xref: /openbsd-src/sys/kern/subr_hibernate.c (revision aa5e9e10509ffd51558f081f01cd78bfa3c4f2a5)
1 /*	$OpenBSD: subr_hibernate.c,v 1.59 2013/06/01 19:06:34 mlarkin Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <uvm/uvm.h>
32 #include <uvm/uvm_swap.h>
33 #include <machine/hibernate.h>
34 
35 /*
36  * Hibernate piglet layout information
37  *
38  * The piglet is a scratch area of memory allocated by the suspending kernel.
39  * Its phys and virt addrs are recorded in the signature block. The piglet is
40  * used to guarantee an unused area of memory that can be used by the resuming
41  * kernel for various things. The piglet is excluded during unpack operations.
42  * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB).
43  *
44  * Offset from piglet_base	Purpose
45  * ----------------------------------------------------------------------------
46  * 0				I/O page used during resume
47  * 1*PAGE_SIZE		 	I/O page used during hibernate suspend
48  * 2*PAGE_SIZE			unused
49  * 3*PAGE_SIZE			copy page used during hibernate suspend
50  * 4*PAGE_SIZE			final chunk ordering list (8 pages)
51  * 12*PAGE_SIZE			piglet chunk ordering list (8 pages)
52  * 20*PAGE_SIZE			temp chunk ordering list (8 pages)
53  * 28*PAGE_SIZE			start of hiballoc area
54  * 108*PAGE_SIZE		end of hiballoc area (80 pages)
55  * ...				unused
56  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
57  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
58  * 3*HIBERNATE_CHUNK_SIZE	end of piglet
59  */
60 
61 /* Temporary vaddr ranges used during hibernate */
62 vaddr_t hibernate_temp_page;
63 vaddr_t hibernate_copy_page;
64 
65 /* Hibernate info as read from disk during resume */
66 union hibernate_info disk_hiber_info;
67 paddr_t global_pig_start;
68 vaddr_t global_piglet_va;
69 
70 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
71 
72 /*
73  * Hib alloc enforced alignment.
74  */
75 #define HIB_ALIGN		8 /* bytes alignment */
76 
77 /*
78  * sizeof builtin operation, but with alignment constraint.
79  */
80 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
81 
82 struct hiballoc_entry {
83 	size_t			hibe_use;
84 	size_t			hibe_space;
85 	RB_ENTRY(hiballoc_entry) hibe_entry;
86 };
87 
88 /*
89  * Compare hiballoc entries based on the address they manage.
90  *
91  * Since the address is fixed, relative to struct hiballoc_entry,
92  * we just compare the hiballoc_entry pointers.
93  */
94 static __inline int
95 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
96 {
97 	return l < r ? -1 : (l > r);
98 }
99 
100 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
101 
102 /*
103  * Given a hiballoc entry, return the address it manages.
104  */
105 static __inline void *
106 hib_entry_to_addr(struct hiballoc_entry *entry)
107 {
108 	caddr_t addr;
109 
110 	addr = (caddr_t)entry;
111 	addr += HIB_SIZEOF(struct hiballoc_entry);
112 	return addr;
113 }
114 
115 /*
116  * Given an address, find the hiballoc that corresponds.
117  */
118 static __inline struct hiballoc_entry*
119 hib_addr_to_entry(void *addr_param)
120 {
121 	caddr_t addr;
122 
123 	addr = (caddr_t)addr_param;
124 	addr -= HIB_SIZEOF(struct hiballoc_entry);
125 	return (struct hiballoc_entry*)addr;
126 }
127 
128 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
129 
130 /*
131  * Allocate memory from the arena.
132  *
133  * Returns NULL if no memory is available.
134  */
135 void *
136 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
137 {
138 	struct hiballoc_entry *entry, *new_entry;
139 	size_t find_sz;
140 
141 	/*
142 	 * Enforce alignment of HIB_ALIGN bytes.
143 	 *
144 	 * Note that, because the entry is put in front of the allocation,
145 	 * 0-byte allocations are guaranteed a unique address.
146 	 */
147 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
148 
149 	/*
150 	 * Find an entry with hibe_space >= find_sz.
151 	 *
152 	 * If the root node is not large enough, we switch to tree traversal.
153 	 * Because all entries are made at the bottom of the free space,
154 	 * traversal from the end has a slightly better chance of yielding
155 	 * a sufficiently large space.
156 	 */
157 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
158 	entry = RB_ROOT(&arena->hib_addrs);
159 	if (entry != NULL && entry->hibe_space < find_sz) {
160 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
161 			if (entry->hibe_space >= find_sz)
162 				break;
163 		}
164 	}
165 
166 	/*
167 	 * Insufficient or too fragmented memory.
