xref: /openbsd-src/sys/kern/subr_hibernate.c (revision b0c80555f551fcf34f655ea27b051ee100c8a70e)
1 /*	$OpenBSD: subr_hibernate.c,v 1.101 2014/09/26 09:25:38 kettenis Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <uvm/uvm.h>
32 #include <uvm/uvm_swap.h>
33 #include <machine/hibernate.h>
34 
35 /*
36  * Hibernate piglet layout information
37  *
38  * The piglet is a scratch area of memory allocated by the suspending kernel.
39  * Its phys and virt addrs are recorded in the signature block. The piglet is
40  * used to guarantee an unused area of memory that can be used by the resuming
41  * kernel for various things. The piglet is excluded during unpack operations.
42  * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
43  *
44  * Offset from piglet_base	Purpose
45  * ----------------------------------------------------------------------------
46  * 0				Private page for suspend I/O write functions
47  * 1*PAGE_SIZE			I/O page used during hibernate suspend
48  * 2*PAGE_SIZE			I/O page used during hibernate suspend
49  * 3*PAGE_SIZE			copy page used during hibernate suspend
50  * 4*PAGE_SIZE			final chunk ordering list (8 pages)
51  * 12*PAGE_SIZE			piglet chunk ordering list (8 pages)
52  * 20*PAGE_SIZE			temp chunk ordering list (8 pages)
53  * 28*PAGE_SIZE			RLE utility page
54  * 29*PAGE_SIZE			start of hiballoc area
55  * 109*PAGE_SIZE		end of hiballoc area (80 pages)
56  * ...				unused
57  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
58  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
59  * 4*HIBERNATE_CHUNK_SIZE	end of piglet
60  */
61 
62 /* Temporary vaddr ranges used during hibernate */
63 vaddr_t hibernate_temp_page;
64 vaddr_t hibernate_copy_page;
65 vaddr_t hibernate_rle_page;
66 
67 /* Hibernate info as read from disk during resume */
68 union hibernate_info disk_hib;
69 paddr_t global_pig_start;
70 vaddr_t global_piglet_va;
71 paddr_t global_piglet_pa;
72 
73 /* #define HIB_DEBUG */
74 #ifdef HIB_DEBUG
75 int	hib_debug = 99;
76 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
77 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
78 #else
79 #define DPRINTF(x...)
80 #define DNPRINTF(n,x...)
81 #endif
82 
83 #ifndef NO_PROPOLICE
84 extern long __guard_local;
85 #endif /* ! NO_PROPOLICE */
86 
87 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
88 int hibernate_calc_rle(paddr_t, paddr_t);
89 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
90 	size_t *);
91 
92 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE)
93 
94 /*
95  * Hib alloc enforced alignment.
96  */
97 #define HIB_ALIGN		8 /* bytes alignment */
98 
99 /*
100  * sizeof builtin operation, but with alignment constraint.
101  */
102 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
103 
104 struct hiballoc_entry {
105 	size_t			hibe_use;
106 	size_t			hibe_space;
107 	RB_ENTRY(hiballoc_entry) hibe_entry;
108 };
109 
110 /*
111  * Sort hibernate memory ranges by ascending PA
112  */
113 void
114 hibernate_sort_ranges(union hibernate_info *hib_info)
115 {
116 	int i, j;
117 	struct hibernate_memory_range *ranges;
118 	paddr_t base, end;
119 
120 	ranges = hib_info->ranges;
121 
122 	for (i = 1; i < hib_info->nranges; i++) {
123 		j = i;
124 		while (j > 0 && ranges[j - 1].base > ranges[j].base) {
125 			base = ranges[j].base;
126 			end = ranges[j].end;
127 			ranges[j].base = ranges[j - 1].base;
128 			ranges[j].end = ranges[j - 1].end;
129 			ranges[j - 1].base = base;
130 			ranges[j - 1].end = end;
131 			j--;
132 		}
133 	}
134 }
135 
136 /*
137  * Compare hiballoc entries based on the address they manage.
138  *
139  * Since the address is fixed, relative to struct hiballoc_entry,
140  * we just compare the hiballoc_entry pointers.
141  */
142 static __inline int
143 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
144 {
145 	return l < r ? -1 : (l > r);
146 }
147 
148 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
149 
150 /*
151  * Given a hiballoc entry, return the address it manages.
152  */
153 static __inline void *
154 hib_entry_to_addr(struct hiballoc_entry *entry)
155 {
156 	caddr_t addr;
157 
158 	addr = (caddr_t)entry;
159 	addr += HIB_SIZEOF(struct hiballoc_entry);
160 	return addr;
161 }
162 
163 /*
164  * Given an address, find the hiballoc that corresponds.
165  */
166 static __inline struct hiballoc_entry*
167 hib_addr_to_entry(void *addr_param)
168 {
169 	caddr_t addr;
170 
171 	addr = (caddr_t)addr_param;
172 	addr -= HIB_SIZEOF(struct hiballoc_entry);
173 	return (struct hiballoc_entry*)addr;
174 }
175 
176 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
177 
178 /*
179  * Allocate memory from the arena.
180  *
181  * Returns NULL if no memory is available.
182  */
183 void *
184 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
185 {
186 	struct hiballoc_entry *entry, *new_entry;
187 	size_t find_sz;
188 
189 	/*
190 	 * Enforce alignment of HIB_ALIGN bytes.
191 	 *
192 	 * Note that, because the entry is put in front of the allocation,
193 	 * 0-byte allocations are guaranteed a unique address.
194 	 */
195 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
196 
197 	/*
198 	 * Find an entry with hibe_space >= find_sz.
199 	 *
200 	 * If the root node is not large enough, we switch to tree traversal.
201 	 * Because all entries are made at the bottom of the free space,
202 	 * traversal from the end has a slightly better chance of yielding
203 	 * a sufficiently large space.
204 	 */
205 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
206 	entry = RB_ROOT(&arena->hib_addrs);
207 	if (entry != NULL && entry->hibe_space < find_sz) {
208 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
209 			if (entry->hibe_space >= find_sz)
210 				break;
211 		}
212 	}
213 
214 	/*
215 	 * Insufficient or too fragmented memory.
216 	 */
217 	if (entry == NULL)
218 		return NULL;
219 
220 	/*
221 	 * Create new entry in allocated space.
222 	 */
223 	new_entry = (struct hiballoc_entry*)(
224 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
225 	new_entry->hibe_space = entry->hibe_space - find_sz;
226 	new_entry->hibe_use = alloc_sz;
227 
228 	/*
229 	 * Insert entry.
230 	 */
231 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
232 		panic("hib_alloc: insert failure");
233 	entry->hibe_space = 0;
234 
235 	/* Return address managed by entry. */
236 	return hib_entry_to_addr(new_entry);
237 }
238 
239 /*
240  * Free a pointer previously allocated from this arena.
241  *
242  * If addr is NULL, this will be silently accepted.
243  */
244 void
245 hib_free(struct hiballoc_arena *arena, void *addr)
246 {
247 	struct hiballoc_entry *entry, *prev;
248 
249 	if (addr == NULL)
250 		return;
251 
252 	/*
253 	 * Derive entry from addr and check it is really in this arena.
254 	 */
255 	entry = hib_addr_to_entry(addr);
256 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
257 		panic("hib_free: freed item %p not in hib arena", addr);
258 
259 	/*
260 	 * Give the space in entry to its predecessor.
261 	 *
262 	 * If entry has no predecessor, change its used space into free space
263 	 * instead.
