1 /* $OpenBSD: subr_hibernate.c,v 1.32 2011/11/29 05:21:08 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 struct hibernate_zlib_state *hibernate_state; 36 37 /* Temporary vaddr ranges used during hibernate */ 38 vaddr_t hibernate_temp_page; 39 vaddr_t hibernate_copy_page; 40 41 /* Hibernate info as read from disk during resume */ 42 union hibernate_info disk_hiber_info; 43 paddr_t global_pig_start; 44 vaddr_t global_piglet_va; 45 46 /* 47 * Hib alloc enforced alignment. 48 */ 49 #define HIB_ALIGN 8 /* bytes alignment */ 50 51 /* 52 * sizeof builtin operation, but with alignment constraint. 53 */ 54 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 55 56 struct hiballoc_entry { 57 size_t hibe_use; 58 size_t hibe_space; 59 RB_ENTRY(hiballoc_entry) hibe_entry; 60 }; 61 62 /* 63 * Compare hiballoc entries based on the address they manage. 64 * 65 * Since the address is fixed, relative to struct hiballoc_entry, 66 * we just compare the hiballoc_entry pointers. 67 */ 68 static __inline int 69 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 70 { 71 return l < r ? -1 : (l > r); 72 } 73 74 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 75 76 /* 77 * Given a hiballoc entry, return the address it manages. 78 */ 79 static __inline void * 80 hib_entry_to_addr(struct hiballoc_entry *entry) 81 { 82 caddr_t addr; 83 84 addr = (caddr_t)entry; 85 addr += HIB_SIZEOF(struct hiballoc_entry); 86 return addr; 87 } 88 89 /* 90 * Given an address, find the hiballoc that corresponds. 91 */ 92 static __inline struct hiballoc_entry* 93 hib_addr_to_entry(void *addr_param) 94 { 95 caddr_t addr; 96 97 addr = (caddr_t)addr_param; 98 addr -= HIB_SIZEOF(struct hiballoc_entry); 99 return (struct hiballoc_entry*)addr; 100 } 101 102 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 103 104 /* 105 * Allocate memory from the arena. 106 * 107 * Returns NULL if no memory is available. 108 */ 109 void * 110 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 111 { 112 struct hiballoc_entry *entry, *new_entry; 113 size_t find_sz; 114 115 /* 116 * Enforce alignment of HIB_ALIGN bytes. 117 * 118 * Note that, because the entry is put in front of the allocation, 119 * 0-byte allocations are guaranteed a unique address. 120 */ 121 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 122 123 /* 124 * Find an entry with hibe_space >= find_sz. 125 * 126 * If the root node is not large enough, we switch to tree traversal. 127 * Because all entries are made at the bottom of the free space, 128 * traversal from the end has a slightly better chance of yielding 129 * a sufficiently large space. 130 */ 131 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 132 entry = RB_ROOT(&arena->hib_addrs); 133 if (entry != NULL && entry->hibe_space < find_sz) { 134 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 135 if (entry->hibe_space >= find_sz) 136 break; 137 } 138 } 139 140 /* 141 * Insufficient or too fragmented memory. 142 */ 143 if (entry == NULL) 144 return NULL; 145 146 /* 147 * Create new entry in allocated space. 148 */ 149 new_entry = (struct hiballoc_entry*)( 150 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 151 new_entry->hibe_space = entry->hibe_space - find_sz; 152 new_entry->hibe_use = alloc_sz; 153 154 /* 155 * Insert entry. 156 */ 157 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 158 panic("hib_alloc: insert failure"); 159 entry->hibe_space = 0; 160 161 /* Return address managed by entry. */ 162 return hib_entry_to_addr(new_entry); 163 } 164 165 /* 166 * Free a pointer previously allocated from this arena. 167 * 168 * If addr is NULL, this will be silently accepted. 169 */ 170 void 171 hib_free(struct hiballoc_arena *arena, void *addr) 172 { 173 struct hiballoc_entry *entry, *prev; 174 175 if (addr == NULL) 176 return; 177 178 /* 179 * Derive entry from addr and check it is really in this arena. 180 */ 181 entry = hib_addr_to_entry(addr); 182 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 183 panic("hib_free: freed item %p not in hib arena", addr); 184 185 /* 186 * Give the space in entry to its predecessor. 187 * 188 * If entry has no predecessor, change its used space into free space 189 * instead. 190 */ 191 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 192 if (prev != NULL && 193 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 194 prev->hibe_use + prev->hibe_space) == entry) { 195 /* Merge entry. */ 196 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 197 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 198 entry->hibe_use + entry->hibe_space; 199 } else { 200 /* Flip used memory to free space. */ 201 entry->hibe_space += entry->hibe_use; 202 entry->hibe_use = 0; 203 } 204 } 205 206 /* 207 * Initialize hiballoc. 208 * 209 * The allocator will manage memmory at ptr, which is len bytes. 210 */ 211 int 212 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 213 { 214 struct hiballoc_entry *entry; 215 caddr_t ptr; 216 size_t len; 217 218 RB_INIT(&arena->hib_addrs); 219 220 /* 221 * Hib allocator enforces HIB_ALIGN alignment. 222 * Fixup ptr and len. 223 */ 224 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 225 len = p_len - ((size_t)ptr - (size_t)p_ptr); 226 len &= ~((size_t)HIB_ALIGN - 1); 227 228 /* 229 * Insufficient memory to be able to allocate and also do bookkeeping. 230 */ 231 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 232 return ENOMEM; 233 234 /* 235 * Create entry describing space. 236 */ 237 entry = (struct hiballoc_entry*)ptr; 238 entry->hibe_use = 0; 239 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 240 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 241 242 return 0; 243 } 244 245 /* 246 * Zero all free memory. 247 */ 248 void 249 uvm_pmr_zero_everything(void) 250 { 251 struct uvm_pmemrange *pmr; 252 struct vm_page *pg; 253 int i; 254 255 uvm_lock_fpageq(); 256 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 257 /* Zero single pages. */ 258 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 259 != NULL) { 260 uvm_pmr_remove(pmr, pg); 261 uvm_pagezero(pg); 262 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 263 uvmexp.zeropages++; 264 uvm_pmr_insert(pmr, pg, 0); 265 } 266 267 /* Zero multi page ranges. */ 268 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 269 != NULL) { 270 pg--; /* Size tree always has second page. */ 271 uvm_pmr_remove(pmr, pg); 272 for (i = 0; i < pg->fpgsz; i++) { 273 uvm_pagezero(&pg[i]); 274 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 275 uvmexp.zeropages++; 276 } 277 uvm_pmr_insert(pmr, pg, 0); 278 } 279 } 280 uvm_unlock_fpageq(); 281 } 282 283 /* 284 * Mark all memory as dirty. 