168 	 */
169 	if (entry == NULL)
170 		return NULL;
171 
172 	/*
173 	 * Create new entry in allocated space.
174 	 */
175 	new_entry = (struct hiballoc_entry*)(
176 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
177 	new_entry->hibe_space = entry->hibe_space - find_sz;
178 	new_entry->hibe_use = alloc_sz;
179 
180 	/*
181 	 * Insert entry.
182 	 */
183 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
184 		panic("hib_alloc: insert failure");
185 	entry->hibe_space = 0;
186 
187 	/* Return address managed by entry. */
188 	return hib_entry_to_addr(new_entry);
189 }
190 
191 /*
192  * Free a pointer previously allocated from this arena.
193  *
194  * If addr is NULL, this will be silently accepted.
195  */
196 void
197 hib_free(struct hiballoc_arena *arena, void *addr)
198 {
199 	struct hiballoc_entry *entry, *prev;
200 
201 	if (addr == NULL)
202 		return;
203 
204 	/*
205 	 * Derive entry from addr and check it is really in this arena.
206 	 */
207 	entry = hib_addr_to_entry(addr);
208 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
209 		panic("hib_free: freed item %p not in hib arena", addr);
210 
211 	/*
212 	 * Give the space in entry to its predecessor.
213 	 *
214 	 * If entry has no predecessor, change its used space into free space
215 	 * instead.
216 	 */
217 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
218 	if (prev != NULL &&
219 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
220 	    prev->hibe_use + prev->hibe_space) == entry) {
221 		/* Merge entry. */
222 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
223 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
224 		    entry->hibe_use + entry->hibe_space;
225 	} else {
226 		/* Flip used memory to free space. */
227 		entry->hibe_space += entry->hibe_use;
228 		entry->hibe_use = 0;
229 	}
230 }
231 
232 /*
233  * Initialize hiballoc.
234  *
235  * The allocator will manage memmory at ptr, which is len bytes.
236  */
237 int
238 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
239 {
240 	struct hiballoc_entry *entry;
241 	caddr_t ptr;
242 	size_t len;
243 
244 	RB_INIT(&arena->hib_addrs);
245 
246 	/*
247 	 * Hib allocator enforces HIB_ALIGN alignment.
248 	 * Fixup ptr and len.
249 	 */
250 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
251 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
252 	len &= ~((size_t)HIB_ALIGN - 1);
253 
254 	/*
255 	 * Insufficient memory to be able to allocate and also do bookkeeping.
256 	 */
257 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
258 		return ENOMEM;
259 
260 	/*
261 	 * Create entry describing space.
262 	 */
263 	entry = (struct hiballoc_entry*)ptr;
264 	entry->hibe_use = 0;
265 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
266 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
267 
268 	return 0;
269 }
270 
271 /*
272  * Zero all free memory.
273  */
274 void
275 uvm_pmr_zero_everything(void)
276 {
277 	struct uvm_pmemrange	*pmr;
278 	struct vm_page		*pg;
279 	int			 i;
280 
281 	uvm_lock_fpageq();
282 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
283 		/* Zero single pages. */
284 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
285 		    != NULL) {
286 			uvm_pmr_remove(pmr, pg);
287 			uvm_pagezero(pg);
288 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
289 			uvmexp.zeropages++;
290 			uvm_pmr_insert(pmr, pg, 0);
291 		}
292 
293 		/* Zero multi page ranges. */
294 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
295 		    != NULL) {
296 			pg--; /* Size tree always has second page. */
297 			uvm_pmr_remove(pmr, pg);
298 			for (i = 0; i < pg->fpgsz; i++) {
299 				uvm_pagezero(&pg[i]);
300 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
301 				uvmexp.zeropages++;
302 			}
303 			uvm_pmr_insert(pmr, pg, 0);
304 		}
305 	}
306 	uvm_unlock_fpageq();
307 }
308 
309 /*
310  * Mark all memory as dirty.
311  *
312  * Used to inform the system that the clean memory isn't clean for some
313  * reason, for example because we just came back from hibernate.