264 	 */
265 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
266 	if (prev != NULL &&
267 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
268 	    prev->hibe_use + prev->hibe_space) == entry) {
269 		/* Merge entry. */
270 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
271 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
272 		    entry->hibe_use + entry->hibe_space;
273 	} else {
274 		/* Flip used memory to free space. */
275 		entry->hibe_space += entry->hibe_use;
276 		entry->hibe_use = 0;
277 	}
278 }
279 
280 /*
281  * Initialize hiballoc.
282  *
283  * The allocator will manage memmory at ptr, which is len bytes.
284  */
285 int
286 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
287 {
288 	struct hiballoc_entry *entry;
289 	caddr_t ptr;
290 	size_t len;
291 
292 	RB_INIT(&arena->hib_addrs);
293 
294 	/*
295 	 * Hib allocator enforces HIB_ALIGN alignment.
296 	 * Fixup ptr and len.
297 	 */
298 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
299 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
300 	len &= ~((size_t)HIB_ALIGN - 1);
301 
302 	/*
303 	 * Insufficient memory to be able to allocate and also do bookkeeping.
304 	 */
305 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
306 		return ENOMEM;
307 
308 	/*
309 	 * Create entry describing space.
310 	 */
311 	entry = (struct hiballoc_entry*)ptr;
312 	entry->hibe_use = 0;
313 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
314 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
315 
316 	return 0;
317 }
318 
319 /*
320  * Zero all free memory.
321  */
322 void
323 uvm_pmr_zero_everything(void)
324 {
325 	struct uvm_pmemrange	*pmr;
326 	struct vm_page		*pg;
327 	int			 i;
328 
329 	uvm_lock_fpageq();
330 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
331 		/* Zero single pages. */
332 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
333 		    != NULL) {
334 			uvm_pmr_remove(pmr, pg);
335 			uvm_pagezero(pg);
336 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
337 			uvmexp.zeropages++;
338 			uvm_pmr_insert(pmr, pg, 0);
339 		}
340 
341 		/* Zero multi page ranges. */
342 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
343 		    != NULL) {
344 			pg--; /* Size tree always has second page. */
345 			uvm_pmr_remove(pmr, pg);
346 			for (i = 0; i < pg->fpgsz; i++) {
347 				uvm_pagezero(&pg[i]);
348 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
349 				uvmexp.zeropages++;
350 			}
351 			uvm_pmr_insert(pmr, pg, 0);
352 		}
353 	}
354 	uvm_unlock_fpageq();
355 }
356 
357 /*
358  * Mark all memory as dirty.
359  *
360  * Used to inform the system that the clean memory isn't clean for some
361  * reason, for example because we just came back from hibernate.
362  */
363 void
364 uvm_pmr_dirty_everything(void)
365 {
366 	struct uvm_pmemrange	*pmr;
367 	struct vm_page		*pg;
368 	int			 i;
369 
370 	uvm_lock_fpageq();
371 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
372 		/* Dirty single pages. */
373 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
374 		    != NULL) {
375 			uvm_pmr_remove(pmr, pg);
376 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
377 			uvm_pmr_insert(pmr, pg, 0);
378 		}
379 
380 		/* Dirty multi page ranges. */
381 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
382 		    != NULL) {
383 			pg--; /* Size tree always has second page. */
384 			uvm_pmr_remove(pmr, pg);
385 			for (i = 0; i < pg->fpgsz; i++)
386 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
387 			uvm_pmr_insert(pmr, pg, 0);
388 		}
389 	}
390 
391 	uvmexp.zeropages = 0;
392 	uvm_unlock_fpageq();
393 }
394 
395 /*
396  * Allocate an area that can hold sz bytes and doesn't overlap with
397  * the piglet at piglet_pa.
398  */
399 int
400 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
401 {
402 	struct uvm_constraint_range pig_constraint;
403 	struct kmem_pa_mode kp_pig = {
404 		.kp_constraint = &pig_constraint,
405 		.kp_maxseg = 1
406 	};
407 	vaddr_t va;
408 
409 	sz = round_page(sz);
410 
411 	pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE;
412 	pig_constraint.ucr_high = -1;
413 
414 	va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
415 	if (va == 0) {
416 		pig_constraint.ucr_low = 0;
417 		pig_constraint.ucr_high = piglet_pa - 1;
418 
419 		va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
420 		if (va == 0)
421 			return ENOMEM;
422 	}
423 
424 	pmap_extract(pmap_kernel(), va, pa);
425 	return 0;
426 }
427 
428 /*
429  * Allocate a piglet area.
430  *
431  * This needs to be in DMA-safe memory.
432  * Piglets are aligned.
433  *
434  * sz and align in bytes.
435  *
436  * The call will sleep for the pagedaemon to attempt to free memory.
437  * The pagedaemon may decide its not possible to free enough memory, causing
438  * the allocation to fail.
439  */
440 int
441 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
442 {
443 	struct kmem_pa_mode kp_piglet = {
444 		.kp_constraint = &dma_constraint,
445 		.kp_align = align,
446 		.kp_maxseg = 1
447 	};
448 
449 	/* Ensure align is a power of 2 */
450 	KASSERT((align & (align - 1)) == 0);
451 
452 	/*
453 	 * Fixup arguments: align must be at least PAGE_SIZE,
454 	 * sz will be converted to pagecount, since that is what
455 	 * pmemrange uses internally.
456 	 */
457 	if (align < PAGE_SIZE)
458 		align = PAGE_SIZE;
459 	sz = round_page(sz);
460 
461 	*va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
462 	if (*va == 0)
463 		return ENOMEM;
464 
465 	pmap_extract(pmap_kernel(), *va, pa);
466 	return 0;
467 }
468 
469 /*
470  * Free a piglet area.
471  */
472 void
473 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
474 {
475 	/*
476 	 * Fix parameters.
477 	 */
478 	sz = round_page(sz);
479 
480 	/*
481 	 * Free the physical and virtual memory.
482 	 */
483 	km_free((void *)va, sz, &kv_any, &kp_dma_contig);
484 }
485 
486 /*
487  * Physmem RLE compression support.
488  *
489  * Given a physical page address, return the number of pages starting at the
490  * address that are free.  Clamps to the number of pages in
491  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
492  */
493 int
494 uvm_page_rle(paddr_t addr)
495 {
496 	struct vm_page		*pg, *pg_end;
497 	struct vm_physseg	*vmp;
498 	int			 pseg_idx, off_idx;
499 
500 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
501 	if (pseg_idx == -1)
502 		return 0;
503 
504 	vmp = &vm_physmem[pseg_idx];
505 	pg = &vmp->pgs[off_idx];
506 	if (!(pg->pg_flags & PQ_FREE))
507 		return 0;
508 
509 	/*
510 	 * Search for the first non-free page after pg.
511 	 * Note that the page may not be the first page in a free pmemrange,
512 	 * therefore pg->fpgsz cannot be used.
