1 /* $OpenBSD: subr_hibernate.c,v 1.46 2012/07/19 18:07:03 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <uvm/uvm_swap.h> 34 #include <machine/hibernate.h> 35 36 /* Temporary vaddr ranges used during hibernate */ 37 vaddr_t hibernate_temp_page; 38 vaddr_t hibernate_copy_page; 39 40 /* Hibernate info as read from disk during resume */ 41 union hibernate_info disk_hiber_info; 42 paddr_t global_pig_start; 43 vaddr_t global_piglet_va; 44 45 /* 46 * Hib alloc enforced alignment. 47 */ 48 #define HIB_ALIGN 8 /* bytes alignment */ 49 50 /* 51 * sizeof builtin operation, but with alignment constraint. 52 */ 53 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 54 55 struct hiballoc_entry { 56 size_t hibe_use; 57 size_t hibe_space; 58 RB_ENTRY(hiballoc_entry) hibe_entry; 59 }; 60 61 /* 62 * Compare hiballoc entries based on the address they manage. 63 * 64 * Since the address is fixed, relative to struct hiballoc_entry, 65 * we just compare the hiballoc_entry pointers. 66 */ 67 static __inline int 68 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 69 { 70 return l < r ? -1 : (l > r); 71 } 72 73 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 74 75 /* 76 * Given a hiballoc entry, return the address it manages. 77 */ 78 static __inline void * 79 hib_entry_to_addr(struct hiballoc_entry *entry) 80 { 81 caddr_t addr; 82 83 addr = (caddr_t)entry; 84 addr += HIB_SIZEOF(struct hiballoc_entry); 85 return addr; 86 } 87 88 /* 89 * Given an address, find the hiballoc that corresponds. 90 */ 91 static __inline struct hiballoc_entry* 92 hib_addr_to_entry(void *addr_param) 93 { 94 caddr_t addr; 95 96 addr = (caddr_t)addr_param; 97 addr -= HIB_SIZEOF(struct hiballoc_entry); 98 return (struct hiballoc_entry*)addr; 99 } 100 101 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 102 103 /* 104 * Allocate memory from the arena. 105 * 106 * Returns NULL if no memory is available. 107 */ 108 void * 109 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 110 { 111 struct hiballoc_entry *entry, *new_entry; 112 size_t find_sz; 113 114 /* 115 * Enforce alignment of HIB_ALIGN bytes. 116 * 117 * Note that, because the entry is put in front of the allocation, 118 * 0-byte allocations are guaranteed a unique address. 119 */ 120 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 121 122 /* 123 * Find an entry with hibe_space >= find_sz. 124 * 125 * If the root node is not large enough, we switch to tree traversal. 126 * Because all entries are made at the bottom of the free space, 127 * traversal from the end has a slightly better chance of yielding 128 * a sufficiently large space. 129 */ 130 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 131 entry = RB_ROOT(&arena->hib_addrs); 132 if (entry != NULL && entry->hibe_space < find_sz) { 133 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 134 if (entry->hibe_space >= find_sz) 135 break; 136 } 137 } 138 139 /* 140 * Insufficient or too fragmented memory. 141 */ 142 if (entry == NULL) 143 return NULL; 144 145 /* 146 * Create new entry in allocated space. 147 */ 148 new_entry = (struct hiballoc_entry*)( 149 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 150 new_entry->hibe_space = entry->hibe_space - find_sz; 151 new_entry->hibe_use = alloc_sz; 152 153 /* 154 * Insert entry. 155 */ 156 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 157 panic("hib_alloc: insert failure"); 158 entry->hibe_space = 0; 159 160 /* Return address managed by entry. */ 161 return hib_entry_to_addr(new_entry); 162 } 163 164 /* 165 * Free a pointer previously allocated from this arena. 166 * 167 * If addr is NULL, this will be silently accepted. 168 */ 169 void 170 hib_free(struct hiballoc_arena *arena, void *addr) 171 { 172 struct hiballoc_entry *entry, *prev; 173 174 if (addr == NULL) 175 return; 176 177 /* 178 * Derive entry from addr and check it is really in this arena. 179 */ 180 entry = hib_addr_to_entry(addr); 181 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 182 panic("hib_free: freed item %p not in hib arena", addr); 183 184 /* 185 * Give the space in entry to its predecessor. 186 * 187 * If entry has no predecessor, change its used space into free space 188 * instead. 189 */ 190 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 191 if (prev != NULL && 192 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 193 prev->hibe_use + prev->hibe_space) == entry) { 194 /* Merge entry. */ 195 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 196 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 197 entry->hibe_use + entry->hibe_space; 198 } else { 199 /* Flip used memory to free space. */ 200 entry->hibe_space += entry->hibe_use; 201 entry->hibe_use = 0; 202 } 203 } 204 205 /* 206 * Initialize hiballoc. 207 * 208 * The allocator will manage memmory at ptr, which is len bytes. 209 */ 210 int 211 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 212 { 213 struct hiballoc_entry *entry; 214 caddr_t ptr; 215 size_t len; 216 217 RB_INIT(&arena->hib_addrs); 218 219 /* 220 * Hib allocator enforces HIB_ALIGN alignment. 221 * Fixup ptr and len. 222 */ 223 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 224 len = p_len - ((size_t)ptr - (size_t)p_ptr); 225 len &= ~((size_t)HIB_ALIGN - 1); 226 227 /* 228 * Insufficient memory to be able to allocate and also do bookkeeping. 229 */ 230 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 231 return ENOMEM; 232 233 /* 234 * Create entry describing space. 235 */ 236 entry = (struct hiballoc_entry*)ptr; 237 entry->hibe_use = 0; 238 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 239 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 240 241 return 0; 242 } 243 244 /* 245 * Zero all free memory. 246 */ 247 void 248 uvm_pmr_zero_everything(void) 249 { 250 struct uvm_pmemrange *pmr; 251 struct vm_page *pg; 252 int i; 253 254 uvm_lock_fpageq(); 255 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 256 /* Zero single pages. */ 257 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 258 != NULL) { 259 uvm_pmr_remove(pmr, pg); 260 uvm_pagezero(pg); 261 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 262 uvmexp.zeropages++; 263 uvm_pmr_insert(pmr, pg, 0); 264 } 265 266 /* Zero multi page ranges. */ 267 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 268 != NULL) { 269 pg--; /* Size tree always has second page. */ 270 uvm_pmr_remove(pmr, pg); 271 for (i = 0; i < pg->fpgsz; i++) { 272 uvm_pagezero(&pg[i]); 273 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 274 uvmexp.zeropages++; 275 } 276 uvm_pmr_insert(pmr, pg, 0); 277 } 278 } 279 uvm_unlock_fpageq(); 280 } 281 282 /* 283 * Mark all memory as dirty. 