285 * 286 * Used to inform the system that the clean memory isn't clean for some 287 * reason, for example because we just came back from hibernate. 288 */ 289 void 290 uvm_pmr_dirty_everything(void) 291 { 292 struct uvm_pmemrange *pmr; 293 struct vm_page *pg; 294 int i; 295 296 uvm_lock_fpageq(); 297 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 298 /* Dirty single pages. */ 299 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 300 != NULL) { 301 uvm_pmr_remove(pmr, pg); 302 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 303 uvm_pmr_insert(pmr, pg, 0); 304 } 305 306 /* Dirty multi page ranges. */ 307 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 308 != NULL) { 309 pg--; /* Size tree always has second page. */ 310 uvm_pmr_remove(pmr, pg); 311 for (i = 0; i < pg->fpgsz; i++) 312 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 317 uvmexp.zeropages = 0; 318 uvm_unlock_fpageq(); 319 } 320 321 /* 322 * Allocate the highest address that can hold sz. 323 * 324 * sz in bytes. 325 */ 326 int 327 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 328 { 329 struct uvm_pmemrange *pmr; 330 struct vm_page *pig_pg, *pg; 331 332 /* 333 * Convert sz to pages, since that is what pmemrange uses internally. 334 */ 335 sz = atop(round_page(sz)); 336 337 uvm_lock_fpageq(); 338 339 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 340 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 341 if (pig_pg->fpgsz >= sz) { 342 goto found; 343 } 344 } 345 } 346 347 /* 348 * Allocation failure. 349 */ 350 uvm_unlock_pageq(); 351 return ENOMEM; 352 353 found: 354 /* Remove page from freelist. */ 355 uvm_pmr_remove_size(pmr, pig_pg); 356 pig_pg->fpgsz -= sz; 357 pg = pig_pg + pig_pg->fpgsz; 358 if (pig_pg->fpgsz == 0) 359 uvm_pmr_remove_addr(pmr, pig_pg); 360 else 361 uvm_pmr_insert_size(pmr, pig_pg); 362 363 uvmexp.free -= sz; 364 *addr = VM_PAGE_TO_PHYS(pg); 365 366 /* 367 * Update pg flags. 368 * 369 * Note that we trash the sz argument now. 370 */ 371 while (sz > 0) { 372 KASSERT(pg->pg_flags & PQ_FREE); 373 374 atomic_clearbits_int(&pg->pg_flags, 375 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 376 377 if (pg->pg_flags & PG_ZERO) 378 uvmexp.zeropages -= sz; 379 atomic_clearbits_int(&pg->pg_flags, 380 PG_ZERO|PQ_FREE); 381 382 pg->uobject = NULL; 383 pg->uanon = NULL; 384 pg->pg_version++; 385 386 /* 387 * Next. 388 */ 389 pg++; 390 sz--; 391 } 392 393 /* Return. */ 394 uvm_unlock_fpageq(); 395 return 0; 396 } 397 398 /* 399 * Allocate a piglet area. 400 * 401 * This is as low as possible. 402 * Piglets are aligned. 403 * 404 * sz and align in bytes. 405 * 406 * The call will sleep for the pagedaemon to attempt to free memory. 407 * The pagedaemon may decide its not possible to free enough memory, causing 408 * the allocation to fail. 409 */ 410 int 411 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 412 { 413 paddr_t pg_addr, piglet_addr; 414 struct uvm_pmemrange *pmr; 415 struct vm_page *pig_pg, *pg; 416 struct pglist pageq; 417 int pdaemon_woken; 418 vaddr_t piglet_va; 419 420 KASSERT((align & (align - 1)) == 0); 421 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 422 423 /* 424 * Fixup arguments: align must be at least PAGE_SIZE, 425 * sz will be converted to pagecount, since that is what 426 * pmemrange uses internally. 427 */ 428 if (align < PAGE_SIZE) 429 align = PAGE_SIZE; 430 sz = round_page(sz); 431 432 uvm_lock_fpageq(); 433 434 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 435 pmr_use) { 436 retry: 437 /* 438 * Search for a range with enough space. 439 * Use the address tree, to ensure the range is as low as 440 * possible. 441 */ 442 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 443 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 444 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 445 446 if (atop(pg_addr) + pig_pg->fpgsz >= 447 atop(piglet_addr) + atop(sz)) 448 goto found; 449 } 450 } 451 452 /* 453 * Try to coerse the pagedaemon into freeing memory 454 * for the piglet. 455 * 456 * pdaemon_woken is set to prevent the code from 457 * falling into an endless loop. 458 */ 459 if (!pdaemon_woken) { 460 pdaemon_woken = 1; 461 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 462 sz, UVM_PLA_FAILOK) == 0) 463 goto retry; 464 } 465 466 /* Return failure. */ 467 uvm_unlock_fpageq(); 468 return ENOMEM; 469 470 found: 471 /* 472 * Extract piglet from pigpen. 473 */ 474 TAILQ_INIT(&pageq); 475 uvm_pmr_extract_range(pmr, pig_pg, 476 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 477 478 *pa = piglet_addr; 479 uvmexp.free -= atop(sz); 480 481 /* 482 * Update pg flags. 483 * 484 * Note that we trash the sz argument now. 485 */ 486 TAILQ_FOREACH(pg, &pageq, pageq) { 487 KASSERT(pg->pg_flags & PQ_FREE); 488 489 atomic_clearbits_int(&pg->pg_flags, 490 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 491 492 if (pg->pg_flags & PG_ZERO) 493 uvmexp.zeropages--; 494 atomic_clearbits_int(&pg->pg_flags, 495 PG_ZERO|PQ_FREE); 496 497 pg->uobject = NULL; 498 pg->uanon = NULL; 499 pg->pg_version++; 500 } 501 502 uvm_unlock_fpageq(); 503 504 /* 505 * Now allocate a va. 506 * Use direct mappings for the pages. 507 */ 508 509 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 510 if (!piglet_va) { 511 uvm_pglistfree(&pageq); 512 return ENOMEM; 513 } 514 515 /* 516 * Map piglet to va. 517 */ 518 TAILQ_FOREACH(pg, &pageq, pageq) { 519 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 520 piglet_va += PAGE_SIZE; 521 } 522 pmap_update(pmap_kernel()); 523 524 return 0; 525 } 526 527 /* 528 * Free a piglet area. 529 */ 530 void 531 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 532 { 533 paddr_t pa; 534 struct vm_page *pg; 535 536 /* 537 * Fix parameters. 538 */ 539 sz = round_page(sz); 540 541 /* 542 * Find the first page in piglet. 543 * Since piglets are contiguous, the first pg is all we need. 544 */ 545 if (!pmap_extract(pmap_kernel(), va, &pa)) 546 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 547 pg = PHYS_TO_VM_PAGE(pa); 548 if (pg == NULL) 549 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 550 551 /* 552 * Unmap. 553 */ 554 pmap_kremove(va, sz); 555 pmap_update(pmap_kernel()); 556 557 /* 558 * Free the physical and virtual memory. 