513 	 */
514 	for (pg_end = pg; pg_end <= vmp->lastpg &&
515 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
516 		;
517 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
518 }
519 
520 /*
521  * Fills out the hibernate_info union pointed to by hib
522  * with information about this machine (swap signature block
523  * offsets, number of memory ranges, kernel in use, etc)
524  */
525 int
526 get_hibernate_info(union hibernate_info *hib, int suspend)
527 {
528 	int chunktable_size;
529 	struct disklabel dl;
530 	char err_string[128], *dl_ret;
531 
532 #ifndef NO_PROPOLICE
533 	/* Save propolice guard */
534 	hib->guard = __guard_local;
535 #endif /* ! NO_PROPOLICE */
536 
537 	/* Determine I/O function to use */
538 	hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
539 	if (hib->io_func == NULL)
540 		return (1);
541 
542 	/* Calculate hibernate device */
543 	hib->dev = swdevt[0].sw_dev;
544 
545 	/* Read disklabel (used to calculate signature and image offsets) */
546 	dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
547 
548 	if (dl_ret) {
549 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
550 		return (1);
551 	}
552 
553 	/* Make sure we have a swap partition. */
554 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
555 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
556 		return (1);
557 
558 	/* Make sure the signature can fit in one block */
559 	if (sizeof(union hibernate_info) > DEV_BSIZE)
560 		return (1);
561 
562 	/* Magic number */
563 	hib->magic = HIBERNATE_MAGIC;
564 
565 	/* Calculate signature block location */
566 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
567 	    sizeof(union hibernate_info)/DEV_BSIZE;
568 
569 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
570 
571 	/* Stash kernel version information */
572 	memset(&hib->kernel_version, 0, 128);
573 	bcopy(version, &hib->kernel_version,
574 	    min(strlen(version), sizeof(hib->kernel_version)-1));
575 
576 	if (suspend) {
577 		hib->piglet_va = global_piglet_va;
578 		hib->piglet_pa = global_piglet_pa;
579 		hib->io_page = (void *)hib->piglet_va;
580 
581 		/*
582 		 * Initialization of the hibernate IO function for drivers
583 		 * that need to do prep work (such as allocating memory or
584 		 * setting up data structures that cannot safely be done
585 		 * during suspend without causing side effects). There is
586 		 * a matching HIB_DONE call performed after the write is
587 		 * completed.
588 		 */
589 		if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
590 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
591 		    HIB_INIT, hib->io_page))
592 			goto fail;
593 
594 	} else {
595 		/*
596 		 * Resuming kernels use a regular private page for the driver
597 		 * No need to free this I/O page as it will vanish as part of
598 		 * the resume.
599 		 */
600 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
601 		if (!hib->io_page)
602 			goto fail;
603 	}
604 
605 
606 	if (get_hibernate_info_md(hib))
607 		goto fail;
608 
609 	return (0);
610 
611 fail:
612 	return (1);
613 }
614 
615 /*
616  * Allocate nitems*size bytes from the hiballoc area presently in use
617  */
618 void *
619 hibernate_zlib_alloc(void *unused, int nitems, int size)
620 {
621 	struct hibernate_zlib_state *hibernate_state;
622 
623 	hibernate_state =
624 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
625 
626 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
627 }
628 
629 /*
630  * Free the memory pointed to by addr in the hiballoc area presently in
631  * use
632  */
633 void
634 hibernate_zlib_free(void *unused, void *addr)
635 {
636 	struct hibernate_zlib_state *hibernate_state;
637 
638 	hibernate_state =
639 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
640 
641 	hib_free(&hibernate_state->hiballoc_arena, addr);
642 }
643 
644 /*
645  * Inflate next page of data from the image stream.
646  * The rle parameter is modified on exit to contain the number of pages to
647  * skip in the output stream (or 0 if this page was inflated into).
648  *
649  * Returns 0 if the stream contains additional data, or 1 if the stream is
650  * finished.
651  */
652 int
653 hibernate_inflate_page(int *rle)
654 {
655 	struct hibernate_zlib_state *hibernate_state;
656 	int i;
657 
658 	hibernate_state =
659 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
660 
661 	/* Set up the stream for RLE code inflate */
662 	hibernate_state->hib_stream.next_out = (char *)rle;
663 	hibernate_state->hib_stream.avail_out = sizeof(*rle);
664 
665 	/* Inflate RLE code */
666 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
667 	if (i != Z_OK && i != Z_STREAM_END) {
668 		/*
669 		 * XXX - this will likely reboot/hang most machines
670 		 *       since the console output buffer will be unmapped,
671 		 *       but there's not much else we can do here.
672 		 */
673 		panic("rle inflate stream error");
674 	}
675 
676 	if (hibernate_state->hib_stream.avail_out != 0) {
677 		/*
678 		 * XXX - this will likely reboot/hang most machines
679 		 *       since the console output buffer will be unmapped,
680 		 *       but there's not much else we can do here.
681 		 */
682 		panic("rle short inflate error");
683 	}
684 
685 	if (*rle < 0 || *rle > 1024) {
686 		/*
687 		 * XXX - this will likely reboot/hang most machines
688 		 *       since the console output buffer will be unmapped,
689 		 *       but there's not much else we can do here.
690 		 */
691 		panic("invalid rle count");
692 	}
693 
694 	if (i == Z_STREAM_END)
695 		return (1);
696 
697 	if (*rle != 0)
698 		return (0);
699 
700 	/* Set up the stream for page inflate */
701 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
702 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
703 
704 	/* Process next block of data */
705 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
706 	if (i != Z_OK && i != Z_STREAM_END) {
707 		/*
708 		 * XXX - this will likely reboot/hang most machines
709 		 *       since the console output buffer will be unmapped,
710 		 *       but there's not much else we can do here.
711 		 */
712 		panic("inflate error");
713 	}
714 
715 	/* We should always have extracted a full page ... */
716 	if (hibernate_state->hib_stream.avail_out != 0) {
717 		/*
718 		 * XXX - this will likely reboot/hang most machines
719 		 *       since the console output buffer will be unmapped,
720 		 *       but there's not much else we can do here.
721 		 */
722 		panic("incomplete page");
723 	}
724 
725 	return (i == Z_STREAM_END);
726 }
727 
728 /*
729  * Inflate size bytes from src into dest, skipping any pages in
730  * [src..dest] that are special (see hibernate_inflate_skip)
731  *
732  * This function executes while using the resume-time stack
733  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
734  * will likely hang or reset the machine since the console output buffer
735  * will be unmapped.
736  */
737 void
738 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
739     paddr_t src, size_t size)
740 {
741 	int end_stream = 0, rle;
742 	struct hibernate_zlib_state *hibernate_state;
743 
744 	hibernate_state =
745 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
746 
747 	hibernate_state->hib_stream.next_in = (char *)src;
748 	hibernate_state->hib_stream.avail_in = size;
749 
750 	do {
751 		/*
752 		 * Is this a special page? If yes, redirect the
753 		 * inflate output to a scratch page (eg, discard it)
754 		 */
755 		if (hibernate_inflate_skip(hib, dest)) {
756 			hibernate_enter_resume_mapping(
757 			    HIBERNATE_INFLATE_PAGE,
758 			    HIBERNATE_INFLATE_PAGE, 0);
759 		} else {
760 			hibernate_enter_resume_mapping(
761 			    HIBERNATE_INFLATE_PAGE, dest, 0);
762 		}
763 
764 		hibernate_flush();
765 		end_stream = hibernate_inflate_page(&rle);
766 
767 		if (rle == 0)
768 			dest += PAGE_SIZE;
769 		else
770 			dest += (rle * PAGE_SIZE);
771 	} while (!end_stream);
772 }
773 
774 /*
775  * deflate from src into the I/O page, up to 'remaining' bytes
776  *
777  * Returns number of input bytes consumed, and may reset
778  * the 'remaining' parameter if not all the output space was consumed
779  * (this information is needed to know how much to write to disk
780  */
781 size_t
782 hibernate_deflate(union hibernate_info *hib, paddr_t src,
783     size_t *remaining)
784 {
785 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
786 	struct hibernate_zlib_state *hibernate_state;
787 
788 	hibernate_state =
789 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
790 
791 	/* Set up the stream for deflate */
792 	hibernate_state->hib_stream.next_in = (caddr_t)src;
793 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
794 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
795 	    (PAGE_SIZE - *remaining);
796 	hibernate_state->hib_stream.avail_out = *remaining;
797 
798 	/* Process next block of data */
799 	if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK)
800 		panic("hibernate zlib deflate error");
801 
802 	/* Update pointers and return number of bytes consumed */
803 	*remaining = hibernate_state->hib_stream.avail_out;
804 	return (PAGE_SIZE - (src & PAGE_MASK)) -
805 	    hibernate_state->hib_stream.avail_in;
806 }
807 
808 /*
809  * Write the hibernation information specified in hiber_info
810  * to the location in swap previously calculated (last block of
811  * swap), called the "signature block".