284 * 285 * Used to inform the system that the clean memory isn't clean for some 286 * reason, for example because we just came back from hibernate. 287 */ 288 void 289 uvm_pmr_dirty_everything(void) 290 { 291 struct uvm_pmemrange *pmr; 292 struct vm_page *pg; 293 int i; 294 295 uvm_lock_fpageq(); 296 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 297 /* Dirty single pages. */ 298 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 299 != NULL) { 300 uvm_pmr_remove(pmr, pg); 301 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 302 uvm_pmr_insert(pmr, pg, 0); 303 } 304 305 /* Dirty multi page ranges. */ 306 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 307 != NULL) { 308 pg--; /* Size tree always has second page. */ 309 uvm_pmr_remove(pmr, pg); 310 for (i = 0; i < pg->fpgsz; i++) 311 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 312 uvm_pmr_insert(pmr, pg, 0); 313 } 314 } 315 316 uvmexp.zeropages = 0; 317 uvm_unlock_fpageq(); 318 } 319 320 /* 321 * Allocate the highest address that can hold sz. 322 * 323 * sz in bytes. 324 */ 325 int 326 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pig_pg, *pg; 330 331 /* 332 * Convert sz to pages, since that is what pmemrange uses internally. 333 */ 334 sz = atop(round_page(sz)); 335 336 uvm_lock_fpageq(); 337 338 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 339 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 340 if (pig_pg->fpgsz >= sz) { 341 goto found; 342 } 343 } 344 } 345 346 /* 347 * Allocation failure. 348 */ 349 uvm_unlock_fpageq(); 350 return ENOMEM; 351 352 found: 353 /* Remove page from freelist. */ 354 uvm_pmr_remove_size(pmr, pig_pg); 355 pig_pg->fpgsz -= sz; 356 pg = pig_pg + pig_pg->fpgsz; 357 if (pig_pg->fpgsz == 0) 358 uvm_pmr_remove_addr(pmr, pig_pg); 359 else 360 uvm_pmr_insert_size(pmr, pig_pg); 361 362 uvmexp.free -= sz; 363 *addr = VM_PAGE_TO_PHYS(pg); 364 365 /* 366 * Update pg flags. 367 * 368 * Note that we trash the sz argument now. 369 */ 370 while (sz > 0) { 371 KASSERT(pg->pg_flags & PQ_FREE); 372 373 atomic_clearbits_int(&pg->pg_flags, 374 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 375 376 if (pg->pg_flags & PG_ZERO) 377 uvmexp.zeropages -= sz; 378 atomic_clearbits_int(&pg->pg_flags, 379 PG_ZERO|PQ_FREE); 380 381 pg->uobject = NULL; 382 pg->uanon = NULL; 383 pg->pg_version++; 384 385 /* 386 * Next. 387 */ 388 pg++; 389 sz--; 390 } 391 392 /* Return. */ 393 uvm_unlock_fpageq(); 394 return 0; 395 } 396 397 /* 398 * Allocate a piglet area. 399 * 400 * This is as low as possible. 401 * Piglets are aligned. 402 * 403 * sz and align in bytes. 404 * 405 * The call will sleep for the pagedaemon to attempt to free memory. 406 * The pagedaemon may decide its not possible to free enough memory, causing 407 * the allocation to fail. 408 */ 409 int 410 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 411 { 412 paddr_t pg_addr, piglet_addr; 413 struct uvm_pmemrange *pmr; 414 struct vm_page *pig_pg, *pg; 415 struct pglist pageq; 416 int pdaemon_woken; 417 vaddr_t piglet_va; 418 419 KASSERT((align & (align - 1)) == 0); 420 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 421 422 /* 423 * Fixup arguments: align must be at least PAGE_SIZE, 424 * sz will be converted to pagecount, since that is what 425 * pmemrange uses internally. 426 */ 427 if (align < PAGE_SIZE) 428 align = PAGE_SIZE; 429 sz = round_page(sz); 430 431 uvm_lock_fpageq(); 432 433 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 434 pmr_use) { 435 retry: 436 /* 437 * Search for a range with enough space. 438 * Use the address tree, to ensure the range is as low as 439 * possible. 440 */ 441 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 442 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 443 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 444 445 if (atop(pg_addr) + pig_pg->fpgsz >= 446 atop(piglet_addr) + atop(sz)) 447 goto found; 448 } 449 } 450 451 /* 452 * Try to coerse the pagedaemon into freeing memory 453 * for the piglet. 454 * 455 * pdaemon_woken is set to prevent the code from 456 * falling into an endless loop. 457 */ 458 if (!pdaemon_woken) { 459 pdaemon_woken = 1; 460 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 461 sz, UVM_PLA_FAILOK) == 0) 462 goto retry; 463 } 464 465 /* Return failure. */ 466 uvm_unlock_fpageq(); 467 return ENOMEM; 468 469 found: 470 /* 471 * Extract piglet from pigpen. 472 */ 473 TAILQ_INIT(&pageq); 474 uvm_pmr_extract_range(pmr, pig_pg, 475 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 476 477 *pa = piglet_addr; 478 uvmexp.free -= atop(sz); 479 480 /* 481 * Update pg flags. 482 * 483 * Note that we trash the sz argument now. 484 */ 485 TAILQ_FOREACH(pg, &pageq, pageq) { 486 KASSERT(pg->pg_flags & PQ_FREE); 487 488 atomic_clearbits_int(&pg->pg_flags, 489 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 490 491 if (pg->pg_flags & PG_ZERO) 492 uvmexp.zeropages--; 493 atomic_clearbits_int(&pg->pg_flags, 494 PG_ZERO|PQ_FREE); 495 496 pg->uobject = NULL; 497 pg->uanon = NULL; 498 pg->pg_version++; 499 } 500 501 uvm_unlock_fpageq(); 502 503 /* 504 * Now allocate a va. 505 * Use direct mappings for the pages. 506 */ 507 508 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 509 if (!piglet_va) { 510 uvm_pglistfree(&pageq); 511 return ENOMEM; 512 } 513 514 /* 515 * Map piglet to va. 516 */ 517 TAILQ_FOREACH(pg, &pageq, pageq) { 518 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 519 piglet_va += PAGE_SIZE; 520 } 521 pmap_update(pmap_kernel()); 522 523 return 0; 524 } 525 526 /* 527 * Free a piglet area. 528 */ 529 void 530 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 531 { 532 paddr_t pa; 533 struct vm_page *pg; 534 535 /* 536 * Fix parameters. 537 */ 538 sz = round_page(sz); 539 540 /* 541 * Find the first page in piglet. 542 * Since piglets are contiguous, the first pg is all we need. 543 */ 544 if (!pmap_extract(pmap_kernel(), va, &pa)) 545 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 546 pg = PHYS_TO_VM_PAGE(pa); 547 if (pg == NULL) 548 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 549 550 /* 551 * Unmap. 552 */ 553 pmap_kremove(va, sz); 554 pmap_update(pmap_kernel()); 555 556 /* 557 * Free the physical and virtual memory. 