559 */ 560 uvm_pmr_freepages(pg, atop(sz)); 561 km_free((void *)va, sz, &kv_any, &kp_none); 562 } 563 564 /* 565 * Physmem RLE compression support. 566 * 567 * Given a physical page address, it will return the number of pages 568 * starting at the address, that are free. Clamps to a max of 255 pages. 569 * Returns 0 if the page at addr is not free. 570 */ 571 u_char 572 uvm_page_rle(paddr_t addr) 573 { 574 struct vm_page *pg, *pg_end; 575 struct vm_physseg *vmp; 576 int pseg_idx, off_idx; 577 578 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 579 if (pseg_idx == -1) 580 return 0; 581 582 vmp = &vm_physmem[pseg_idx]; 583 pg = &vmp->pgs[off_idx]; 584 if (!(pg->pg_flags & PQ_FREE)) 585 return 0; 586 587 /* 588 * Search for the first non-free page after pg. 589 * Note that the page may not be the first page in a free pmemrange, 590 * therefore pg->fpgsz cannot be used. 591 */ 592 for (pg_end = pg; pg_end <= vmp->lastpg && 593 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 594 ; 595 return max(pg_end - pg, 255); 596 } 597 598 /* 599 * Fills out the hibernate_info union pointed to by hiber_info 600 * with information about this machine (swap signature block 601 * offsets, number of memory ranges, kernel in use, etc) 602 */ 603 int 604 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 605 { 606 int chunktable_size; 607 struct disklabel dl; 608 char err_string[128], *dl_ret; 609 610 /* Determine I/O function to use */ 611 hiber_info->io_func = get_hibernate_io_function(); 612 if (hiber_info->io_func == NULL) 613 return (1); 614 615 /* Calculate hibernate device */ 616 hiber_info->device = swdevt[0].sw_dev; 617 618 /* Read disklabel (used to calculate signature and image offsets) */ 619 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 620 621 if (dl_ret) { 622 printf("Hibernate error reading disklabel: %s\n", dl_ret); 623 return (1); 624 } 625 626 hiber_info->secsize = dl.d_secsize; 627 628 /* Make sure the signature can fit in one block */ 629 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 630 631 /* Calculate swap offset from start of disk */ 632 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 633 634 /* Calculate signature block location */ 635 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 636 dl.d_partitions[1].p_size - 637 sizeof(union hibernate_info)/hiber_info->secsize; 638 639 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 640 641 /* Stash kernel version information */ 642 bzero(&hiber_info->kernel_version, 128); 643 bcopy(version, &hiber_info->kernel_version, 644 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 645 646 if (suspend) { 647 /* Allocate piglet region */ 648 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 649 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 650 HIBERNATE_CHUNK_SIZE)) { 651 printf("Hibernate failed to allocate the piglet\n"); 652 return (1); 653 } 654 hiber_info->io_page = (void *)hiber_info->piglet_va; 655 } else { 656 /* 657 * Resuming kernels use a regular I/O page since we won't 658 * have access to the suspended kernel's piglet VA at this 659 * point. No need to free this I/O page as it will vanish 660 * as part of the resume. 661 */ 662 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 663 if (!hiber_info->io_page) 664 return (1); 665 } 666 667 668 /* 669 * Initialize of the hibernate IO function (for drivers which 670 * need that) 671 */ 672 if (hiber_info->io_func(hiber_info->device, 0, 673 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 674 goto fail; 675 676 if (get_hibernate_info_md(hiber_info)) 677 goto fail; 678 679 /* Calculate memory image location */ 680 hiber_info->image_offset = dl.d_partitions[1].p_offset + 681 dl.d_partitions[1].p_size - 682 (hiber_info->image_size / hiber_info->secsize) - 683 sizeof(union hibernate_info)/hiber_info->secsize - 684 chunktable_size; 685 686 return (0); 687 fail: 688 if (suspend) 689 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 690 691 return (1); 692 } 693 694 /* 695 * Allocate nitems*size bytes from the hiballoc area presently in use 696 */ 697 void 698 *hibernate_zlib_alloc(void *unused, int nitems, int size) 699 { 700 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 701 } 702 703 /* 704 * Free the memory pointed to by addr in the hiballoc area presently in 705 * use 706 */ 707 void 708 hibernate_zlib_free(void *unused, void *addr) 709 { 710 hib_free(&hibernate_state->hiballoc_arena, addr); 711 } 712 713 /* 714 * Inflate size bytes from src into dest, skipping any pages in 715 * [src..dest] that are special (see hibernate_inflate_skip) 716 * 717 * This function executes while using the resume-time stack 718 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 719 * will likely hang or reset the machine. 720 */ 721 void 722 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest, 723 paddr_t src, size_t size) 724 { 725 int i; 726 u_char rle; 727 728 hibernate_state->hib_stream.next_in = (char *)src; 729 hibernate_state->hib_stream.avail_in = size; 730 731 do { 732 /* Flush cache and TLB */ 733 hibernate_flush(); 734 735 /* Read RLE code */ 736 hibernate_state->hib_stream.next_out = (char *)&rle; 737 hibernate_state->hib_stream.avail_out = sizeof(rle); 738 739 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 740 if (i != Z_OK && i != Z_STREAM_END) { 741 /* 742 * XXX - this will likely reboot/hang most machines, 743 * but there's not much else we can do here. 744 */ 745 panic("inflate rle error"); 746 } 747 748 if (i == Z_STREAM_END) 749 goto next_page; 750 751 /* Skip while RLE code is != 0 */ 752 while (rle != 0) { 753 dest += (rle * PAGE_SIZE); 754 hibernate_state->hib_stream.next_out = (char *)&rle; 755 hibernate_state->hib_stream.avail_out = sizeof(rle); 756 757 i = inflate(&hibernate_state->hib_stream, 758 Z_FULL_FLUSH); 759 if (i != Z_OK && i != Z_STREAM_END) { 760 /* 761 * XXX - this will likely reboot/hang most 762 * machines but there's not much else 763 * we can do here. 764 */ 765 panic("inflate rle error 2"); 766 } 767 } 768 769 if (i == Z_STREAM_END) 770 goto next_page; 771 772 /* 773 * Is this a special page? If yes, redirect the 774 * inflate output to a scratch page (eg, discard it) 775 */ 776 if (hibernate_inflate_skip(hiber_info, dest)) 777 hibernate_enter_resume_mapping( 778 HIBERNATE_INFLATE_PAGE, 779 HIBERNATE_INFLATE_PAGE, 0); 780 else 781 hibernate_enter_resume_mapping( 782 HIBERNATE_INFLATE_PAGE, dest, 0); 783 784 hibernate_flush(); 785 