314  */
315 void
316 uvm_pmr_dirty_everything(void)
317 {
318 	struct uvm_pmemrange	*pmr;
319 	struct vm_page		*pg;
320 	int			 i;
321 
322 	uvm_lock_fpageq();
323 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
324 		/* Dirty single pages. */
325 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
326 		    != NULL) {
327 			uvm_pmr_remove(pmr, pg);
328 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
329 			uvm_pmr_insert(pmr, pg, 0);
330 		}
331 
332 		/* Dirty multi page ranges. */
333 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
334 		    != NULL) {
335 			pg--; /* Size tree always has second page. */
336 			uvm_pmr_remove(pmr, pg);
337 			for (i = 0; i < pg->fpgsz; i++)
338 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
339 			uvm_pmr_insert(pmr, pg, 0);
340 		}
341 	}
342 
343 	uvmexp.zeropages = 0;
344 	uvm_unlock_fpageq();
345 }
346 
347 /*
348  * Allocate the highest address that can hold sz.
349  *
350  * sz in bytes.
351  */
352 int
353 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
354 {
355 	struct uvm_pmemrange	*pmr;
356 	struct vm_page		*pig_pg, *pg;
357 
358 	/*
359 	 * Convert sz to pages, since that is what pmemrange uses internally.
360 	 */
361 	sz = atop(round_page(sz));
362 
363 	uvm_lock_fpageq();
364 
365 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
366 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
367 			if (pig_pg->fpgsz >= sz) {
368 				goto found;
369 			}
370 		}
371 	}
372 
373 	/*
374 	 * Allocation failure.
375 	 */
376 	uvm_unlock_fpageq();
377 	return ENOMEM;
378 
379 found:
380 	/* Remove page from freelist. */
381 	uvm_pmr_remove_size(pmr, pig_pg);
382 	pig_pg->fpgsz -= sz;
383 	pg = pig_pg + pig_pg->fpgsz;
384 	if (pig_pg->fpgsz == 0)
385 		uvm_pmr_remove_addr(pmr, pig_pg);
386 	else
387 		uvm_pmr_insert_size(pmr, pig_pg);
388 
389 	uvmexp.free -= sz;
390 	*addr = VM_PAGE_TO_PHYS(pg);
391 
392 	/*
393 	 * Update pg flags.
394 	 *
395 	 * Note that we trash the sz argument now.
396 	 */
397 	while (sz > 0) {
398 		KASSERT(pg->pg_flags & PQ_FREE);
399 
400 		atomic_clearbits_int(&pg->pg_flags,
401 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
402 
403 		if (pg->pg_flags & PG_ZERO)
404 			uvmexp.zeropages -= sz;
405 		atomic_clearbits_int(&pg->pg_flags,
406 		    PG_ZERO|PQ_FREE);
407 
408 		pg->uobject = NULL;
409 		pg->uanon = NULL;
410 		pg->pg_version++;
411 
412 		/*
413 		 * Next.
414 		 */
415 		pg++;
416 		sz--;
417 	}
418 
419 	/* Return. */
420 	uvm_unlock_fpageq();
421 	return 0;
422 }
423 
424 /*
425  * Allocate a piglet area.
426  *
427  * This is as low as possible.
428  * Piglets are aligned.
429  *
430  * sz and align in bytes.
431  *
432  * The call will sleep for the pagedaemon to attempt to free memory.
433  * The pagedaemon may decide its not possible to free enough memory, causing
434  * the allocation to fail.
435  */
436 int
437 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
438 {
439 	paddr_t			 pg_addr, piglet_addr;
440 	struct uvm_pmemrange	*pmr;
441 	struct vm_page		*pig_pg, *pg;
442 	struct pglist		 pageq;
443 	int			 pdaemon_woken;
444 	vaddr_t			 piglet_va;
445 
446 	/* Ensure align is a power of 2 */
447 	KASSERT((align & (align - 1)) == 0);
448 
449 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
450 
451 	/*
452 	 * Fixup arguments: align must be at least PAGE_SIZE,
453 	 * sz will be converted to pagecount, since that is what
454 	 * pmemrange uses internally.
455 	 */
456 	if (align < PAGE_SIZE)
457 		align = PAGE_SIZE;
458 	sz = round_page(sz);
459 
460 	uvm_lock_fpageq();
461 
462 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
463 	    pmr_use) {
464 retry:
465 		/*
466 		 * Search for a range with enough space.
467 		 * Use the address tree, to ensure the range is as low as
468 		 * possible.
469 		 */
470 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
471 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
472 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
473 
474 			if (atop(pg_addr) + pig_pg->fpgsz >=
475 			    atop(piglet_addr) + atop(sz))
476 				goto found;
477 		}
478 	}
479 
480 	/*
481 	 * Try to coerce the pagedaemon into freeing memory
482 	 * for the piglet.
483 	 *
484 	 * pdaemon_woken is set to prevent the code from
485 	 * falling into an endless loop.