558 */ 559 uvm_pmr_freepages(pg, atop(sz)); 560 km_free((void *)va, sz, &kv_any, &kp_none); 561 } 562 563 /* 564 * Physmem RLE compression support. 565 * 566 * Given a physical page address, it will return the number of pages 567 * starting at the address, that are free. Clamps to the number of pages in 568 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 569 */ 570 int 571 uvm_page_rle(paddr_t addr) 572 { 573 struct vm_page *pg, *pg_end; 574 struct vm_physseg *vmp; 575 int pseg_idx, off_idx; 576 577 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 578 if (pseg_idx == -1) 579 return 0; 580 581 vmp = &vm_physmem[pseg_idx]; 582 pg = &vmp->pgs[off_idx]; 583 if (!(pg->pg_flags & PQ_FREE)) 584 return 0; 585 586 /* 587 * Search for the first non-free page after pg. 588 * Note that the page may not be the first page in a free pmemrange, 589 * therefore pg->fpgsz cannot be used. 590 */ 591 for (pg_end = pg; pg_end <= vmp->lastpg && 592 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 593 ; 594 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 595 } 596 597 /* 598 * Fills out the hibernate_info union pointed to by hiber_info 599 * with information about this machine (swap signature block 600 * offsets, number of memory ranges, kernel in use, etc) 601 */ 602 int 603 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 604 { 605 int chunktable_size; 606 struct disklabel dl; 607 char err_string[128], *dl_ret; 608 609 /* Determine I/O function to use */ 610 hiber_info->io_func = get_hibernate_io_function(); 611 if (hiber_info->io_func == NULL) 612 return (1); 613 614 /* Calculate hibernate device */ 615 hiber_info->device = swdevt[0].sw_dev; 616 617 /* Read disklabel (used to calculate signature and image offsets) */ 618 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 619 620 if (dl_ret) { 621 printf("Hibernate error reading disklabel: %s\n", dl_ret); 622 return (1); 623 } 624 625 /* Make sure we have a swap partition. */ 626 if (dl.d_partitions[1].p_fstype != FS_SWAP || 627 dl.d_partitions[1].p_size == 0) 628 return (1); 629 630 hiber_info->secsize = dl.d_secsize; 631 632 /* Make sure the signature can fit in one block */ 633 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 634 635 /* Calculate swap offset from start of disk */ 636 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 637 638 /* Calculate signature block location */ 639 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 640 dl.d_partitions[1].p_size - 641 sizeof(union hibernate_info)/hiber_info->secsize; 642 643 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 644 645 /* Stash kernel version information */ 646 bzero(&hiber_info->kernel_version, 128); 647 bcopy(version, &hiber_info->kernel_version, 648 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 649 650 if (suspend) { 651 /* Allocate piglet region */ 652 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 653 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 654 HIBERNATE_CHUNK_SIZE)) { 655 printf("Hibernate failed to allocate the piglet\n"); 656 return (1); 657 } 658 hiber_info->io_page = (void *)hiber_info->piglet_va; 659 660 /* 661 * Initialize of the hibernate IO function (for drivers which 662 * need that) 663 */ 664 if (hiber_info->io_func(hiber_info->device, 0, 665 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 666 goto fail; 667 668 } else { 669 /* 670 * Resuming kernels use a regular I/O page since we won't 671 * have access to the suspended kernel's piglet VA at this 672 * point. No need to free this I/O page as it will vanish 673 * as part of the resume. 674 */ 675 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 676 if (!hiber_info->io_page) 677 return (1); 678 } 679 680 681 if (get_hibernate_info_md(hiber_info)) 682 goto fail; 683 684 /* Calculate memory image location */ 685 hiber_info->image_offset = dl.d_partitions[1].p_offset + 686 dl.d_partitions[1].p_size - 687 (hiber_info->image_size / hiber_info->secsize) - 688 sizeof(union hibernate_info)/hiber_info->secsize - 689 chunktable_size; 690 691 return (0); 692 fail: 693 if (suspend) 694 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 695 696 return (1); 697 } 698 699 /* 700 * Allocate nitems*size bytes from the hiballoc area presently in use 701 */ 702 void 703 *hibernate_zlib_alloc(void *unused, int nitems, int size) 704 { 705 struct hibernate_zlib_state *hibernate_state; 706 707 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 708 709 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 710 } 711 712 /* 713 * Free the memory pointed to by addr in the hiballoc area presently in 714 * use 715 */ 716 void 717 hibernate_zlib_free(void *unused, void *addr) 718 { 719 struct hibernate_zlib_state *hibernate_state; 720 721 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 722 723 hib_free(&hibernate_state->hiballoc_arena, addr); 724 } 725 726 /* 727 * Gets the next RLE value from the image stream 728 */ 729 int 730 hibernate_get_next_rle(void) 731 { 732 int rle, i; 733 struct hibernate_zlib_state *hibernate_state; 734 735 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 736 737 /* Read RLE code */ 738 hibernate_state->hib_stream.next_out = (char *)&rle; 739 hibernate_state->hib_stream.avail_out = sizeof(rle); 740 741 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 742 if (i != Z_OK && i != Z_STREAM_END) { 743 /* 744 * XXX - this will likely reboot/hang most machines, 745 * but there's not much else we can do here. 746 */ 747 panic("inflate rle error"); 748 } 749 750 /* Sanity check what RLE value we got */ 751 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 752 panic("invalid RLE code"); 753 754 if (i == Z_STREAM_END) 755 rle = -1; 756 757 return rle; 758 } 759 760 /* 761 * Inflate next page of data from the image stream 762 */ 763 int 764 hibernate_inflate_page(void) 765 { 766 struct hibernate_zlib_state *hibernate_state; 767 int i; 768 769 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 770 771 /* Set up the stream for inflate */ 772 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 773 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 774 775 /* Process next block of data */ 776 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 777 if (i != Z_OK && i != Z_STREAM_END) { 778 /* 779 * XXX - this will likely reboot/hang most machines, 780 * but there's not much else we can do here. 781 */ 782 783 panic("inflate error"); 784 } 785 786 /* We should always have extracted a full page ... */ 787 if (hibernate_state->hib_stream.avail_out != 0) 788 panic("incomplete page"); 789 790 return (i == Z_STREAM_END); 791 } 792 793 /* 794 * Inflate size bytes from src into dest, skipping any pages in 795 * [src..dest] that are special (see hibernate_inflate_skip) 796 * 797 * This function executes while using the resume-time stack 798 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 799 * will likely hang or reset the machine. 