786 /* Set up the stream for inflate */ 787 hibernate_state->hib_stream.next_out = 788 (char *)HIBERNATE_INFLATE_PAGE; 789 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 790 791 /* Process next block of data */ 792 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 793 if (i != Z_OK && i != Z_STREAM_END) { 794 /* 795 * XXX - this will likely reboot/hang most machines, 796 * but there's not much else we can do here. 797 */ 798 panic("inflate error"); 799 } 800 801 next_page: 802 dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out; 803 } while (i != Z_STREAM_END); 804 } 805 806 /* 807 * deflate from src into the I/O page, up to 'remaining' bytes 808 * 809 * Returns number of input bytes consumed, and may reset 810 * the 'remaining' parameter if not all the output space was consumed 811 * (this information is needed to know how much to write to disk 812 */ 813 size_t 814 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 815 size_t *remaining) 816 { 817 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 818 819 /* Set up the stream for deflate */ 820 hibernate_state->hib_stream.next_in = (caddr_t)src; 821 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 822 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 823 (PAGE_SIZE - *remaining); 824 hibernate_state->hib_stream.avail_out = *remaining; 825 826 /* Process next block of data */ 827 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 828 panic("hibernate zlib deflate error"); 829 830 /* Update pointers and return number of bytes consumed */ 831 *remaining = hibernate_state->hib_stream.avail_out; 832 return (PAGE_SIZE - (src & PAGE_MASK)) - 833 hibernate_state->hib_stream.avail_in; 834 } 835 836 /* 837 * Write the hibernation information specified in hiber_info 838 * to the location in swap previously calculated (last block of 839 * swap), called the "signature block". 840 * 841 * Write the memory chunk table to the area in swap immediately 842 * preceding the signature block. 843 */ 844 int 845 hibernate_write_signature(union hibernate_info *hiber_info) 846 { 847 /* Write hibernate info to disk */ 848 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 849 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 850 hiber_info->io_page)); 851 } 852 853 /* 854 * Write the memory chunk table to the area in swap immediately 855 * preceding the signature block. The chunk table is stored 856 * in the piglet when this function is called. 857 */ 858 int 859 hibernate_write_chunktable(union hibernate_info *hiber_info) 860 { 861 struct hibernate_disk_chunk *chunks; 862 vaddr_t hibernate_chunk_table_start; 863 size_t hibernate_chunk_table_size; 864 daddr_t chunkbase; 865 int i; 866 867 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 868 869 chunkbase = hiber_info->sig_offset - 870 (hibernate_chunk_table_size / hiber_info->secsize); 871 872 hibernate_chunk_table_start = hiber_info->piglet_va + 873 HIBERNATE_CHUNK_SIZE; 874 875 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 876 HIBERNATE_CHUNK_SIZE); 877 878 /* Write chunk table */ 879 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 880 if (hiber_info->io_func(hiber_info->device, 881 chunkbase + (i/hiber_info->secsize), 882 (vaddr_t)(hibernate_chunk_table_start + i), 883 MAXPHYS, HIB_W, hiber_info->io_page)) 884 return (1); 885 } 886 887 return (0); 888 } 889 890 /* 891 * Write an empty hiber_info to the swap signature block, which is 892 * guaranteed to not match any valid hiber_info. 893 */ 894 int 895 hibernate_clear_signature(void) 896 { 897 union hibernate_info blank_hiber_info; 898 union hibernate_info hiber_info; 899 900 /* Zero out a blank hiber_info */ 901 bzero(&blank_hiber_info, sizeof(hiber_info)); 902 903 if (get_hibernate_info(&hiber_info, 0)) 904 return (1); 905 906 /* Write (zeroed) hibernate info to disk */ 907 /* XXX - use regular kernel write routine for this */ 908 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 909 (vaddr_t)&blank_hiber_info, hiber_info.secsize, HIB_W, 910 hiber_info.io_page)) 911 panic("error hibernate write 6"); 912 913 return (0); 914 } 915 916 /* 917 * Check chunk range overlap when calculating whether or not to copy a 918 * compressed chunk to the piglet area before decompressing. 919 * 920 * returns zero if the ranges do not overlap, non-zero otherwise. 921 */ 922 int 923 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 924 { 925 /* case A : end of r1 overlaps start of r2 */ 926 if (r1s < r2s && r1e > r2s) 927 return (1); 928 929 /* case B : r1 entirely inside r2 */ 930 if (r1s >= r2s && r1e <= r2e) 931 return (1); 932 933 /* case C : r2 entirely inside r1 */ 934 if (r2s >= r1s && r2e <= r1e) 935 return (1); 936 937 /* case D : end of r2 overlaps start of r1 */ 938 if (r2s < r1s && r2e > r1s) 939 return (1); 940 941 return (0); 942 } 943 944 /* 945 * Compare two hibernate_infos to determine if they are the same (eg, 946 * we should be performing a hibernate resume on this machine. 947 * Not all fields are checked - just enough to verify that the machine 948 * has the same memory configuration and kernel as the one that 949 * wrote the signature previously. 950 */ 951 int 952 hibernate_compare_signature(union hibernate_info *mine, 953 union hibernate_info *disk) 954 { 955 u_int i; 956 957 if (mine->nranges != disk->nranges) 958 return (1); 959 960 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 961 return (1); 962 963 for (i = 0; i < mine->nranges; i++) { 964 if ((mine->ranges[i].base != disk->ranges[i].base) || 965 (mine->ranges[i].end != disk->ranges[i].end) ) 966 return (1); 967 } 968 969 return (0); 970 } 971 972 /* 973 * Reads read_size bytes from the hibernate device specified in 974 * hib_info at offset blkctr. Output is placed into the vaddr specified 975 * at dest. 976 * 977 * Separate offsets and pages are used to handle misaligned reads (reads 978 * that span a page boundary). 