486 	 */
487 	if (!pdaemon_woken) {
488 		pdaemon_woken = 1;
489 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
490 		    sz, UVM_PLA_FAILOK) == 0)
491 			goto retry;
492 	}
493 
494 	/* Return failure. */
495 	uvm_unlock_fpageq();
496 	return ENOMEM;
497 
498 found:
499 	/*
500 	 * Extract piglet from pigpen.
501 	 */
502 	TAILQ_INIT(&pageq);
503 	uvm_pmr_extract_range(pmr, pig_pg,
504 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
505 
506 	*pa = piglet_addr;
507 	uvmexp.free -= atop(sz);
508 
509 	/*
510 	 * Update pg flags.
511 	 *
512 	 * Note that we trash the sz argument now.
513 	 */
514 	TAILQ_FOREACH(pg, &pageq, pageq) {
515 		KASSERT(pg->pg_flags & PQ_FREE);
516 
517 		atomic_clearbits_int(&pg->pg_flags,
518 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
519 
520 		if (pg->pg_flags & PG_ZERO)
521 			uvmexp.zeropages--;
522 		atomic_clearbits_int(&pg->pg_flags,
523 		    PG_ZERO|PQ_FREE);
524 
525 		pg->uobject = NULL;
526 		pg->uanon = NULL;
527 		pg->pg_version++;
528 	}
529 
530 	uvm_unlock_fpageq();
531 
532 	/*
533 	 * Now allocate a va.
534 	 * Use direct mappings for the pages.
535 	 */
536 
537 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
538 	if (!piglet_va) {
539 		uvm_pglistfree(&pageq);
540 		return ENOMEM;
541 	}
542 
543 	/*
544 	 * Map piglet to va.
545 	 */
546 	TAILQ_FOREACH(pg, &pageq, pageq) {
547 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
548 		piglet_va += PAGE_SIZE;
549 	}
550 	pmap_update(pmap_kernel());
551 
552 	return 0;
553 }
554 
555 /*
556  * Free a piglet area.
557  */
558 void
559 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
560 {
561 	paddr_t			 pa;
562 	struct vm_page		*pg;
563 
564 	/*
565 	 * Fix parameters.
566 	 */
567 	sz = round_page(sz);
568 
569 	/*
570 	 * Find the first page in piglet.
571 	 * Since piglets are contiguous, the first pg is all we need.
572 	 */
573 	if (!pmap_extract(pmap_kernel(), va, &pa))
574 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
575 	pg = PHYS_TO_VM_PAGE(pa);
576 	if (pg == NULL)
577 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
578 
579 	/*
580 	 * Unmap.
581 	 */
582 	pmap_kremove(va, sz);
583 	pmap_update(pmap_kernel());
584 
585 	/*
586 	 * Free the physical and virtual memory.
587 	 */
588 	uvm_pmr_freepages(pg, atop(sz));
589 	km_free((void *)va, sz, &kv_any, &kp_none);
590 }
591 
592 /*
593  * Physmem RLE compression support.
594  *
595  * Given a physical page address, return the number of pages starting at the
596  * address that are free.  Clamps to the number of pages in
597  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
598  */
599 int
600 uvm_page_rle(paddr_t addr)
601 {
602 	struct vm_page		*pg, *pg_end;
603 	struct vm_physseg	*vmp;
604 	int			 pseg_idx, off_idx;
605 
606 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
607 	if (pseg_idx == -1)
608 		return 0;
609 
610 	vmp = &vm_physmem[pseg_idx];
611 	pg = &vmp->pgs[off_idx];
612 	if (!(pg->pg_flags & PQ_FREE))
613 		return 0;
614 
615 	/*
616 	 * Search for the first non-free page after pg.
617 	 * Note that the page may not be the first page in a free pmemrange,
618 	 * therefore pg->fpgsz cannot be used.