800 */ 801 void 802 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 803 paddr_t src, size_t size) 804 { 805 int end_stream = 0 ; 806 struct hibernate_zlib_state *hibernate_state; 807 808 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 809 810 hibernate_state->hib_stream.next_in = (char *)src; 811 hibernate_state->hib_stream.avail_in = size; 812 813 do { 814 /* Flush cache and TLB */ 815 hibernate_flush(); 816 817 /* 818 * Is this a special page? If yes, redirect the 819 * inflate output to a scratch page (eg, discard it) 820 */ 821 if (hibernate_inflate_skip(hiber_info, dest)) { 822 hibernate_enter_resume_mapping( 823 HIBERNATE_INFLATE_PAGE, 824 HIBERNATE_INFLATE_PAGE, 0); 825 } else { 826 hibernate_enter_resume_mapping( 827 HIBERNATE_INFLATE_PAGE, dest, 0); 828 } 829 830 hibernate_flush(); 831 end_stream = hibernate_inflate_page(); 832 833 dest += PAGE_SIZE; 834 } while (!end_stream); 835 } 836 837 /* 838 * deflate from src into the I/O page, up to 'remaining' bytes 839 * 840 * Returns number of input bytes consumed, and may reset 841 * the 'remaining' parameter if not all the output space was consumed 842 * (this information is needed to know how much to write to disk 843 */ 844 size_t 845 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 846 size_t *remaining) 847 { 848 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 849 struct hibernate_zlib_state *hibernate_state; 850 851 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 852 853 /* Set up the stream for deflate */ 854 hibernate_state->hib_stream.next_in = (caddr_t)src; 855 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 856 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 857 (PAGE_SIZE - *remaining); 858 hibernate_state->hib_stream.avail_out = *remaining; 859 860 /* Process next block of data */ 861 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 862 panic("hibernate zlib deflate error"); 863 864 /* Update pointers and return number of bytes consumed */ 865 *remaining = hibernate_state->hib_stream.avail_out; 866 return (PAGE_SIZE - (src & PAGE_MASK)) - 867 hibernate_state->hib_stream.avail_in; 868 } 869 870 /* 871 * Write the hibernation information specified in hiber_info 872 * to the location in swap previously calculated (last block of 873 * swap), called the "signature block". 874 * 875 * Write the memory chunk table to the area in swap immediately 876 * preceding the signature block. 877 */ 878 int 879 hibernate_write_signature(union hibernate_info *hiber_info) 880 { 881 /* Write hibernate info to disk */ 882 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 883 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 884 hiber_info->io_page)); 885 } 886 887 /* 888 * Write the memory chunk table to the area in swap immediately 889 * preceding the signature block. The chunk table is stored 890 * in the piglet when this function is called. 891 */ 892 int 893 hibernate_write_chunktable(union hibernate_info *hiber_info) 894 { 895 struct hibernate_disk_chunk *chunks; 896 vaddr_t hibernate_chunk_table_start; 897 size_t hibernate_chunk_table_size; 898 daddr_t chunkbase; 899 int i; 900 901 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 902 903 chunkbase = hiber_info->sig_offset - 904 (hibernate_chunk_table_size / hiber_info->secsize); 905 906 hibernate_chunk_table_start = hiber_info->piglet_va + 907 HIBERNATE_CHUNK_SIZE; 908 909 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 910 HIBERNATE_CHUNK_SIZE); 911 912 /* Write chunk table */ 913 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 914 if (hiber_info->io_func(hiber_info->device, 915 chunkbase + (i/hiber_info->secsize), 916 (vaddr_t)(hibernate_chunk_table_start + i), 917 MAXPHYS, HIB_W, hiber_info->io_page)) 918 return (1); 919 } 920 921 return (0); 922 } 923 924 /* 925 * Write an empty hiber_info to the swap signature block, which is 926 * guaranteed to not match any valid hiber_info. 927 */ 928 int 929 hibernate_clear_signature(void) 930 { 931 union hibernate_info blank_hiber_info; 932 union hibernate_info hiber_info; 933 934 /* Zero out a blank hiber_info */ 935 bzero(&blank_hiber_info, sizeof(hiber_info)); 936 937 if (get_hibernate_info(&hiber_info, 0)) 938 return (1); 939 940 /* Write (zeroed) hibernate info to disk */ 941 if (hibernate_block_io(&hiber_info, 942 hiber_info.sig_offset - hiber_info.swap_offset, 943 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 944 panic("error hibernate write 6"); 945 946 return (0); 947 } 948 949 /* 950 * Check chunk range overlap when calculating whether or not to copy a 951 * compressed chunk to the piglet area before decompressing. 952 * 953 * returns zero if the ranges do not overlap, non-zero otherwise. 954 */ 955 int 956 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 957 { 958 /* case A : end of r1 overlaps start of r2 */ 959 if (r1s < r2s && r1e > r2s) 960 return (1); 961 962 /* case B : r1 entirely inside r2 */ 963 if (r1s >= r2s && r1e <= r2e) 964 return (1); 965 966 /* case C : r2 entirely inside r1 */ 967 if (r2s >= r1s && r2e <= r1e) 968 return (1); 969 970 /* case D : end of r2 overlaps start of r1 */ 971 if (r2s < r1s && r2e > r1s) 972 return (1); 973 974 return (0); 975 } 976 977 /* 978 * Compare two hibernate_infos to determine if they are the same (eg, 979 * we should be performing a hibernate resume on this machine. 980 * Not all fields are checked - just enough to verify that the machine 981 * has the same memory configuration and kernel as the one that 982 * wrote the signature previously. 983 */ 984 int 985 hibernate_compare_signature(union hibernate_info *mine, 986 union hibernate_info *disk) 987 { 988 u_int i; 989 990 if (mine->nranges != disk->nranges) 991 return (1); 992 993 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 994 return (1); 995 996 for (i = 0; i < mine->nranges; i++) { 997 if ((mine->ranges[i].base != disk->ranges[i].base) || 998 (mine->ranges[i].end != disk->ranges[i].end) ) 999 return (1); 1000 } 1001 1002 return (0); 1003 } 1004 1005 /* 1006 * Transfers xfer_size bytes between the hibernate device specified in 1007 * hib_info at offset blkctr and the vaddr specified at dest. 1008 * 1009 * Separate offsets and pages are used to handle misaligned reads (reads 1010 * that span a page boundary). 