812  */
813 int
814 hibernate_write_signature(union hibernate_info *hib)
815 {
816 	/* Write hibernate info to disk */
817 	return (hib->io_func(hib->dev, hib->sig_offset,
818 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
819 	    hib->io_page));
820 }
821 
822 /*
823  * Write the memory chunk table to the area in swap immediately
824  * preceding the signature block. The chunk table is stored
825  * in the piglet when this function is called.  Returns errno.
826  */
827 int
828 hibernate_write_chunktable(union hibernate_info *hib)
829 {
830 	struct hibernate_disk_chunk *chunks;
831 	vaddr_t hibernate_chunk_table_start;
832 	size_t hibernate_chunk_table_size;
833 	int i, err;
834 
835 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
836 
837 	hibernate_chunk_table_start = hib->piglet_va +
838 	    HIBERNATE_CHUNK_SIZE;
839 
840 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
841 	    HIBERNATE_CHUNK_SIZE);
842 
843 	/* Write chunk table */
844 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
845 		if ((err = hib->io_func(hib->dev,
846 		    hib->chunktable_offset + (i/DEV_BSIZE),
847 		    (vaddr_t)(hibernate_chunk_table_start + i),
848 		    MAXPHYS, HIB_W, hib->io_page))) {
849 			DPRINTF("chunktable write error: %d\n", err);
850 			return (err);
851 		}
852 	}
853 
854 	return (0);
855 }
856 
857 /*
858  * Write an empty hiber_info to the swap signature block, which is
859  * guaranteed to not match any valid hib.
860  */
861 int
862 hibernate_clear_signature(void)
863 {
864 	union hibernate_info blank_hiber_info;
865 	union hibernate_info hib;
866 
867 	/* Zero out a blank hiber_info */
868 	memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
869 
870 	/* Get the signature block location */
871 	if (get_hibernate_info(&hib, 0))
872 		return (1);
873 
874 	/* Write (zeroed) hibernate info to disk */
875 	DPRINTF("clearing hibernate signature block location: %lld\n",
876 		hib.sig_offset);
877 	if (hibernate_block_io(&hib,
878 	    hib.sig_offset,
879 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
880 		printf("Warning: could not clear hibernate signature\n");
881 
882 	return (0);
883 }
884 
885 /*
886  * Check chunk range overlap when calculating whether or not to copy a
887  * compressed chunk to the piglet area before decompressing.
888  *
889  * returns zero if the ranges do not overlap, non-zero otherwise.
890  */
891 int
892 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
893 {
894 	/* case A : end of r1 overlaps start of r2 */
895 	if (r1s < r2s && r1e > r2s)
896 		return (1);
897 
898 	/* case B : r1 entirely inside r2 */
899 	if (r1s >= r2s && r1e <= r2e)
900 		return (1);
901 
902 	/* case C : r2 entirely inside r1 */
903 	if (r2s >= r1s && r2e <= r1e)
904 		return (1);
905 
906 	/* case D : end of r2 overlaps start of r1 */
907 	if (r2s < r1s && r2e > r1s)
908 		return (1);
909 
910 	return (0);
911 }
912 
913 /*
914  * Compare two hibernate_infos to determine if they are the same (eg,
915  * we should be performing a hibernate resume on this machine.
916  * Not all fields are checked - just enough to verify that the machine
917  * has the same memory configuration and kernel as the one that
918  * wrote the signature previously.
919  */
920 int
921 hibernate_compare_signature(union hibernate_info *mine,
922     union hibernate_info *disk)
923 {
924 	u_int i;
925 
926 	if (mine->nranges != disk->nranges) {
927 		DPRINTF("hibernate memory range count mismatch\n");
928 		return (1);
929 	}
930 
931 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
932 		DPRINTF("hibernate kernel version mismatch\n");
933 		return (1);
934 	}
935 
936 	for (i = 0; i < mine->nranges; i++) {
937 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
938 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
939 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
940 				i,
941 				(void *)mine->ranges[i].base,
942 				(void *)mine->ranges[i].end,
943 				(void *)disk->ranges[i].base,
944 				(void *)disk->ranges[i].end);
945 			return (1);
946 		}
947 	}
948 
949 	return (0);
950 }
951 
952 /*
953  * Transfers xfer_size bytes between the hibernate device specified in
954  * hib_info at offset blkctr and the vaddr specified at dest.
955  *
956  * Separate offsets and pages are used to handle misaligned reads (reads
957  * that span a page boundary).
958  *
959  * blkctr specifies a relative offset (relative to the start of swap),
960  * not an absolute disk offset
961  *
962  */
963 int
964 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
965     size_t xfer_size, vaddr_t dest, int iswrite)
966 {
967 	struct buf *bp;
968 	struct bdevsw *bdsw;
969 	int error;
970 
971 	bp = geteblk(xfer_size);
972 	bdsw = &bdevsw[major(hib->dev)];
973 
974 	error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
975 	if (error) {
976 		printf("hibernate_block_io open failed\n");
977 		return (1);
978 	}
979 
980 	if (iswrite)
981 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
982 
983 	bp->b_bcount = xfer_size;
984 	bp->b_blkno = blkctr;
985 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
986 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
987 	bp->b_dev = hib->dev;
988 	(*bdsw->d_strategy)(bp);
989 
990 	error = biowait(bp);
991 	if (error) {
992 		printf("hib block_io biowait error %d blk %lld size %zu\n",
993 			error, (long long)blkctr, xfer_size);
994 		error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
995 		    curproc);
996 		if (error)
997 			printf("hibernate_block_io error close failed\n");
998 		return (1);
999 	}
1000 
1001 	error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
1002 	if (error) {
1003 		printf("hibernate_block_io close failed\n");
1004 		return (1);
1005 	}
1006 
1007 	if (!iswrite)
1008 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1009 
1010 	bp->b_flags |= B_INVAL;
1011 	brelse(bp);
1012 
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Reads the signature block from swap, checks against the current machine's
1018  * information. If the information matches, perform a resume by reading the
1019  * saved image into the pig area, and unpacking.
1020  */
1021 void
1022 hibernate_resume(void)
1023 {
1024 	union hibernate_info hib;
1025 	int s;
1026 
1027 	/* Get current running machine's hibernate info */
1028 	memset(&hib, 0, sizeof(hib));
1029 	if (get_hibernate_info(&hib, 0)) {
1030 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1031 		return;
1032 	}
1033 
1034 	/* Read hibernate info from disk */
1035 	s = splbio();
1036 
1037 	DPRINTF("reading hibernate signature block location: %lld\n",
1038 		hib.sig_offset);
1039 
1040 	if (hibernate_block_io(&hib,
1041 	    hib.sig_offset,
1042 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1043 		DPRINTF("error in hibernate read");
1044 		splx(s);
1045 		return;
1046 	}
1047 
1048 	/* Check magic number */
1049 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1050 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1051 			disk_hib.magic);
1052 		splx(s);
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * We (possibly) found a hibernate signature. Clear signature first,
1058 	 * to prevent accidental resume or endless resume cycles later.