619 	 */
620 	for (pg_end = pg; pg_end <= vmp->lastpg &&
621 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
622 		;
623 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
624 }
625 
626 /*
627  * Fills out the hibernate_info union pointed to by hiber_info
628  * with information about this machine (swap signature block
629  * offsets, number of memory ranges, kernel in use, etc)
630  */
631 int
632 get_hibernate_info(union hibernate_info *hiber_info, int suspend)
633 {
634 	int chunktable_size;
635 	struct disklabel dl;
636 	char err_string[128], *dl_ret;
637 
638 	/* Determine I/O function to use */
639 	hiber_info->io_func = get_hibernate_io_function();
640 	if (hiber_info->io_func == NULL)
641 		return (1);
642 
643 	/* Calculate hibernate device */
644 	hiber_info->device = swdevt[0].sw_dev;
645 
646 	/* Read disklabel (used to calculate signature and image offsets) */
647 	dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128);
648 
649 	if (dl_ret) {
650 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
651 		return (1);
652 	}
653 
654 	/* Make sure we have a swap partition. */
655 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
656 	    dl.d_partitions[1].p_size == 0)
657 		return (1);
658 
659 	hiber_info->secsize = dl.d_secsize;
660 
661 	/* Make sure the signature can fit in one block */
662 	if(sizeof(union hibernate_info) > hiber_info->secsize)
663 		return (1);
664 
665 	/* Magic number */
666 	hiber_info->magic = HIBERNATE_MAGIC;
667 
668 	/* Calculate swap offset from start of disk */
669 	hiber_info->swap_offset = dl.d_partitions[1].p_offset;
670 
671 	/* Calculate signature block location */
672 	hiber_info->sig_offset = dl.d_partitions[1].p_offset +
673 	    dl.d_partitions[1].p_size -
674 	    sizeof(union hibernate_info)/hiber_info->secsize;
675 
676 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
677 
678 	/* Stash kernel version information */
679 	bzero(&hiber_info->kernel_version, 128);
680 	bcopy(version, &hiber_info->kernel_version,
681 	    min(strlen(version), sizeof(hiber_info->kernel_version)-1));
682 
683 	if (suspend) {
684 		/* Allocate piglet region */
685 		if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va,
686 		    &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
687 		    HIBERNATE_CHUNK_SIZE)) {
688 			printf("Hibernate failed to allocate the piglet\n");
689 			return (1);
690 		}
691 		hiber_info->io_page = (void *)hiber_info->piglet_va;
692 
693 		/*
694 		 * Initialization of the hibernate IO function for drivers
695 		 * that need to do prep work (such as allocating memory or
696 		 * setting up data structures that cannot safely be done
697 		 * during suspend without causing side effects). There is
698 		 * a matching HIB_DONE call performed after the write is
699 		 * completed.
700 		 */
701 		if (hiber_info->io_func(hiber_info->device, 0,
702 		    (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page))
703 			goto fail;
704 
705 	} else {
706 		/*
707 		 * Resuming kernels use a regular I/O page since we won't
708 		 * have access to the suspended kernel's piglet VA at this
709 		 * point. No need to free this I/O page as it will vanish
710 		 * as part of the resume.
711 		 */
712 		hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
713 		if (!hiber_info->io_page)
714 			return (1);
715 	}
716 
717 
718 	if (get_hibernate_info_md(hiber_info))
719 		goto fail;
720 
721 	/* Calculate memory image location in swap */
722 	hiber_info->image_offset = dl.d_partitions[1].p_offset +
723 	    dl.d_partitions[1].p_size -
724 	    (hiber_info->image_size / hiber_info->secsize) -
725 	    sizeof(union hibernate_info)/hiber_info->secsize -
726 	    chunktable_size;
727 
728 	return (0);
729 fail:
730 	if (suspend)
731 		uvm_pmr_free_piglet(hiber_info->piglet_va,
732 		    HIBERNATE_CHUNK_SIZE * 3);
733 
734 	return (1);
735 }
736 
737 /*
738  * Allocate nitems*size bytes from the hiballoc area presently in use
739  */
740 void *
741 hibernate_zlib_alloc(void *unused, int nitems, int size)
742 {
743 	struct hibernate_zlib_state *hibernate_state;
744 
745 	hibernate_state =
746 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
747 
748 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
749 }
750 
751 /*
752  * Free the memory pointed to by addr in the hiballoc area presently in
753  * use
754  */
755 void
756 hibernate_zlib_free(void *unused, void *addr)
757 {
758 	struct hibernate_zlib_state *hibernate_state;
759 
760 	hibernate_state =
761 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
762 
763 	hib_free(&hibernate_state->hiballoc_arena, addr);
764 }
765 
766 /*
767  * Gets the next RLE value from the image stream
768  */
769 int
770 hibernate_get_next_rle(void)
771 {
772 	int rle, i;
773 	struct hibernate_zlib_state *hibernate_state;
774 
775 	hibernate_state =
776 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
777 
778 	/* Read RLE code */
779 	hibernate_state->hib_stream.next_out = (char *)&rle;
780 	hibernate_state->hib_stream.avail_out = sizeof(rle);
781 
782 	i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH);
783 	if (i != Z_OK && i != Z_STREAM_END) {
784 		/*
785 		 * XXX - this will likely reboot/hang most machines
786 		 *       since the console output buffer will be unmapped,
787 		 *       but there's not much else we can do here.