1011 * 1012 * blkctr specifies a relative offset (relative to the start of swap), 1013 * not an absolute disk offset 1014 * 1015 */ 1016 int 1017 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1018 size_t xfer_size, vaddr_t dest, int iswrite) 1019 { 1020 struct buf *bp; 1021 struct bdevsw *bdsw; 1022 int error; 1023 1024 bp = geteblk(xfer_size); 1025 bdsw = &bdevsw[major(hib_info->device)]; 1026 1027 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1028 if (error) { 1029 printf("hibernate_block_io open failed\n"); 1030 return (1); 1031 } 1032 1033 if (iswrite) 1034 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1035 1036 bp->b_bcount = xfer_size; 1037 bp->b_blkno = blkctr; 1038 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1039 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1040 bp->b_dev = hib_info->device; 1041 bp->b_cylinder = 0; 1042 (*bdsw->d_strategy)(bp); 1043 1044 error = biowait(bp); 1045 if (error) { 1046 printf("hibernate_block_io biowait failed %d\n", error); 1047 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1048 curproc); 1049 if (error) 1050 printf("hibernate_block_io error close failed\n"); 1051 return (1); 1052 } 1053 1054 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1055 if (error) { 1056 printf("hibernate_block_io close failed\n"); 1057 return (1); 1058 } 1059 1060 if (!iswrite) 1061 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1062 1063 bp->b_flags |= B_INVAL; 1064 brelse(bp); 1065 1066 return (0); 1067 } 1068 1069 /* 1070 * Reads the signature block from swap, checks against the current machine's 1071 * information. If the information matches, perform a resume by reading the 1072 * saved image into the pig area, and unpacking. 1073 */ 1074 void 1075 hibernate_resume(void) 1076 { 1077 union hibernate_info hiber_info; 1078 int s; 1079 1080 /* Get current running machine's hibernate info */ 1081 bzero(&hiber_info, sizeof(hiber_info)); 1082 if (get_hibernate_info(&hiber_info, 0)) 1083 return; 1084 1085 /* Read hibernate info from disk */ 1086 s = splbio(); 1087 1088 if (hibernate_block_io(&hiber_info, 1089 hiber_info.sig_offset - hiber_info.swap_offset, 1090 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1091 panic("error in hibernate read"); 1092 1093 /* 1094 * If on-disk and in-memory hibernate signatures match, 1095 * this means we should do a resume from hibernate. 1096 */ 1097 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1098 splx(s); 1099 return; 1100 } 1101 1102 printf("Unhibernating...\n"); 1103 1104 /* Read the image from disk into the image (pig) area */ 1105 if (hibernate_read_image(&disk_hiber_info)) 1106 goto fail; 1107 1108 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1109 goto fail; 1110 1111 (void) splhigh(); 1112 disable_intr(); 1113 cold = 1; 1114 1115 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1116 cold = 0; 1117 enable_intr(); 1118 goto fail; 1119 } 1120 1121 /* Point of no return ... */ 1122 1123 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1124 VM_PROT_ALL); 1125 pmap_activate(curproc); 1126 1127 /* Switch stacks */ 1128 hibernate_switch_stack_machdep(); 1129 1130 /* 1131 * Image is now in high memory (pig area), copy to correct location 1132 * in memory. We'll eventually end up copying on top of ourself, but 1133 * we are assured the kernel code here is the same between the 1134 * hibernated and resuming kernel, and we are running on our own 1135 * stack, so the overwrite is ok. 1136 */ 1137 hibernate_unpack_image(&disk_hiber_info); 1138 1139 /* 1140 * Resume the loaded kernel by jumping to the MD resume vector. 1141 * We won't be returning from this call. 1142 */ 1143 hibernate_resume_machdep(); 1144 1145 fail: 1146 splx(s); 1147 printf("Unable to resume hibernated image\n"); 1148 } 1149 1150 /* 1151 * Unpack image from pig area to original location by looping through the 1152 * list of output chunks in the order they should be restored (fchunks). 1153 * This ordering is used to avoid having inflate overwrite a chunk in the 1154 * middle of processing that chunk. This will, of course, happen during the 1155 * final output chunk, where we copy the chunk to the piglet area first, 1156 * before inflating. 1157 */ 1158 void 1159 hibernate_unpack_image(union hibernate_info *hiber_info) 1160 { 1161 struct hibernate_disk_chunk *chunks; 1162 union hibernate_info local_hiber_info; 1163 paddr_t image_cur = global_pig_start; 1164 int *fchunks, i; 1165 char *pva = (char *)hiber_info->piglet_va; 1166 struct hibernate_zlib_state *hibernate_state; 1167 1168 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1169 1170 /* Mask off based on arch-specific piglet page size */ 1171 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1172 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1173 1174 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1175 1176 /* Can't use hiber_info that's passed in after this point */ 1177 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1178 1179 hibernate_activate_resume_pt_machdep(); 1180 1181 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1182 /* Reset zlib for inflate */ 1183 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1184 panic("hibernate failed to reset zlib for inflate"); 1185 1186 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1187 image_cur); 1188 1189 image_cur += chunks[fchunks[i]].compressed_size; 1190 1191 } 1192 } 1193 1194 /* 1195 * Process a chunk by ensuring its proper placement, followed by unpacking 1196 */ 1197 void 1198 hibernate_process_chunk(union hibernate_info *hiber_info, 1199 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1200 { 1201 char *pva = (char *)hiber_info->piglet_va; 1202 1203 /* 1204 * If there is a conflict, copy the chunk to the piglet area 1205 * before unpacking it to its original location. 