1059 	 */
1060 	if (hibernate_clear_signature()) {
1061 		DPRINTF("error clearing hibernate signature block\n");
1062 		splx(s);
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * If on-disk and in-memory hibernate signatures match,
1068 	 * this means we should do a resume from hibernate.
1069 	 */
1070 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1071 		DPRINTF("mismatched hibernate signature block\n");
1072 		splx(s);
1073 		return;
1074 	}
1075 
1076 #ifdef MULTIPROCESSOR
1077 	/* XXX - if we fail later, we may need to rehatch APs on some archs */
1078 	DPRINTF("hibernate: quiescing APs\n");
1079 	hibernate_quiesce_cpus();
1080 #endif /* MULTIPROCESSOR */
1081 
1082 	/* Read the image from disk into the image (pig) area */
1083 	if (hibernate_read_image(&disk_hib))
1084 		goto fail;
1085 
1086 	DPRINTF("hibernate: quiescing devices\n");
1087 	if (config_suspend_all(DVACT_QUIESCE) != 0)
1088 		goto fail;
1089 
1090 	(void) splhigh();
1091 	hibernate_disable_intr_machdep();
1092 	cold = 1;
1093 
1094 	DPRINTF("hibernate: suspending devices\n");
1095 	if (config_suspend_all(DVACT_SUSPEND) != 0) {
1096 		cold = 0;
1097 		hibernate_enable_intr_machdep();
1098 		goto fail;
1099 	}
1100 
1101 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1102 	    VM_PROT_ALL);
1103 	pmap_activate(curproc);
1104 
1105 	printf("Unpacking image...\n");
1106 
1107 	/* Switch stacks */
1108 	DPRINTF("hibernate: switching stacks\n");
1109 	hibernate_switch_stack_machdep();
1110 
1111 #ifndef NO_PROPOLICE
1112 	/* Start using suspended kernel's propolice guard */
1113 	__guard_local = disk_hib.guard;
1114 #endif /* ! NO_PROPOLICE */
1115 
1116 	/* Unpack and resume */
1117 	hibernate_unpack_image(&disk_hib);
1118 
1119 fail:
1120 	splx(s);
1121 	printf("\nUnable to resume hibernated image\n");
1122 }
1123 
1124 /*
1125  * Unpack image from pig area to original location by looping through the
1126  * list of output chunks in the order they should be restored (fchunks).
1127  *
1128  * Note that due to the stack smash protector and the fact that we have
1129  * switched stacks, it is not permitted to return from this function.
1130  */
1131 void
1132 hibernate_unpack_image(union hibernate_info *hib)
1133 {
1134 	struct hibernate_disk_chunk *chunks;
1135 	union hibernate_info local_hib;
1136 	paddr_t image_cur = global_pig_start;
1137 	short i, *fchunks;
1138 	char *pva;
1139 	struct hibernate_zlib_state *hibernate_state;
1140 
1141 	hibernate_state =
1142 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1143 
1144 	/* Piglet will be identity mapped (VA == PA) */
1145 	pva = (char *)hib->piglet_pa;
1146 
1147 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1148 
1149 	chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE);
1150 
1151 	/* Can't use hiber_info that's passed in after this point */
1152 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1153 
1154 	/* VA == PA */
1155 	local_hib.piglet_va = local_hib.piglet_pa;
1156 
1157 	/*
1158 	 * Point of no return. Once we pass this point, only kernel code can
1159 	 * be accessed. No global variables or other kernel data structures
1160 	 * are guaranteed to be coherent after unpack starts.
1161 	 *
1162 	 * The image is now in high memory (pig area), we unpack from the pig
1163 	 * to the correct location in memory. We'll eventually end up copying
1164 	 * on top of ourself, but we are assured the kernel code here is the
1165 	 * same between the hibernated and resuming kernel, and we are running
1166 	 * on our own stack, so the overwrite is ok.
1167 	 */
1168 	DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
1169 	hibernate_activate_resume_pt_machdep();
1170 
1171 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1172 		/* Reset zlib for inflate */
1173 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1174 			panic("hibernate failed to reset zlib for inflate");
1175 
1176 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1177 		    image_cur);
1178 
1179 		image_cur += chunks[fchunks[i]].compressed_size;
1180 
1181 	}
1182 
1183 	/*
1184 	 * Resume the loaded kernel by jumping to the MD resume vector.
1185 	 * We won't be returning from this call.
1186 	 */
1187 	hibernate_resume_machdep();
1188 }
1189 
1190 /*
1191  * Bounce a compressed image chunk to the piglet, entering mappings for the
1192  * copied pages as needed
1193  */
1194 void
1195 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1196 {
1197 	size_t ct, ofs;
1198 	paddr_t src = img_cur;
1199 	vaddr_t dest = piglet;
1200 
1201 	/* Copy first partial page */
1202 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1203 	ofs = (src & PAGE_MASK);
1204 
1205 	if (ct < PAGE_SIZE) {
1206 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1207 			(src - ofs), 0);
1208 		hibernate_flush();
1209 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1210 		src += ct;
1211 		dest += ct;
1212 	}
1213 
1214 	/* Copy remaining pages */
1215 	while (src < size + img_cur) {
1216 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1217 		hibernate_flush();
1218 		ct = PAGE_SIZE;
1219 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1220 		hibernate_flush();
1221 		src += ct;
1222 		dest += ct;
1223 	}
1224 }
1225 
1226 /*
1227  * Process a chunk by bouncing it to the piglet, followed by unpacking
1228  */
1229 void
1230 hibernate_process_chunk(union hibernate_info *hib,
1231     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1232 {
1233 	char *pva = (char *)hib->piglet_va;
1234 
1235 	hibernate_copy_chunk_to_piglet(img_cur,
1236 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1237 	hibernate_inflate_region(hib, chunk->base,
1238 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1239 	    chunk->compressed_size);
1240 }
1241 
1242 /*
1243  * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
1244  * inaddr and range_end.
1245  */
1246 int
1247 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
1248 {
1249 	int rle;
1250 
1251 	rle = uvm_page_rle(inaddr);
1252 	KASSERT(rle >= 0 && rle <= MAX_RLE);
1253 
1254 	/* Clamp RLE to range end */
1255 	if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end)
1256 		rle = (range_end - inaddr) / PAGE_SIZE;
1257 
1258 	return (rle);
1259 }
1260 
1261 /*
1262  * Write the RLE byte for page at 'inaddr' to the output stream.
1263  * Returns the number of pages to be skipped at 'inaddr'.
1264  */
1265 int
1266 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
1267 	paddr_t range_end, daddr_t *blkctr,
1268 	size_t *out_remaining)
1269 {
1270 	int rle, err, *rleloc;
1271 	struct hibernate_zlib_state *hibernate_state;
1272 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1273 
1274 	hibernate_state =
1275 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1276 
1277 	rle = hibernate_calc_rle(inaddr, range_end);
1278 
1279 	rleloc = (int *)hibernate_rle_page + MAX_RLE - 1;
1280 	*rleloc = rle;
1281 
1282 	/* Deflate the RLE byte into the stream */
1283 	hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
1284 
1285 	/* Did we fill the output page? If so, flush to disk */
1286 	if (*out_remaining == 0) {
1287 		if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
1288 			(vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W,
1289 			hib->io_page))) {
1290 				DPRINTF("hib write error %d\n", err);
1291 				return (err);
1292 		}
1293 
1294 		*blkctr += PAGE_SIZE / DEV_BSIZE;
1295 		*out_remaining = PAGE_SIZE;
1296 
1297 		/* If we didn't deflate the entire RLE byte, finish it now */
1298 		if (hibernate_state->hib_stream.avail_in != 0)
1299 			hibernate_deflate(hib,
1300 				(vaddr_t)hibernate_state->hib_stream.next_in,
1301 				out_remaining);
1302 	}
1303 
1304 	return (rle);
1305 }
1306 
1307 /*
1308  * Write a compressed version of this machine's memory to disk, at the
1309  * precalculated swap offset:
1310  *
1311  * end of swap - signature block size - chunk table size - memory size
1312  *
1313  * The function begins by looping through each phys mem range, cutting each
1314  * one into MD sized chunks. These chunks are then compressed individually
1315  * and written out to disk, in phys mem order. Some chunks might compress
1316  * more than others, and for this reason, each chunk's size is recorded
1317  * in the chunk table, which is written to disk after the image has
1318  * properly been compressed and written (in hibernate_write_chunktable).