788 		 */
789 		panic("inflate rle error");
790 	}
791 
792 	/* Sanity check what RLE value we got */
793 	if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0)
794 		panic("invalid RLE code");
795 
796 	if (i == Z_STREAM_END)
797 		rle = -1;
798 
799 	return rle;
800 }
801 
802 /*
803  * Inflate next page of data from the image stream
804  */
805 int
806 hibernate_inflate_page(void)
807 {
808 	struct hibernate_zlib_state *hibernate_state;
809 	int i;
810 
811 	hibernate_state =
812 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
813 
814 	/* Set up the stream for inflate */
815 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
816 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
817 
818 	/* Process next block of data */
819 	i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
820 	if (i != Z_OK && i != Z_STREAM_END) {
821 		/*
822 		 * XXX - this will likely reboot/hang most machines
823 		 *       since the console output buffer will be unmapped,
824 		 *       but there's not much else we can do here.
825 		 */
826 		panic("inflate error");
827 	}
828 
829 	/* We should always have extracted a full page ... */
830 	if (hibernate_state->hib_stream.avail_out != 0) {
831 		/*
832 		 * XXX - this will likely reboot/hang most machines
833 		 *       since the console output buffer will be unmapped,
834 		 *       but there's not much else we can do here.
835 		 */
836 		panic("incomplete page");
837 	}
838 
839 	return (i == Z_STREAM_END);
840 }
841 
842 /*
843  * Inflate size bytes from src into dest, skipping any pages in
844  * [src..dest] that are special (see hibernate_inflate_skip)
845  *
846  * This function executes while using the resume-time stack
847  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
848  * will likely hang or reset the machine since the console output buffer
849  * will be unmapped.
850  */
851 void
852 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest,
853     paddr_t src, size_t size)
854 {
855 	int end_stream = 0 ;
856 	struct hibernate_zlib_state *hibernate_state;
857 
858 	hibernate_state =
859 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
860 
861 	hibernate_state->hib_stream.next_in = (char *)src;
862 	hibernate_state->hib_stream.avail_in = size;
863 
864 	do {
865 		/* Flush cache and TLB */
866 		hibernate_flush();
867 
868 		/*
869 		 * Is this a special page? If yes, redirect the
870 		 * inflate output to a scratch page (eg, discard it)
871 		 */
872 		if (hibernate_inflate_skip(hiber_info, dest)) {
873 			hibernate_enter_resume_mapping(
874 			    HIBERNATE_INFLATE_PAGE,
875 			    HIBERNATE_INFLATE_PAGE, 0);
876 		} else {
877 			hibernate_enter_resume_mapping(
878 			    HIBERNATE_INFLATE_PAGE, dest, 0);
879 		}
880 
881 		hibernate_flush();
882 		end_stream = hibernate_inflate_page();
883 
884 		dest += PAGE_SIZE;
885 	} while (!end_stream);
886 }
887 
888 /*
889  * deflate from src into the I/O page, up to 'remaining' bytes
890  *
891  * Returns number of input bytes consumed, and may reset
892  * the 'remaining' parameter if not all the output space was consumed
893  * (this information is needed to know how much to write to disk
894  */
895 size_t
896 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src,
897     size_t *remaining)
898 {
899 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
900 	struct hibernate_zlib_state *hibernate_state;
901 
902 	hibernate_state =
903 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
904 
905 	/* Set up the stream for deflate */
906 	hibernate_state->hib_stream.next_in = (caddr_t)src;
907 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
908 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
909 	    (PAGE_SIZE - *remaining);
910 	hibernate_state->hib_stream.avail_out = *remaining;
911 
912 	/* Process next block of data */
913 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
914 		panic("hibernate zlib deflate error");
915 
916 	/* Update pointers and return number of bytes consumed */
917 	*remaining = hibernate_state->hib_stream.avail_out;
918 	return (PAGE_SIZE - (src & PAGE_MASK)) -
919 	    hibernate_state->hib_stream.avail_in;
920 }
921 
922 /*
923  * Write the hibernation information specified in hiber_info
924  * to the location in swap previously calculated (last block of
925  * swap), called the "signature block".
926  */
927 int
928 hibernate_write_signature(union hibernate_info *hiber_info)
929 {
930 	/* Write hibernate info to disk */
931 	return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset,
932 	    (vaddr_t)hiber_info, hiber_info->secsize, HIB_W,
933 	    hiber_info->io_page));
934 }
935 
936 /*
937  * Write the memory chunk table to the area in swap immediately
938  * preceding the signature block. The chunk table is stored
939  * in the piglet when this function is called.