1206 */ 1207 if ((chunk->flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1208 hibernate_inflate_region(hiber_info, chunk->base, 1209 img_cur, chunk->compressed_size); 1210 else { 1211 bcopy((caddr_t)img_cur, 1212 pva + (HIBERNATE_CHUNK_SIZE * 2), 1213 chunk->compressed_size); 1214 hibernate_inflate_region(hiber_info, chunk->base, 1215 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1216 chunk->compressed_size); 1217 } 1218 } 1219 1220 /* 1221 * Write a compressed version of this machine's memory to disk, at the 1222 * precalculated swap offset: 1223 * 1224 * end of swap - signature block size - chunk table size - memory size 1225 * 1226 * The function begins by looping through each phys mem range, cutting each 1227 * one into MD sized chunks. These chunks are then compressed individually 1228 * and written out to disk, in phys mem order. Some chunks might compress 1229 * more than others, and for this reason, each chunk's size is recorded 1230 * in the chunk table, which is written to disk after the image has 1231 * properly been compressed and written (in hibernate_write_chunktable). 1232 * 1233 * When this function is called, the machine is nearly suspended - most 1234 * devices are quiesced/suspended, interrupts are off, and cold has 1235 * been set. This means that there can be no side effects once the 1236 * write has started, and the write function itself can also have no 1237 * side effects. This also means no printfs are permitted (since it 1238 * has side effects.) 1239 */ 1240 int 1241 hibernate_write_chunks(union hibernate_info *hiber_info) 1242 { 1243 paddr_t range_base, range_end, inaddr, temp_inaddr; 1244 size_t nblocks, out_remaining, used; 1245 struct hibernate_disk_chunk *chunks; 1246 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1247 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1248 int i; 1249 struct hibernate_zlib_state *hibernate_state; 1250 1251 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1252 1253 hiber_info->chunk_ctr = 0; 1254 1255 /* 1256 * Allocate VA for the temp and copy page. 1257 * These will becomee part of the suspended kernel and will 1258 * be freed in hibernate_free, upon resume. 1259 */ 1260 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1261 &kp_none, &kd_nowait); 1262 if (!hibernate_temp_page) 1263 return (1); 1264 1265 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1266 &kp_none, &kd_nowait); 1267 if (!hibernate_copy_page) 1268 return (1); 1269 1270 pmap_kenter_pa(hibernate_copy_page, 1271 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1272 1273 /* XXX - not needed on all archs */ 1274 pmap_activate(curproc); 1275 1276 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1277 HIBERNATE_CHUNK_SIZE); 1278 1279 /* Calculate the chunk regions */ 1280 for (i = 0; i < hiber_info->nranges; i++) { 1281 range_base = hiber_info->ranges[i].base; 1282 range_end = hiber_info->ranges[i].end; 1283 1284 inaddr = range_base; 1285 1286 while (inaddr < range_end) { 1287 chunks[hiber_info->chunk_ctr].base = inaddr; 1288 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1289 chunks[hiber_info->chunk_ctr].end = inaddr + 1290 HIBERNATE_CHUNK_SIZE; 1291 else 1292 chunks[hiber_info->chunk_ctr].end = range_end; 1293 1294 inaddr += HIBERNATE_CHUNK_SIZE; 1295 hiber_info->chunk_ctr ++; 1296 } 1297 } 1298 1299 /* Compress and write the chunks in the chunktable */ 1300 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1301 range_base = chunks[i].base; 1302 range_end = chunks[i].end; 1303 1304 chunks[i].offset = blkctr; 1305 1306 /* Reset zlib for deflate */ 1307 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1308 return (1); 1309 1310 inaddr = range_base; 1311 1312 /* 1313 * For each range, loop through its phys mem region 1314 * and write out the chunks (the last chunk might be 1315 * smaller than the chunk size). 1316 */ 1317 while (inaddr < range_end) { 1318 out_remaining = PAGE_SIZE; 1319 while (out_remaining > 0 && inaddr < range_end) { 1320 1321 /* 1322 * Adjust for regions that are not evenly 1323 * divisible by PAGE_SIZE or overflowed 1324 * pages from the previous iteration. 1325 */ 1326 temp_inaddr = (inaddr & PAGE_MASK) + 1327 hibernate_copy_page; 1328 1329 /* Deflate from temp_inaddr to IO page */ 1330 if (inaddr != range_end) { 1331 pmap_kenter_pa(hibernate_temp_page, 1332 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1333 1334 /* XXX - not needed on all archs */ 1335 pmap_activate(curproc); 1336 1337 bcopy((caddr_t)hibernate_temp_page, 1338 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1339 inaddr += hibernate_deflate(hiber_info, 1340 temp_inaddr, &out_remaining); 1341 } 1342 1343 if (out_remaining == 0) { 1344 /* Filled up the page */ 1345 nblocks = PAGE_SIZE / hiber_info->secsize; 1346 1347 if (hiber_info->io_func(hiber_info->device, 1348 blkctr, (vaddr_t)hibernate_io_page, 1349 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1350 return (1); 1351 1352 blkctr += nblocks; 1353 } 1354 } 1355 } 1356 1357 if (inaddr != range_end) 1358 return (1); 1359 1360 /* 1361 * End of range. Round up to next secsize bytes 1362 * after finishing compress 1363 */ 1364 if (out_remaining == 0) 1365 out_remaining = PAGE_SIZE; 1366 1367 /* Finish compress */ 1368 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1369 hibernate_state->hib_stream.avail_in = 0; 1370 hibernate_state->hib_stream.next_out = 1371 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1372 hibernate_state->hib_stream.avail_out = out_remaining; 1373 1374 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1375 Z_STREAM_END) 1376 return (1); 1377 1378 out_remaining = hibernate_state->hib_stream.avail_out; 1379 1380 used = PAGE_SIZE - out_remaining; 1381 nblocks = used / hiber_info->secsize; 1382 1383 /* Round up to next block if needed */ 1384 if (used % hiber_info->secsize != 0) 1385 nblocks ++; 1386 1387 /* Write final block(s) for this chunk */ 1388 if (hiber_info->io_func(hiber_info->device, blkctr, 1389 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1390 HIB_W, hiber_info->io_page)) 1391 return (1); 1392 1393 blkctr += nblocks; 1394 1395 offset = blkctr; 1396 chunks[i].compressed_size = (offset - chunks[i].offset) * 1397 hiber_info->secsize; 1398 } 1399 1400 return (0); 1401 } 1402 1403 /* 1404 * Reset the zlib stream state and allocate a new hiballoc area for either 1405 * inflate or deflate. This function is called once for each hibernate chunk. 