1319  *
1320  * When this function is called, the machine is nearly suspended - most
1321  * devices are quiesced/suspended, interrupts are off, and cold has
1322  * been set. This means that there can be no side effects once the
1323  * write has started, and the write function itself can also have no
1324  * side effects. This also means no printfs are permitted (since printf
1325  * has side effects.)
1326  *
1327  * Return values :
1328  *
1329  * 0      - success
1330  * EIO    - I/O error occurred writing the chunks
1331  * EINVAL - Failed to write a complete range
1332  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1333  */
1334 int
1335 hibernate_write_chunks(union hibernate_info *hib)
1336 {
1337 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1338 	size_t nblocks, out_remaining, used;
1339 	struct hibernate_disk_chunk *chunks;
1340 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1341 	daddr_t blkctr = 0;
1342 	int i, rle, err;
1343 	struct hibernate_zlib_state *hibernate_state;
1344 
1345 	hibernate_state =
1346 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1347 
1348 	hib->chunk_ctr = 0;
1349 
1350 	/*
1351 	 * Map the utility VAs to the piglet. See the piglet map at the
1352 	 * top of this file for piglet layout information.
1353 	 */
1354 	pmap_kenter_pa(hibernate_copy_page,
1355 		(hib->piglet_pa + 3 * PAGE_SIZE), VM_PROT_ALL);
1356 	pmap_kenter_pa(hibernate_rle_page,
1357 		(hib->piglet_pa + 28 * PAGE_SIZE), VM_PROT_ALL);
1358 
1359 	pmap_activate(curproc);
1360 
1361 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1362 	    HIBERNATE_CHUNK_SIZE);
1363 
1364 	/* Calculate the chunk regions */
1365 	for (i = 0; i < hib->nranges; i++) {
1366 		range_base = hib->ranges[i].base;
1367 		range_end = hib->ranges[i].end;
1368 
1369 		inaddr = range_base;
1370 
1371 		while (inaddr < range_end) {
1372 			chunks[hib->chunk_ctr].base = inaddr;
1373 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1374 				chunks[hib->chunk_ctr].end = inaddr +
1375 				    HIBERNATE_CHUNK_SIZE;
1376 			else
1377 				chunks[hib->chunk_ctr].end = range_end;
1378 
1379 			inaddr += HIBERNATE_CHUNK_SIZE;
1380 			hib->chunk_ctr ++;
1381 		}
1382 	}
1383 
1384 	uvm_pmr_dirty_everything();
1385 	uvm_pmr_zero_everything();
1386 
1387 	/* Compress and write the chunks in the chunktable */
1388 	for (i = 0; i < hib->chunk_ctr; i++) {
1389 		range_base = chunks[i].base;
1390 		range_end = chunks[i].end;
1391 
1392 		chunks[i].offset = blkctr + hib->image_offset;
1393 
1394 		/* Reset zlib for deflate */
1395 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1396 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1397 			return (ENOMEM);
1398 		}
1399 
1400 		inaddr = range_base;
1401 
1402 		/*
1403 		 * For each range, loop through its phys mem region
1404 		 * and write out the chunks (the last chunk might be
1405 		 * smaller than the chunk size).
1406 		 */
1407 		while (inaddr < range_end) {
1408 			out_remaining = PAGE_SIZE;
1409 			while (out_remaining > 0 && inaddr < range_end) {
1410 				/*
1411 				 * Adjust for regions that are not evenly
1412 				 * divisible by PAGE_SIZE or overflowed
1413 				 * pages from the previous iteration.
1414 				 */
1415 				temp_inaddr = (inaddr & PAGE_MASK) +
1416 				    hibernate_copy_page;
1417 
1418 				/* Deflate from temp_inaddr to IO page */
1419 				if (inaddr != range_end) {
1420 					if (inaddr % PAGE_SIZE == 0) {
1421 						rle = hibernate_write_rle(hib,
1422 							inaddr,
1423 							range_end,
1424 							&blkctr,
1425 							&out_remaining);
1426 					}
1427 
1428 					if (rle == 0) {
1429 						pmap_kenter_pa(hibernate_temp_page,
1430 							inaddr & PMAP_PA_MASK,
1431 							VM_PROT_ALL);
1432 
1433 						pmap_activate(curproc);
1434 
1435 						bcopy((caddr_t)hibernate_temp_page,
1436 							(caddr_t)hibernate_copy_page,
1437 							PAGE_SIZE);
1438 						inaddr += hibernate_deflate(hib,
1439 							temp_inaddr,
1440 							&out_remaining);
1441 					} else {
1442 						inaddr += rle * PAGE_SIZE;
1443 						if (inaddr > range_end)
1444 							inaddr = range_end;
1445 					}
1446 
1447 				}
1448 
1449 				if (out_remaining == 0) {
1450 					/* Filled up the page */
1451 					nblocks = PAGE_SIZE / DEV_BSIZE;
1452 
1453 					if ((err = hib->io_func(hib->dev,
1454 					    blkctr + hib->image_offset,
1455 					    (vaddr_t)hibernate_io_page,
1456 					    PAGE_SIZE, HIB_W, hib->io_page))) {
1457 						DPRINTF("hib write error %d\n",
1458 						    err);
1459 						return (err);
1460 					}
1461 
1462 					blkctr += nblocks;
1463 				}
1464 			}
1465 		}
1466 
1467 		if (inaddr != range_end) {
1468 			DPRINTF("deflate range ended prematurely\n");
1469 			return (EINVAL);
1470 		}
1471 
1472 		/*
1473 		 * End of range. Round up to next secsize bytes
1474 		 * after finishing compress
1475 		 */
1476 		if (out_remaining == 0)
1477 			out_remaining = PAGE_SIZE;
1478 
1479 		/* Finish compress */
1480 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1481 		hibernate_state->hib_stream.avail_in = 0;
1482 		hibernate_state->hib_stream.next_out =
1483 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1484 
1485 		/* We have an extra output page available for finalize */
1486 		hibernate_state->hib_stream.avail_out =
1487 			out_remaining + PAGE_SIZE;
1488 
1489 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1490 		    Z_STREAM_END) {
1491 			DPRINTF("deflate error in output stream: %d\n", err);
1492 			return (err);
1493 		}
1494 
1495 		out_remaining = hibernate_state->hib_stream.avail_out;
1496 
1497 		used = 2 * PAGE_SIZE - out_remaining;
1498 		nblocks = used / DEV_BSIZE;
1499 
1500 		/* Round up to next block if needed */
1501 		if (used % DEV_BSIZE != 0)
1502 			nblocks ++;
1503 
1504 		/* Write final block(s) for this chunk */
1505 		if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
1506 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1507 		    HIB_W, hib->io_page))) {
1508 			DPRINTF("hib final write error %d\n", err);
1509 			return (err);
1510 		}
1511 
1512 		blkctr += nblocks;
1513 
1514 		chunks[i].compressed_size = (blkctr + hib->image_offset -
1515 		    chunks[i].offset) * DEV_BSIZE;
1516 	}
1517 
1518 	hib->chunktable_offset = hib->image_offset + blkctr;
1519 	return (0);
1520 }
1521 
1522 /*
1523  * Reset the zlib stream state and allocate a new hiballoc area for either
1524  * inflate or deflate. This function is called once for each hibernate chunk.