940  *
941  * Return values:
942  *
943  * 0   -  success
944  * EIO -  I/O error writing the chunktable
945  */
946 int
947 hibernate_write_chunktable(union hibernate_info *hiber_info)
948 {
949 	struct hibernate_disk_chunk *chunks;
950 	vaddr_t hibernate_chunk_table_start;
951 	size_t hibernate_chunk_table_size;
952 	daddr_t chunkbase;
953 	int i;
954 
955 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
956 
957 	chunkbase = hiber_info->sig_offset -
958 	    (hibernate_chunk_table_size / hiber_info->secsize);
959 
960 	hibernate_chunk_table_start = hiber_info->piglet_va +
961 	    HIBERNATE_CHUNK_SIZE;
962 
963 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
964 	    HIBERNATE_CHUNK_SIZE);
965 
966 	/* Write chunk table */
967 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
968 		if (hiber_info->io_func(hiber_info->device,
969 		    chunkbase + (i/hiber_info->secsize),
970 		    (vaddr_t)(hibernate_chunk_table_start + i),
971 		    MAXPHYS, HIB_W, hiber_info->io_page))
972 			return (EIO);
973 	}
974 
975 	return (0);
976 }
977 
978 /*
979  * Write an empty hiber_info to the swap signature block, which is
980  * guaranteed to not match any valid hiber_info.
981  */
982 int
983 hibernate_clear_signature(void)
984 {
985 	union hibernate_info blank_hiber_info;
986 	union hibernate_info hiber_info;
987 
988 	/* Zero out a blank hiber_info */
989 	bzero(&blank_hiber_info, sizeof(union hibernate_info));
990 
991 	/* Get the signature block location */
992 	if (get_hibernate_info(&hiber_info, 0))
993 		return (1);
994 
995 	/* Write (zeroed) hibernate info to disk */
996 #ifdef HIBERNATE_DEBUG
997 	printf("clearing hibernate signature block location: %lld\n",
998 		hiber_info.sig_offset - hiber_info.swap_offset);
999 #endif /* HIBERNATE_DEBUG */
1000 	if (hibernate_block_io(&hiber_info,
1001 	    hiber_info.sig_offset - hiber_info.swap_offset,
1002 	    hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1))
1003 		printf("Warning: could not clear hibernate signature\n");
1004 
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Check chunk range overlap when calculating whether or not to copy a
1010  * compressed chunk to the piglet area before decompressing.
1011  *
1012  * returns zero if the ranges do not overlap, non-zero otherwise.
1013  */
1014 int
1015 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
1016 {
1017 	/* case A : end of r1 overlaps start of r2 */
1018 	if (r1s < r2s && r1e > r2s)
1019 		return (1);
1020 
1021 	/* case B : r1 entirely inside r2 */
1022 	if (r1s >= r2s && r1e <= r2e)
1023 		return (1);
1024 
1025 	/* case C : r2 entirely inside r1 */
1026 	if (r2s >= r1s && r2e <= r1e)
1027 		return (1);
1028 
1029 	/* case D : end of r2 overlaps start of r1 */
1030 	if (r2s < r1s && r2e > r1s)
1031 		return (1);
1032 
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Compare two hibernate_infos to determine if they are the same (eg,
1038  * we should be performing a hibernate resume on this machine.
1039  * Not all fields are checked - just enough to verify that the machine
1040  * has the same memory configuration and kernel as the one that
1041  * wrote the signature previously.
1042  */
1043 int
1044 hibernate_compare_signature(union hibernate_info *mine,
1045     union hibernate_info *disk)
1046 {
1047 	u_int i;
1048 
1049 	if (mine->nranges != disk->nranges) {
1050 #ifdef HIBERNATE_DEBUG
1051 		printf("hibernate memory range count mismatch\n");
1052 #endif
1053 		return (1);
1054 	}
1055 
1056 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
1057 #ifdef HIBERNATE_DEBUG
1058 		printf("hibernate kernel version mismatch\n");
1059 #endif
1060 		return (1);
1061 	}
1062 
1063 	for (i = 0; i < mine->nranges; i++) {
1064 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
1065 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
1066 #ifdef HIBERNATE_DEBUG
1067 			printf("hib range %d mismatch [%p-%p != %p-%p]\n",
1068 				i, mine->ranges[i].base, mine->ranges[i].end,
1069 				disk->ranges[i].base, disk->ranges[i].end);
1070 #endif
1071 			return (1);
1072 		}
1073 	}
1074 
1075 	return (0);
1076 }
1077 
1078 /*
1079  * Transfers xfer_size bytes between the hibernate device specified in
1080  * hib_info at offset blkctr and the vaddr specified at dest.
1081  *
1082  * Separate offsets and pages are used to handle misaligned reads (reads
1083  * that span a page boundary).