979 * 980 * blkctr specifies a relative offset (relative to the start of swap), 981 * not an absolute disk offset 982 * 983 */ 984 int 985 hibernate_read_block(union hibernate_info *hib_info, daddr_t blkctr, 986 size_t read_size, vaddr_t dest) 987 { 988 struct buf *bp; 989 struct bdevsw *bdsw; 990 int error; 991 992 bp = geteblk(read_size); 993 bdsw = &bdevsw[major(hib_info->device)]; 994 995 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 996 if (error) { 997 printf("hibernate_read_block open failed\n"); 998 return (1); 999 } 1000 1001 bp->b_bcount = read_size; 1002 bp->b_blkno = blkctr; 1003 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1004 SET(bp->b_flags, B_BUSY | B_READ | B_RAW); 1005 bp->b_dev = hib_info->device; 1006 bp->b_cylinder = 0; 1007 (*bdsw->d_strategy)(bp); 1008 1009 error = biowait(bp); 1010 if (error) { 1011 printf("hibernate_read_block biowait failed %d\n", error); 1012 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1013 curproc); 1014 if (error) 1015 printf("hibernate_read_block error close failed\n"); 1016 return (1); 1017 } 1018 1019 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1020 if (error) { 1021 printf("hibernate_read_block close failed\n"); 1022 return (1); 1023 } 1024 1025 bcopy(bp->b_data, (caddr_t)dest, read_size); 1026 1027 bp->b_flags |= B_INVAL; 1028 brelse(bp); 1029 1030 return (0); 1031 } 1032 1033 /* 1034 * Reads the signature block from swap, checks against the current machine's 1035 * information. If the information matches, perform a resume by reading the 1036 * saved image into the pig area, and unpacking. 1037 */ 1038 void 1039 hibernate_resume(void) 1040 { 1041 union hibernate_info hiber_info; 1042 int s; 1043 1044 /* Get current running machine's hibernate info */ 1045 bzero(&hiber_info, sizeof(hiber_info)); 1046 if (get_hibernate_info(&hiber_info, 0)) 1047 return; 1048 1049 /* Read hibernate info from disk */ 1050 s = splbio(); 1051 1052 /* XXX use regular kernel read routine here */ 1053 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 1054 (vaddr_t)&disk_hiber_info, hiber_info.secsize, HIB_R, 1055 hiber_info.io_page)) 1056 panic("error in hibernate read"); 1057 1058 /* 1059 * If on-disk and in-memory hibernate signatures match, 1060 * this means we should do a resume from hibernate. 1061 */ 1062 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1063 return; 1064 1065 /* Read the image from disk into the image (pig) area */ 1066 if (hibernate_read_image(&disk_hiber_info)) 1067 goto fail; 1068 1069 /* Point of no return ... */ 1070 1071 disable_intr(); 1072 cold = 1; 1073 1074 /* Switch stacks */ 1075 hibernate_switch_stack_machdep(); 1076 1077 /* 1078 * Image is now in high memory (pig area), copy to correct location 1079 * in memory. We'll eventually end up copying on top of ourself, but 1080 * we are assured the kernel code here is the same between the 1081 * hibernated and resuming kernel, and we are running on our own 1082 * stack, so the overwrite is ok. 1083 */ 1084 hibernate_unpack_image(&disk_hiber_info); 1085 1086 /* 1087 * Resume the loaded kernel by jumping to the MD resume vector. 1088 * We won't be returning from this call. 1089 */ 1090 hibernate_resume_machdep(); 1091 1092 fail: 1093 printf("Unable to resume hibernated image\n"); 1094 } 1095 1096 /* 1097 * Unpack image from pig area to original location by looping through the 1098 * list of output chunks in the order they should be restored (fchunks). 1099 * This ordering is used to avoid having inflate overwrite a chunk in the 1100 * middle of processing that chunk. This will, of course, happen during the 1101 * final output chunk, where we copy the chunk to the piglet area first, 1102 * before inflating. 1103 */ 1104 void 1105 hibernate_unpack_image(union hibernate_info *hiber_info) 1106 { 1107 struct hibernate_disk_chunk *chunks; 1108 union hibernate_info local_hiber_info; 1109 paddr_t image_cur = global_pig_start; 1110 int *fchunks, i; 1111 char *pva = (char *)hiber_info->piglet_va; 1112 1113 /* Mask off based on arch-specific piglet page size */ 1114 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1115 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1116 1117 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1118 1119 /* Can't use hiber_info that's passed in after here */ 1120 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1121 1122 hibernate_state = (struct hibernate_zlib_state *) 1123 (pva + (7 * PAGE_SIZE)); 1124 1125 hibernate_activate_resume_pt_machdep(); 1126 1127 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1128 /* Reset zlib for inflate */ 1129 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1130 panic("hibernate failed to reset zlib for inflate"); 1131 1132 /* 1133 * If there is a conflict, copy the chunk to the piglet area 1134 * before unpacking it to its original location. 1135 */ 1136 if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1137 hibernate_inflate(&local_hiber_info, 1138 chunks[fchunks[i]].base, image_cur, 1139 chunks[fchunks[i]].compressed_size); 1140 else { 1141 bcopy((caddr_t)image_cur, 1142 pva + (HIBERNATE_CHUNK_SIZE * 2), 1143 chunks[fchunks[i]].compressed_size); 1144 hibernate_inflate(&local_hiber_info, 1145 chunks[fchunks[i]].base, 1146 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1147 chunks[fchunks[i]].compressed_size); 1148 } 1149 image_cur += chunks[fchunks[i]].compressed_size; 1150 } 1151 } 1152 1153 /* 1154 * Write a compressed version of this machine's memory to disk, at the 1155 * precalculated swap offset: 1156 * 1157 * end of swap - signature block size - chunk table size - memory size 1158 * 1159 * The function begins by looping through each phys mem range, cutting each 1160 * one into 4MB chunks. These chunks are then compressed individually 1161 * and written out to disk, in phys mem order. Some chunks might compress 1162 * more than others, and for this reason, each chunk's size is recorded 1163 * in the chunk table, which is written to disk after the image has 1164 * properly been compressed and written (in hibernate_write_chunktable). 1165 * 1166 * When this function is called, the machine is nearly suspended - most 1167 * devices are quiesced/suspended, interrupts are off, and cold has 1168 * been set. This means that there can be no side effects once the 1169 * write has started, and the write function itself can also have no 1170 * side effects. 1171 * 1172 * This function uses the piglet area during this process as follows: 1173 * 1174 * offset from piglet base use 1175 * ----------------------- -------------------- 1176 * 0 i/o allocation area 1177 * PAGE_SIZE i/o write area 1178 * 2*PAGE_SIZE temp/scratch page 1179 * 3*PAGE_SIZE temp/scratch page 1180 * 4*PAGE_SIZE hiballoc arena 1181 * 5*PAGE_SIZE to 85*PAGE_SIZE zlib deflate area 1182 * ... 1183 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1184 * 1185 * Some transient piglet content is saved as part of deflate, 1186 * but it is irrelevant during resume as it will be repurposed 1187 * at that time for other things. 