1406 * Calling hiballoc_init multiple times is acceptable since the memory it is 1407 * provided is unmanaged memory (stolen). We use the memory provided to us 1408 * by the piglet allocated via the supplied hiber_info. 1409 */ 1410 int 1411 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1412 { 1413 vaddr_t hibernate_zlib_start; 1414 size_t hibernate_zlib_size; 1415 char *pva = (char *)hiber_info->piglet_va; 1416 struct hibernate_zlib_state *hibernate_state; 1417 1418 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1419 1420 if(!deflate) 1421 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1422 1423 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1424 hibernate_zlib_size = 80 * PAGE_SIZE; 1425 1426 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1427 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1428 1429 /* Set up stream structure */ 1430 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1431 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1432 1433 /* Initialize the hiballoc arena for zlib allocs/frees */ 1434 hiballoc_init(&hibernate_state->hiballoc_arena, 1435 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1436 1437 if (deflate) { 1438 return deflateInit(&hibernate_state->hib_stream, 1439 Z_BEST_SPEED); 1440 } else 1441 return inflateInit(&hibernate_state->hib_stream); 1442 } 1443 1444 /* 1445 * Reads the hibernated memory image from disk, whose location and 1446 * size are recorded in hiber_info. Begin by reading the persisted 1447 * chunk table, which records the original chunk placement location 1448 * and compressed size for each. Next, allocate a pig region of 1449 * sufficient size to hold the compressed image. Next, read the 1450 * chunks into the pig area (calling hibernate_read_chunks to do this), 1451 * and finally, if all of the above succeeds, clear the hibernate signature. 1452 * The function will then return to hibernate_resume, which will proceed 1453 * to unpack the pig image to the correct place in memory. 1454 */ 1455 int 1456 hibernate_read_image(union hibernate_info *hiber_info) 1457 { 1458 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1459 paddr_t image_start, image_end, pig_start, pig_end; 1460 struct hibernate_disk_chunk *chunks; 1461 daddr_t blkctr; 1462 vaddr_t chunktable = (vaddr_t)NULL; 1463 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1464 HIBERNATE_CHUNK_SIZE; 1465 int i; 1466 1467 pmap_activate(curproc); 1468 1469 /* Calculate total chunk table size in disk blocks */ 1470 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1471 1472 blkctr = hiber_info->sig_offset - chunktable_size - 1473 hiber_info->swap_offset; 1474 1475 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1476 &kp_none, &kd_nowait); 1477 1478 if (!chunktable) 1479 return (1); 1480 1481 /* Read the chunktable from disk into the piglet chunktable */ 1482 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1483 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1484 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1485 pmap_update(pmap_kernel()); 1486 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1487 chunktable + i, 0); 1488 } 1489 1490 blkctr = hiber_info->image_offset; 1491 compressed_size = 0; 1492 1493 chunks = (struct hibernate_disk_chunk *)chunktable; 1494 1495 for (i = 0; i < hiber_info->chunk_ctr; i++) 1496 compressed_size += chunks[i].compressed_size; 1497 1498 disk_size = compressed_size; 1499 1500 /* Allocate the pig area */ 1501 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1502 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1503 return (1); 1504 1505 pig_end = pig_start + pig_sz; 1506 1507 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1508 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1509 image_start = pig_start; 1510 1511 image_start = image_end - disk_size; 1512 1513 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1514 chunks); 1515 1516 pmap_kremove(chunktable, PAGE_SIZE); 1517 pmap_update(pmap_kernel()); 1518 1519 /* Prepare the resume time pmap/page table */ 1520 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1521 1522 /* Read complete, clear the signature and return */ 1523 return hibernate_clear_signature(); 1524 } 1525 1526 /* 1527 * Read the hibernated memory chunks from disk (chunk information at this 1528 * point is stored in the piglet) into the pig area specified by 1529 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1530 * only chunk with overlap possibilities. 1531 */ 1532 int 1533 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1534 paddr_t pig_end, size_t image_compr_size, 1535 struct hibernate_disk_chunk *chunks) 1536 { 1537 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1538 paddr_t copy_start, copy_end, piglet_cur; 1539 paddr_t piglet_base = hib_info->piglet_pa; 1540 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1541 daddr_t blkctr; 1542 size_t processed, compressed_size, read_size; 1543 int i, j, overlap, found, nchunks; 1544 int nochunks = 0, nfchunks = 0, npchunks = 0; 1545 int *ochunks, *pchunks, *fchunks; 1546 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1547 1548 global_pig_start = pig_start; 1549 1550 /* XXX - dont need this on all archs */ 1551 pmap_activate(curproc); 1552 1553 /* 1554 * These mappings go into the resuming kernel's page table, and are 1555 * used only during image read. They dissappear from existence 1556 * when the suspended kernel is unpacked on top of us. 1557 */ 1558 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1559 if (!tempva) 1560 return (1); 1561 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1562 &kp_none, &kd_nowait); 1563 if (!hibernate_fchunk_area) 1564 return (1); 1565 1566 /* Temporary output chunk ordering VA */ 1567 ochunks = (int *)hibernate_fchunk_area; 1568 1569 /* Piglet chunk ordering VA */ 1570 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1571 1572 /* Final chunk ordering VA */ 1573 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1574 1575 /* Map the chunk ordering region */ 1576 pmap_kenter_pa(hibernate_fchunk_area, 1577 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1578 pmap_update(pmap_kernel()); 1579 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1580 VM_PROT_ALL); 1581 pmap_update(pmap_kernel()); 1582 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1583 VM_PROT_ALL); 1584 pmap_update(pmap_kernel()); 1585 1586 nchunks = hib_info->chunk_ctr; 1587 1588 /* Initially start all chunks as unplaced */ 1589 for (i = 0; i < nchunks; i++) 1590 chunks[i].flags = 0; 1591 1592 /* 1593 * Search the list for chunks that are outside the pig area. These 1594 * can be placed first in the final output list. 1595 */ 1596 for (i = 0; i < nchunks; i++) { 1597 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1598 ochunks[nochunks] = i; 1599 fchunks[nfchunks] = i; 1600 nochunks++; 1601 nfchunks++; 1602 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1603 } 1604 } 1605 1606 /* 1607 * Walk the ordering, place the chunks in ascending memory order. 