1525  * Calling hiballoc_init multiple times is acceptable since the memory it is
1526  * provided is unmanaged memory (stolen). We use the memory provided to us
1527  * by the piglet allocated via the supplied hib.
1528  */
1529 int
1530 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1531 {
1532 	vaddr_t hibernate_zlib_start;
1533 	size_t hibernate_zlib_size;
1534 	char *pva = (char *)hib->piglet_va;
1535 	struct hibernate_zlib_state *hibernate_state;
1536 
1537 	hibernate_state =
1538 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1539 
1540 	if (!deflate)
1541 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1542 
1543 	/*
1544 	 * See piglet layout information at the start of this file for
1545 	 * information on the zlib page assignments.
1546 	 */
1547 	hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE));
1548 	hibernate_zlib_size = 80 * PAGE_SIZE;
1549 
1550 	memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
1551 	memset(hibernate_state, 0, PAGE_SIZE);
1552 
1553 	/* Set up stream structure */
1554 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1555 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1556 
1557 	/* Initialize the hiballoc arena for zlib allocs/frees */
1558 	hiballoc_init(&hibernate_state->hiballoc_arena,
1559 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1560 
1561 	if (deflate) {
1562 		return deflateInit(&hibernate_state->hib_stream,
1563 		    Z_BEST_SPEED);
1564 	} else
1565 		return inflateInit(&hibernate_state->hib_stream);
1566 }
1567 
1568 /*
1569  * Reads the hibernated memory image from disk, whose location and
1570  * size are recorded in hib. Begin by reading the persisted
1571  * chunk table, which records the original chunk placement location
1572  * and compressed size for each. Next, allocate a pig region of
1573  * sufficient size to hold the compressed image. Next, read the
1574  * chunks into the pig area (calling hibernate_read_chunks to do this),
1575  * and finally, if all of the above succeeds, clear the hibernate signature.
1576  * The function will then return to hibernate_resume, which will proceed
1577  * to unpack the pig image to the correct place in memory.
1578  */
1579 int
1580 hibernate_read_image(union hibernate_info *hib)
1581 {
1582 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1583 	paddr_t image_start, image_end, pig_start, pig_end;
1584 	struct hibernate_disk_chunk *chunks;
1585 	daddr_t blkctr;
1586 	vaddr_t chunktable = (vaddr_t)NULL;
1587 	paddr_t piglet_chunktable = hib->piglet_pa +
1588 	    HIBERNATE_CHUNK_SIZE;
1589 	int i, status;
1590 
1591 	status = 0;
1592 	pmap_activate(curproc);
1593 
1594 	/* Calculate total chunk table size in disk blocks */
1595 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1596 
1597 	blkctr = hib->chunktable_offset;
1598 
1599 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1600 	    &kp_none, &kd_nowait);
1601 
1602 	if (!chunktable)
1603 		return (1);
1604 
1605 	/* Map chunktable pages */
1606 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE)
1607 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1608 		    VM_PROT_ALL);
1609 	pmap_update(pmap_kernel());
1610 
1611 	/* Read the chunktable from disk into the piglet chunktable */
1612 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1613 	    i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE)
1614 		hibernate_block_io(hib, blkctr, MAXPHYS,
1615 		    chunktable + i, 0);
1616 
1617 	blkctr = hib->image_offset;
1618 	compressed_size = 0;
1619 
1620 	chunks = (struct hibernate_disk_chunk *)chunktable;
1621 
1622 	for (i = 0; i < hib->chunk_ctr; i++)
1623 		compressed_size += chunks[i].compressed_size;
1624 
1625 	disk_size = compressed_size;
1626 
1627 	printf("unhibernating @ block %lld length %lu bytes\n",
1628 	    hib->sig_offset - chunktable_size,
1629 	    compressed_size);
1630 
1631 	/* Allocate the pig area */
1632 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1633 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) {
1634 		status = 1;
1635 		goto unmap;
1636 	}
1637 
1638 	pig_end = pig_start + pig_sz;
1639 
1640 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1641 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1642 	image_start = image_end - disk_size;
1643 
1644 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1645 	    chunks);
1646 
1647 	/* Prepare the resume time pmap/page table */
1648 	hibernate_populate_resume_pt(hib, image_start, image_end);
1649 
1650 unmap:
1651 	/* Unmap chunktable pages */
1652 	pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE);
1653 	pmap_update(pmap_kernel());
1654 
1655 	return (status);
1656 }
1657 
1658 /*
1659  * Read the hibernated memory chunks from disk (chunk information at this
1660  * point is stored in the piglet) into the pig area specified by
1661  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1662  * only chunk with overlap possibilities.
1663  */
1664 int
1665 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1666     paddr_t pig_end, size_t image_compr_size,
1667     struct hibernate_disk_chunk *chunks)
1668 {
1669 	paddr_t img_cur, piglet_base;
1670 	daddr_t blkctr;
1671 	size_t processed, compressed_size, read_size;
1672 	int nchunks, nfchunks, num_io_pages;
1673 	vaddr_t tempva, hibernate_fchunk_area;
1674 	short *fchunks, i, j;
1675 
1676 	tempva = (vaddr_t)NULL;
1677 	hibernate_fchunk_area = (vaddr_t)NULL;
1678 	nfchunks = 0;
1679 	piglet_base = hib->piglet_pa;
1680 	global_pig_start = pig_start;
1681 
1682 	pmap_activate(curproc);
1683 
1684 	/*
1685 	 * These mappings go into the resuming kernel's page table, and are
1686 	 * used only during image read. They dissappear from existence
1687 	 * when the suspended kernel is unpacked on top of us.
1688 	 */
1689 	tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none,
1690 		&kd_nowait);
1691 	if (!tempva)
1692 		return (1);
1693 	hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any,
1694 	    &kp_none, &kd_nowait);
1695 	if (!hibernate_fchunk_area)
1696 		return (1);
1697 
1698 	/* Final output chunk ordering VA */
1699 	fchunks = (short *)hibernate_fchunk_area;
1700 
1701 	/* Map the chunk ordering region */
1702 	for(i = 0; i < 24 ; i++)
1703 		pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE),
1704 			piglet_base + ((4 + i) * PAGE_SIZE), VM_PROT_ALL);
1705 	pmap_update(pmap_kernel());
1706 
1707 	nchunks = hib->chunk_ctr;
1708 
1709 	/* Initially start all chunks as unplaced */
1710 	for (i = 0; i < nchunks; i++)
1711 		chunks[i].flags = 0;
1712 
1713 	/*
1714 	 * Search the list for chunks that are outside the pig area. These
1715 	 * can be placed first in the final output list.
1716 	 */
1717 	for (i = 0; i < nchunks; i++) {
1718 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1719 			fchunks[nfchunks] = i;
1720 			nfchunks++;
1721 			chunks[i].flags |= HIBERNATE_CHUNK_PLACED;
1722 		}
1723 	}
1724 
1725 	/*
1726 	 * Walk the ordering, place the chunks in ascending memory order.