1188 */ 1189 int 1190 hibernate_write_chunks(union hibernate_info *hiber_info) 1191 { 1192 paddr_t range_base, range_end, inaddr, temp_inaddr; 1193 size_t nblocks, out_remaining, used, offset = 0; 1194 struct hibernate_disk_chunk *chunks; 1195 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1196 daddr_t blkctr = hiber_info->image_offset; 1197 int i; 1198 1199 hiber_info->chunk_ctr = 0; 1200 1201 /* 1202 * Allocate VA for the temp and copy page. 1203 * These will becomee part of the suspended kernel and will 1204 * be freed in hibernate_free, upon resume. 1205 */ 1206 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1207 &kp_none, &kd_nowait); 1208 if (!hibernate_temp_page) 1209 return (1); 1210 1211 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1212 &kp_none, &kd_nowait); 1213 if (!hibernate_copy_page) 1214 return (1); 1215 1216 pmap_kenter_pa(hibernate_copy_page, 1217 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1218 1219 /* XXX - not needed on all archs */ 1220 pmap_activate(curproc); 1221 1222 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1223 HIBERNATE_CHUNK_SIZE); 1224 1225 /* Calculate the chunk regions */ 1226 for (i = 0; i < hiber_info->nranges; i++) { 1227 range_base = hiber_info->ranges[i].base; 1228 range_end = hiber_info->ranges[i].end; 1229 1230 inaddr = range_base; 1231 1232 while (inaddr < range_end) { 1233 chunks[hiber_info->chunk_ctr].base = inaddr; 1234 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1235 chunks[hiber_info->chunk_ctr].end = inaddr + 1236 HIBERNATE_CHUNK_SIZE; 1237 else 1238 chunks[hiber_info->chunk_ctr].end = range_end; 1239 1240 inaddr += HIBERNATE_CHUNK_SIZE; 1241 hiber_info->chunk_ctr ++; 1242 } 1243 } 1244 1245 /* Compress and write the chunks in the chunktable */ 1246 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1247 range_base = chunks[i].base; 1248 range_end = chunks[i].end; 1249 1250 chunks[i].offset = blkctr; 1251 1252 /* Reset zlib for deflate */ 1253 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1254 return (1); 1255 1256 inaddr = range_base; 1257 1258 /* 1259 * For each range, loop through its phys mem region 1260 * and write out the chunks (the last chunk might be 1261 * smaller than the chunk size). 1262 */ 1263 while (inaddr < range_end) { 1264 out_remaining = PAGE_SIZE; 1265 while (out_remaining > 0 && inaddr < range_end) { 1266 u_char rle; 1267 1268 /* 1269 * Adjust for regions that are not evenly 1270 * divisible by PAGE_SIZE or overflowed 1271 * pages from the previous iteration. 1272 */ 1273 temp_inaddr = (inaddr & PAGE_MASK) + 1274 hibernate_copy_page; 1275 1276 rle = uvm_page_rle(inaddr); 1277 while (rle != 0 && inaddr < range_end) { 1278 hibernate_state->hib_stream.next_in = 1279 (char *)&rle; 1280 hibernate_state->hib_stream.avail_in = 1281 sizeof(rle); 1282 hibernate_state->hib_stream.next_out = 1283 (caddr_t)hibernate_io_page + 1284 (PAGE_SIZE - out_remaining); 1285 hibernate_state->hib_stream.avail_out = 1286 out_remaining; 1287 1288 if (deflate(&hibernate_state->hib_stream, 1289 Z_PARTIAL_FLUSH) != Z_OK) 1290 return (1); 1291 1292 out_remaining = 1293 hibernate_state->hib_stream.avail_out; 1294 inaddr += (rle * PAGE_SIZE); 1295 if (inaddr > range_end) 1296 inaddr = range_end; 1297 else 1298 rle = uvm_page_rle(inaddr); 1299 } 1300 1301 if (out_remaining == 0) { 1302 /* Filled up the page */ 1303 nblocks = PAGE_SIZE / hiber_info->secsize; 1304 1305 if (hiber_info->io_func(hiber_info->device, 1306 blkctr, (vaddr_t)hibernate_io_page, 1307 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1308 return (1); 1309 1310 blkctr += nblocks; 1311 out_remaining = PAGE_SIZE; 1312 } 1313 1314 /* Write '0' RLE code */ 1315 if (inaddr < range_end) { 1316 hibernate_state->hib_stream.next_in = 1317 (char *)&rle; 1318 hibernate_state->hib_stream.avail_in = 1319 sizeof(rle); 1320 hibernate_state->hib_stream.next_out = 1321 (caddr_t)hibernate_io_page + 1322 (PAGE_SIZE - out_remaining); 1323 hibernate_state->hib_stream.avail_out = 1324 out_remaining; 1325 1326 if (deflate(&hibernate_state->hib_stream, 1327 Z_PARTIAL_FLUSH) != Z_OK) 1328 return (1); 1329 1330 out_remaining = 1331 hibernate_state->hib_stream.avail_out; 1332 } 1333 1334 if (out_remaining == 0) { 1335 /* Filled up the page */ 1336 nblocks = PAGE_SIZE / hiber_info->secsize; 1337 1338 if (hiber_info->io_func(hiber_info->device, 1339 blkctr, (vaddr_t)hibernate_io_page, 1340 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1341 return (1); 1342 1343 blkctr += nblocks; 1344 out_remaining = PAGE_SIZE; 1345 } 1346 1347 /* Deflate from temp_inaddr to IO page */ 1348 if (inaddr != range_end) { 1349 pmap_kenter_pa(hibernate_temp_page, 1350 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1351 1352 /* XXX - not needed on all archs */ 1353 pmap_activate(curproc); 1354 1355 bcopy((caddr_t)hibernate_temp_page, 1356 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1357 inaddr += hibernate_deflate(hiber_info, 1358 temp_inaddr, &out_remaining); 1359 } 1360 } 1361 1362 if (out_remaining == 0) { 1363 /* Filled up the page */ 1364 nblocks = PAGE_SIZE / hiber_info->secsize; 1365 1366 if (hiber_info->io_func(hiber_info->device, 1367 blkctr, (vaddr_t)hibernate_io_page, 1368 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1369 return (1); 1370 1371 blkctr += nblocks; 1372 } 1373 } 1374 1375 if (inaddr != range_end) 1376 return (1); 1377 1378 /* 1379 * End of range. Round up to next secsize bytes 1380 * after finishing compress 1381 */ 1382 if (out_remaining == 0) 1383 out_remaining = PAGE_SIZE; 1384 1385 /* Finish compress */ 1386 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1387 hibernate_state->hib_stream.avail_in = 0; 1388 hibernate_state->hib_stream.next_out = 1389 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1390 hibernate_state->hib_stream.avail_out = out_remaining; 1391 1392 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1393 Z_STREAM_END) 1394 return (1); 1395 1396 out_remaining = hibernate_state->hib_stream.avail_out; 1397 1398 used = PAGE_SIZE - out_remaining; 1399 nblocks = used / hiber_info->secsize; 1400 1401 /* Round up to next block if needed */ 1402 if (used % hiber_info->secsize != 0) 1403 nblocks ++; 1404 1405 /* Write final block(s) for this chunk */ 1406 if (hiber_info->io_func(hiber_info->device, blkctr, 1407 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1408 HIB_W, hiber_info->io_page)) 1409 return (1); 1410 1411 blkctr += nblocks; 1412 1413 offset = blkctr; 1414 chunks[i].compressed_size = (offset - chunks[i].offset) * 1415 hiber_info->secsize; 1416 } 1417 1418 return (0); 1419 } 1420 1421 /* 1422 * Reset the zlib stream state and allocate a new hiballoc area for either 1423 * inflate or deflate. This function is called once for each hibernate chunk. 