 1972 * done, and that it can clean up or shutdown as needed. 1973 */ 1974 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, 1975 HIB_DONE, hib.io_page); 1976 1977 return (0); 1978 } 1979 1980 /* 1981 * Free items allocated by hibernate_suspend() 1982 */ 1983 void 1984 hibernate_free(void) 1985 { 1986 if (global_piglet_va) 1987 uvm_pmr_free_piglet(global_piglet_va, 1988 3*HIBERNATE_CHUNK_SIZE); 1989 1990 if (hibernate_copy_page) 1991 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1992 if (hibernate_temp_page) 1993 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1994 1995 pmap_update(pmap_kernel()); 1996 1997 if (hibernate_copy_page) 1998 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1999 &kv_any, &kp_none); 2000 if (hibernate_temp_page) 2001 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2002 &kv_any, &kp_none); 2003 2004 global_piglet_va = 0; 2005 hibernate_copy_page = 0; 2006 hibernate_temp_page = 0; 2007 } 2008