1727 	 */
1728 	for (i = 0; i < nchunks; i++) {
1729 		if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) {
1730 			fchunks[nfchunks] = i;
1731 			nfchunks++;
1732 			chunks[i].flags = HIBERNATE_CHUNK_PLACED;
1733 		}
1734 	}
1735 
1736 	img_cur = pig_start;
1737 
1738 	for (i = 0; i < nfchunks; i++) {
1739 		blkctr = chunks[fchunks[i]].offset;
1740 		processed = 0;
1741 		compressed_size = chunks[fchunks[i]].compressed_size;
1742 
1743 		while (processed < compressed_size) {
1744 			if (compressed_size - processed >= MAXPHYS)
1745 				read_size = MAXPHYS;
1746 			else
1747 				read_size = compressed_size - processed;
1748 
1749 			/*
1750 			 * We're reading read_size bytes, offset from the
1751 			 * start of a page by img_cur % PAGE_SIZE, so the
1752 			 * end will be read_size + (img_cur % PAGE_SIZE)
1753 			 * from the start of the first page.  Round that
1754 			 * up to the next page size.
1755 			 */
1756 			num_io_pages = (read_size + (img_cur % PAGE_SIZE)
1757 				+ PAGE_SIZE - 1) / PAGE_SIZE;
1758 
1759 			KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1);
1760 
1761 			/* Map pages for this read */
1762 			for (j = 0; j < num_io_pages; j ++)
1763 				pmap_kenter_pa(tempva + j * PAGE_SIZE,
1764 					img_cur + j * PAGE_SIZE, VM_PROT_ALL);
1765 
1766 			pmap_update(pmap_kernel());
1767 
1768 			hibernate_block_io(hib, blkctr, read_size,
1769 			    tempva + (img_cur & PAGE_MASK), 0);
1770 
1771 			blkctr += (read_size / DEV_BSIZE);
1772 
1773 			pmap_kremove(tempva, num_io_pages * PAGE_SIZE);
1774 			pmap_update(pmap_kernel());
1775 
1776 			processed += read_size;
1777 			img_cur += read_size;
1778 		}
1779 	}
1780 
1781 	pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE);
1782 	pmap_update(pmap_kernel());
1783 
1784 	return (0);
1785 }
1786 
1787 /*
1788  * Hibernating a machine comprises the following operations:
1789  *  1. Calculating this machine's hibernate_info information
1790  *  2. Allocating a piglet and saving the piglet's physaddr
1791  *  3. Calculating the memory chunks
1792  *  4. Writing the compressed chunks to disk
1793  *  5. Writing the chunk table
1794  *  6. Writing the signature block (hibernate_info)
1795  *
1796  * On most architectures, the function calling hibernate_suspend would
1797  * then power off the machine using some MD-specific implementation.
1798  */
1799 int
1800 hibernate_suspend(void)
1801 {
1802 	union hibernate_info hib;
1803 	u_long start, end;
1804 
1805 	/*
1806 	 * Calculate memory ranges, swap offsets, etc.
1807 	 * This also allocates a piglet whose physaddr is stored in
1808 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1809 	 */
1810 	if (get_hibernate_info(&hib, 1)) {
1811 		DPRINTF("failed to obtain hibernate info\n");
1812 		return (1);
1813 	}
1814 
1815 	/* Find a page-addressed region in swap [start,end] */
1816 	if (uvm_hibswap(hib.dev, &start, &end)) {
1817 		printf("hibernate: cannot find any swap\n");
1818 		return (1);
1819 	}
1820 
1821 	if (end - start < 1000) {
1822 		printf("hibernate: insufficient swap (%lu is too small)\n",
1823 			end - start);
1824 		return (1);
1825 	}
1826 
1827 	/* Calculate block offsets in swap */
1828 	hib.image_offset = ctod(start);
1829 
1830 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1831 	    hib.image_offset, ctod(end) - ctod(start));
1832 
1833 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1834 		VM_PROT_ALL);
1835 	pmap_activate(curproc);
1836 
1837 	DPRINTF("hibernate: writing chunks\n");
1838 	if (hibernate_write_chunks(&hib)) {
1839 		DPRINTF("hibernate_write_chunks failed\n");
1840 		return (1);
1841 	}
1842 
1843 	DPRINTF("hibernate: writing chunktable\n");
1844 	if (hibernate_write_chunktable(&hib)) {
1845 		DPRINTF("hibernate_write_chunktable failed\n");
1846 		return (1);
1847 	}
1848 
1849 	DPRINTF("hibernate: writing signature\n");
1850 	if (hibernate_write_signature(&hib)) {
1851 		DPRINTF("hibernate_write_signature failed\n");
1852 		return (1);
1853 	}
1854 
1855 	/* Allow the disk to settle */
1856 	delay(500000);
1857 
1858 	/*
1859 	 * Give the device-specific I/O function a notification that we're
1860 	 * done, and that it can clean up or shutdown as needed.
1861 	 */
1862 	hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
1863 
1864 	return (0);
1865 }
1866 
1867 int
1868 hibernate_alloc(void)
1869 {
1870 	KASSERT(global_piglet_va == 0);
1871 	KASSERT(hibernate_temp_page == 0);
1872 	KASSERT(hibernate_copy_page == 0);
1873 	KASSERT(hibernate_rle_page == 0);
1874 
1875 	if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
1876 	    HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE))
1877 		return (ENOMEM);
1878 
1879 	/*
1880 	 * Allocate VA for the temp and copy page.
1881 	 *
1882 	 * These will become part of the suspended kernel and will
1883 	 * be freed in hibernate_free, upon resume.
1884 	 */
1885 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1886 	    &kp_none, &kd_nowait);
1887 	if (!hibernate_temp_page) {
1888 		DPRINTF("out of memory allocating hibernate_temp_page\n");
1889 		return (ENOMEM);
1890 	}
1891 
1892 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1893 	    &kp_none, &kd_nowait);
1894 	if (!hibernate_copy_page) {
1895 		DPRINTF("out of memory allocating hibernate_copy_page\n");
1896 		return (ENOMEM);
1897 	}
1898 
1899 	hibernate_rle_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1900 	    &kp_none, &kd_nowait);
1901 	if (!hibernate_rle_page) {
1902 		DPRINTF("out of memory allocating hibernate_rle_page\n");
1903 		return (ENOMEM);
1904 	}
1905 
1906 	return (0);
1907 }
1908 
1909 /*
1910  * Free items allocated by hibernate_alloc()
1911  */
1912 void
1913 hibernate_free(void)
1914 {
1915 	if (global_piglet_va)
1916 		uvm_pmr_free_piglet(global_piglet_va,
1917 		    4 * HIBERNATE_CHUNK_SIZE);
1918 
1919 	if (hibernate_copy_page)
1920 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1921 	if (hibernate_temp_page)
1922 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1923 	if (hibernate_rle_page)
1924 		pmap_kremove(hibernate_rle_page, PAGE_SIZE);
1925 
1926 	pmap_update(pmap_kernel());
1927 
1928 	if (hibernate_copy_page)
1929 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
1930 		    &kv_any, &kp_none);
1931 	if (hibernate_temp_page)
1932 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
1933 		    &kv_any, &kp_none);
1934 	if (hibernate_rle_page)
1935 		km_free((void *)hibernate_rle_page, PAGE_SIZE,
1936 		    &kv_any, &kp_none);
1937 
1938 	global_piglet_va = 0;
1939 	hibernate_copy_page = 0;
1940 	hibernate_temp_page = 0;
1941 	hibernate_rle_page = 0;
1942 }
1943