1424 * Calling hiballoc_init multiple times is acceptable since the memory it is 1425 * provided is unmanaged memory (stolen). We use the memory provided to us 1426 * by the piglet allocated via the supplied hiber_info. 1427 */ 1428 int 1429 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1430 { 1431 vaddr_t hibernate_zlib_start; 1432 size_t hibernate_zlib_size; 1433 char *pva = (char *)hiber_info->piglet_va; 1434 1435 hibernate_state = (struct hibernate_zlib_state *) 1436 (pva + (7 * PAGE_SIZE)); 1437 1438 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1439 hibernate_zlib_size = 80 * PAGE_SIZE; 1440 1441 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1442 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1443 1444 /* Set up stream structure */ 1445 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1446 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1447 1448 /* Initialize the hiballoc arena for zlib allocs/frees */ 1449 hiballoc_init(&hibernate_state->hiballoc_arena, 1450 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1451 1452 if (deflate) { 1453 return deflateInit(&hibernate_state->hib_stream, 1454 Z_BEST_SPEED); 1455 } else 1456 return inflateInit(&hibernate_state->hib_stream); 1457 } 1458 1459 /* 1460 * Reads the hibernated memory image from disk, whose location and 1461 * size are recorded in hiber_info. Begin by reading the persisted 1462 * chunk table, which records the original chunk placement location 1463 * and compressed size for each. Next, allocate a pig region of 1464 * sufficient size to hold the compressed image. Next, read the 1465 * chunks into the pig area (calling hibernate_read_chunks to do this), 1466 * and finally, if all of the above succeeds, clear the hibernate signature. 1467 * The function will then return to hibernate_resume, which will proceed 1468 * to unpack the pig image to the correct place in memory. 1469 */ 1470 int 1471 hibernate_read_image(union hibernate_info *hiber_info) 1472 { 1473 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1474 paddr_t image_start, image_end, pig_start, pig_end; 1475 struct hibernate_disk_chunk *chunks; 1476 daddr_t blkctr; 1477 vaddr_t chunktable = (vaddr_t)NULL; 1478 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1479 HIBERNATE_CHUNK_SIZE; 1480 int i; 1481 1482 /* Calculate total chunk table size in disk blocks */ 1483 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1484 1485 blkctr = hiber_info->sig_offset - chunktable_size - 1486 hiber_info->swap_offset; 1487 1488 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1489 &kp_none, &kd_nowait); 1490 1491 if (!chunktable) 1492 return (1); 1493 1494 /* Read the chunktable from disk into the piglet chunktable */ 1495 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1496 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1497 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1498 hibernate_read_block(hiber_info, blkctr, PAGE_SIZE, 1499 chunktable + i); 1500 } 1501 1502 blkctr = hiber_info->image_offset; 1503 compressed_size = 0; 1504 pmap_kenter_pa(chunktable, piglet_chunktable, VM_PROT_ALL); 1505 chunks = (struct hibernate_disk_chunk *)chunktable; 1506 1507 for (i = 0; i < hiber_info->chunk_ctr; i++) 1508 compressed_size += chunks[i].compressed_size; 1509 1510 disk_size = compressed_size; 1511 1512 /* Allocate the pig area */ 1513 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1514 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1515 return (1); 1516 1517 pig_end = pig_start + pig_sz; 1518 1519 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1520 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1521 image_start = pig_start; 1522 1523 image_start = image_end - disk_size; 1524 1525 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1526 chunks); 1527 1528 /* Prepare the resume time pmap/page table */ 1529 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1530 1531 /* Read complete, clear the signature and return */ 1532 return hibernate_clear_signature(); 1533 } 1534 1535 /* 1536 * Read the hibernated memory chunks from disk (chunk information at this 1537 * point is stored in the piglet) into the pig area specified by 1538 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1539 * only chunk with overlap possibilities. 1540 * 1541 * This function uses the piglet area during this process as follows: 1542 * 1543 * offset from piglet base use 1544 * ----------------------- -------------------- 1545 * 0 i/o allocation area 1546 * PAGE_SIZE i/o write area 1547 * 2*PAGE_SIZE temp/scratch page 1548 * 3*PAGE_SIZE temp/scratch page 1549 * 4*PAGE_SIZE to 6*PAGE_SIZE chunk ordering area 1550 * 7*PAGE_SIZE hiballoc arena 1551 * 8*PAGE_SIZE to 88*PAGE_SIZE zlib deflate area 1552 * ... 1553 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1554 */ 1555 int 1556 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1557 paddr_t pig_end, size_t image_compr_size, 1558 struct hibernate_disk_chunk *chunks) 1559 { 1560 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1561 paddr_t copy_start, copy_end, piglet_cur; 1562 paddr_t piglet_base = hib_info->piglet_pa; 1563 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1564 daddr_t blkctr; 1565 size_t processed, compressed_size, read_size; 1566 int i, j, overlap, found, nchunks; 1567 int nochunks = 0, nfchunks = 0, npchunks = 0; 1568 int *ochunks, *pchunks, *fchunks; 1569 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1570 1571 global_pig_start = pig_start; 1572 1573 /* XXX - dont need this on all archs */ 1574 pmap_activate(curproc); 1575 1576 /* 1577 * These mappings go into the resuming kernel's page table, and are 1578 * used only during image read. They dissappear from existence 1579 * when the suspended kernel is unpacked on top of us. 1580 */ 1581 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1582 if (!tempva) 1583 return (1); 1584 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1585 &kp_none, &kd_nowait); 1586 if (!hibernate_fchunk_area) 1587 return (1); 1588 1589 /* Temporary output chunk ordering */ 1590 ochunks = (int *)hibernate_fchunk_area; 1591 1592 /* Piglet chunk ordering */ 1593 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1594 1595 /* Final chunk ordering */ 1596 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1597 1598 /* Map the chunk ordering region */ 1599 pmap_kenter_pa(hibernate_fchunk_area, 1600 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1601 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1602 VM_PROT_ALL); 1603 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1604 VM_PROT_ALL); 1605 1606 nchunks = hib_info->chunk_ctr; 1607 1608 /* Initially start all chunks as unplaced */ 1609 for (i = 0; i < nchunks; i++) 1610 chunks[i].flags = 0; 1611 1612 /* 1613 * Search the list for chunks that are outside the pig area. These 1614 * can be placed first in the final output list. 1615 */ 1616 for (i = 0; i < nchunks; i++) { 1617 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1618 ochunks[nochunks] = (u_int8_t)i; 1619 fchunks[nfchunks] = (u_int8_t)i; 1620 nochunks++; 1621 nfchunks++; 1622 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1623 } 1624 } 1625 1626 /* 1627 * Walk the ordering, place the chunks in ascending memory order. 1628 * Conflicts might arise, these are handled next. 1629 */ 1630 do { 1631 img_index = -1; 1632 found = 0; 1633 j = -1; 1634 for (i = 0; i < nchunks; i++) 1635 if (chunks[i].base < img_index && 1636 chunks[i].flags == 0 ) { 1637 j = i; 1638 img_index = chunks[i].base; 1639 } 1640 1641 if (j != -1) { 1642 found = 1; 1643 ochunks[nochunks] = (short)j; 1644 nochunks++; 1645 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1646 } 1647 } while (found); 1648 1649 img_index = pig_start; 1650 1651 /* 1652 * Identify chunk output conflicts (chunks whose pig load area 1653 * corresponds to their original memory placement location) 1654 */ 1655 for (i = 0; i < nochunks ; i++) { 1656 overlap = 0; 1657 r1s = img_index; 1658 r1e = img_index + chunks[ochunks[i]].compressed_size; 1659 r2s = chunks[ochunks[i]].base; 1660 r2e = chunks[ochunks[i]].end; 1661 1662 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1663 if (overlap) 1664 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1665 img_index += chunks[ochunks[i]].compressed_size; 1666 } 1667 1668 /* 1669 * Prepare the final output chunk list. Calculate an output 1670 * inflate strategy for overlapping chunks if needed. 1671 */ 1672 img_index = pig_start; 1673 for (i = 0; i < nochunks ; i++) { 1674 /* 1675 * If a conflict is detected, consume enough compressed 1676 * output chunks to fill the piglet 1677 */ 1678 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1679 copy_start = piglet_base; 1680 copy_end = piglet_end; 1681 piglet_cur = piglet_base; 1682 npchunks = 0; 1683 j = i; 1684 while (copy_start < copy_end && j < nochunks) { 1685 piglet_cur += chunks[ochunks[j]].compressed_size; 1686 pchunks[npchunks] = ochunks[j]; 1687 npchunks++; 1688 copy_start += chunks[ochunks[j]].compressed_size; 1689 img_index += chunks[ochunks[j]].compressed_size; 1690 i++; 1691 j++; 1692 } 1693 1694 piglet_cur = piglet_base; 1695 for (j = 0; j < npchunks; j++) { 1696 piglet_cur += chunks[pchunks[j]].compressed_size; 1697 fchunks[nfchunks] = pchunks[j]; 1698 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1699 nfchunks++; 1700 } 1701 } else { 1702 /* 1703 * No conflict, chunk can be added without copying 1704 */ 1705 if ((chunks[ochunks[i]].flags & 1706 HIBERNATE_CHUNK_USED) == 0) { 1707 fchunks[nfchunks] = ochunks[i]; 1708 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1709 nfchunks++; 1710 } 1711 img_index += chunks[ochunks[i]].compressed_size; 1712 } 1713 } 1714 1715 img_index = pig_start; 1716 for (i = 0; i < nfchunks; i++) { 1717 piglet_cur = piglet_base; 1718 img_index += chunks[fchunks[i]].compressed_size; 1719 } 1720 1721 img_cur = pig_start; 1722 1723 for (i = 0; i < nfchunks; i++) { 1724 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1725 processed = 0; 1726 compressed_size = chunks[fchunks[i]].compressed_size; 1727 1728 while (processed < compressed_size) { 1729 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1730 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1731 VM_PROT_ALL); 1732 1733 /* XXX - not needed on all archs */ 1734 pmap_activate(curproc); 1735 if (compressed_size - processed >= PAGE_SIZE) 1736 read_size = PAGE_SIZE; 1737 else 1738 read_size = compressed_size - processed; 1739 1740 hibernate_read_block(hib_info, blkctr, read_size, 1741 tempva + (img_cur & PAGE_MASK)); 1742 1743 blkctr += (read_size / hib_info->secsize); 1744 1745 hibernate_flush(); 1746 pmap_kremove(tempva, PAGE_SIZE); 1747 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1748 processed += read_size; 1749 img_cur += read_size; 1750 } 1751 } 1752 1753 return (0); 1754 } 1755 1756 /* 1757 * Hibernating a machine comprises the following operations: 1758 * 1. Calculating this machine's hibernate_info information 1759 * 2. Allocating a piglet and saving the piglet's physaddr 1760 * 3. Calculating the memory chunks 1761 * 4. Writing the compressed chunks to disk 1762 * 5. Writing the chunk table 1763 * 6. Writing the signature block (hibernate_info) 1764 * 1765 * On most architectures, the function calling hibernate_suspend would 1766 * then power off the machine using some MD-specific implementation. 1767 */ 1768 int 1769 hibernate_suspend(void) 1770 { 1771 union hibernate_info hib_info; 1772 1773 /* 1774 * Calculate memory ranges, swap offsets, etc. 1775 * This also allocates a piglet whose physaddr is stored in 1776 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1777 */ 1778 if (get_hibernate_info(&hib_info, 1)) 1779 return (1); 1780 1781 global_piglet_va = hib_info.piglet_va; 1782 1783 if (hibernate_write_chunks(&hib_info)) 1784 return (1); 1785 1786 if (hibernate_write_chunktable(&hib_info)) 1787 return (1); 1788 1789 if (hibernate_write_signature(&hib_info)) 1790 return (1); 1791 1792 delay(500000); 1793 return (0); 1794 } 1795 1796 /* 1797 * Free items allocated during hibernate 1798 */ 1799 void 1800 hibernate_free(void) 1801 { 1802 uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE); 1803 1804 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1805 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1806 pmap_update(pmap_kernel()); 1807 1808 km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none); 1809 km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none); 1810 } 1811