1608 * Conflicts might arise, these are handled next. 1609 */ 1610 do { 1611 img_index = -1; 1612 found = 0; 1613 j = -1; 1614 for (i = 0; i < nchunks; i++) 1615 if (chunks[i].base < img_index && 1616 chunks[i].flags == 0 ) { 1617 j = i; 1618 img_index = chunks[i].base; 1619 } 1620 1621 if (j != -1) { 1622 found = 1; 1623 ochunks[nochunks] = (short)j; 1624 nochunks++; 1625 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1626 } 1627 } while (found); 1628 1629 img_index = pig_start; 1630 1631 /* 1632 * Identify chunk output conflicts (chunks whose pig load area 1633 * corresponds to their original memory placement location) 1634 */ 1635 for (i = 0; i < nochunks ; i++) { 1636 overlap = 0; 1637 r1s = img_index; 1638 r1e = img_index + chunks[ochunks[i]].compressed_size; 1639 r2s = chunks[ochunks[i]].base; 1640 r2e = chunks[ochunks[i]].end; 1641 1642 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1643 if (overlap) 1644 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1645 img_index += chunks[ochunks[i]].compressed_size; 1646 } 1647 1648 /* 1649 * Prepare the final output chunk list. Calculate an output 1650 * inflate strategy for overlapping chunks if needed. 1651 */ 1652 img_index = pig_start; 1653 for (i = 0; i < nochunks ; i++) { 1654 /* 1655 * If a conflict is detected, consume enough compressed 1656 * output chunks to fill the piglet 1657 */ 1658 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1659 copy_start = piglet_base; 1660 copy_end = piglet_end; 1661 piglet_cur = piglet_base; 1662 npchunks = 0; 1663 j = i; 1664 1665 while (copy_start < copy_end && j < nochunks) { 1666 piglet_cur += chunks[ochunks[j]].compressed_size; 1667 pchunks[npchunks] = ochunks[j]; 1668 npchunks++; 1669 copy_start += chunks[ochunks[j]].compressed_size; 1670 img_index += chunks[ochunks[j]].compressed_size; 1671 i++; 1672 j++; 1673 } 1674 1675 piglet_cur = piglet_base; 1676 for (j = 0; j < npchunks; j++) { 1677 piglet_cur += chunks[pchunks[j]].compressed_size; 1678 fchunks[nfchunks] = pchunks[j]; 1679 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1680 nfchunks++; 1681 } 1682 } else { 1683 /* 1684 * No conflict, chunk can be added without copying 1685 */ 1686 if ((chunks[ochunks[i]].flags & 1687 HIBERNATE_CHUNK_USED) == 0) { 1688 fchunks[nfchunks] = ochunks[i]; 1689 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1690 nfchunks++; 1691 } 1692 img_index += chunks[ochunks[i]].compressed_size; 1693 } 1694 } 1695 1696 img_index = pig_start; 1697 for (i = 0; i < nfchunks; i++) { 1698 piglet_cur = piglet_base; 1699 img_index += chunks[fchunks[i]].compressed_size; 1700 } 1701 1702 img_cur = pig_start; 1703 1704 for (i = 0; i < nfchunks; i++) { 1705 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1706 processed = 0; 1707 compressed_size = chunks[fchunks[i]].compressed_size; 1708 1709 while (processed < compressed_size) { 1710 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1711 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1712 VM_PROT_ALL); 1713 pmap_update(pmap_kernel()); 1714 1715 if (compressed_size - processed >= PAGE_SIZE) 1716 read_size = PAGE_SIZE; 1717 else 1718 read_size = compressed_size - processed; 1719 1720 hibernate_block_io(hib_info, blkctr, read_size, 1721 tempva + (img_cur & PAGE_MASK), 0); 1722 1723 blkctr += (read_size / hib_info->secsize); 1724 1725 hibernate_flush(); 1726 pmap_kremove(tempva, PAGE_SIZE); 1727 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1728 processed += read_size; 1729 img_cur += read_size; 1730 } 1731 } 1732 1733 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1734 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1735 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1736 pmap_update(pmap_kernel()); 1737 1738 return (0); 1739 } 1740 1741 /* 1742 * Hibernating a machine comprises the following operations: 1743 * 1. Calculating this machine's hibernate_info information 1744 * 2. Allocating a piglet and saving the piglet's physaddr 1745 * 3. Calculating the memory chunks 1746 * 4. Writing the compressed chunks to disk 1747 * 5. Writing the chunk table 1748 * 6. Writing the signature block (hibernate_info) 1749 * 1750 * On most architectures, the function calling hibernate_suspend would 1751 * then power off the machine using some MD-specific implementation. 1752 */ 1753 int 1754 hibernate_suspend(void) 1755 { 1756 union hibernate_info hib_info; 1757 size_t swap_size; 1758 1759 /* 1760 * Calculate memory ranges, swap offsets, etc. 1761 * This also allocates a piglet whose physaddr is stored in 1762 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1763 */ 1764 if (get_hibernate_info(&hib_info, 1)) 1765 return (1); 1766 1767 swap_size = hib_info.image_size + hib_info.secsize + 1768 HIBERNATE_CHUNK_TABLE_SIZE; 1769 1770 if (uvm_swap_check_range(hib_info.device, swap_size)) { 1771 printf("insufficient swap space for hibernate\n"); 1772 return (1); 1773 } 1774 1775 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1776 VM_PROT_ALL); 1777 pmap_activate(curproc); 1778 1779 /* Stash the piglet VA so we can free it in the resuming kernel */ 1780 global_piglet_va = hib_info.piglet_va; 1781 1782 if (hibernate_write_chunks(&hib_info)) 1783 return (1); 1784 1785 if (hibernate_write_chunktable(&hib_info)) 1786 return (1); 1787 1788 if (hibernate_write_signature(&hib_info)) 1789 return (1); 1790 1791 delay(500000); 1792 return (0); 1793 } 1794 1795 /* 1796 * Free items allocated by hibernate_suspend() 1797 */ 1798 void 1799 hibernate_free(void) 1800 { 1801 if (global_piglet_va) 1802 uvm_pmr_free_piglet(global_piglet_va, 1803 3*HIBERNATE_CHUNK_SIZE); 1804 1805 if (hibernate_copy_page) 1806 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1807 if (hibernate_temp_page) 1808 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1809 1810 pmap_update(pmap_kernel()); 1811 1812 if (hibernate_copy_page) 1813 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1814 &kv_any, &kp_none); 1815 if (hibernate_temp_page) 1816 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1817 &kv_any, &kp_none); 1818 1819 global_piglet_va = 0; 1820 hibernate_copy_page = 0; 1821 hibernate_temp_page = 0; 1822 } 1823