1084  *
1085  * blkctr specifies a relative offset (relative to the start of swap),
1086  * not an absolute disk offset
1087  *
1088  */
1089 int
1090 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr,
1091     size_t xfer_size, vaddr_t dest, int iswrite)
1092 {
1093 	struct buf *bp;
1094 	struct bdevsw *bdsw;
1095 	int error;
1096 
1097 	bp = geteblk(xfer_size);
1098 	bdsw = &bdevsw[major(hib_info->device)];
1099 
1100 	error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc);
1101 	if (error) {
1102 		printf("hibernate_block_io open failed\n");
1103 		return (1);
1104 	}
1105 
1106 	if (iswrite)
1107 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1108 
1109 	bp->b_bcount = xfer_size;
1110 	bp->b_blkno = blkctr;
1111 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1112 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1113 	bp->b_dev = hib_info->device;
1114 	bp->b_cylinder = 0;
1115 	(*bdsw->d_strategy)(bp);
1116 
1117 	error = biowait(bp);
1118 	if (error) {
1119 		printf("hibernate_block_io biowait failed %d\n", error);
1120 		error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR,
1121 		    curproc);
1122 		if (error)
1123 			printf("hibernate_block_io error close failed\n");
1124 		return (1);
1125 	}
1126 
1127 	error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc);
1128 	if (error) {
1129 		printf("hibernate_block_io close failed\n");
1130 		return (1);
1131 	}
1132 
1133 	if (!iswrite)
1134 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1135 
1136 	bp->b_flags |= B_INVAL;
1137 	brelse(bp);
1138 
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Reads the signature block from swap, checks against the current machine's
1144  * information. If the information matches, perform a resume by reading the
1145  * saved image into the pig area, and unpacking.
1146  */
1147 void
1148 hibernate_resume(void)
1149 {
1150 	union hibernate_info hiber_info;
1151 	int s;
1152 
1153 	/* Get current running machine's hibernate info */
1154 	bzero(&hiber_info, sizeof(hiber_info));
1155 	if (get_hibernate_info(&hiber_info, 0))
1156 		return;
1157 
1158 	/* Read hibernate info from disk */
1159 	s = splbio();
1160 
1161 #ifdef HIBERNATE_DEBUG
1162 	printf("reading hibernate signature block location: %lld\n",
1163 		hiber_info.sig_offset - hiber_info.swap_offset);
1164 #endif /* HIBERNATE_DEBUG */
1165 
1166 	if (hibernate_block_io(&hiber_info,
1167 	    hiber_info.sig_offset - hiber_info.swap_offset,
1168 	    hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0))
1169 		panic("error in hibernate read");
1170 
1171 	/* Check magic number */
1172 	if (disk_hiber_info.magic != HIBERNATE_MAGIC) {
1173 		splx(s);
1174 		return;
1175 	}
1176 
1177 	/*
1178 	 * We (possibly) found a hibernate signature. Clear signature first,
1179 	 * to prevent accidental resume or endless resume cycles later.
1180 	 */
1181 	if (hibernate_clear_signature()) {
1182 		splx(s);
1183 		return;
1184 	}
1185 
1186 	/*
1187 	 * If on-disk and in-memory hibernate signatures match,
1188 	 * this means we should do a resume from hibernate.
1189 	 */
1190 	if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) {
1191 		splx(s);
1192 		return;
1193 	}
1194 
1195 #ifdef MULTIPROCESSOR
1196 	hibernate_quiesce_cpus();
1197 #endif /* MULTIPROCESSOR */
1198 
1199 	printf("Unhibernating...\n");
1200 
1201 	/* Read the image from disk into the image (pig) area */
1202 	if (hibernate_read_image(&disk_hiber_info))
1203 		goto fail;
1204 
1205 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0)
1206 		goto fail;
1207 
1208 	(void) splhigh();
1209 	hibernate_disable_intr_machdep();
1210 	cold = 1;
1211 
1212 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) {
1213 		cold = 0;
1214 		hibernate_enable_intr_machdep();
1215 		goto fail;
1216 	}
1217 
1218 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1219 	    VM_PROT_ALL);
1220 	pmap_activate(curproc);
1221 
1222 	/* Switch stacks */
1223 	hibernate_switch_stack_machdep();
1224 
1225 	/* Unpack and resume */
1226 	hibernate_unpack_image(&disk_hiber_info);
1227 
1228 fail:
1229 	splx(s);
1230 	printf("Unable to resume hibernated image\n");
1231 }
1232 
1233 /*
1234  * Unpack image from pig area to original location by looping through the
1235  * list of output chunks in the order they should be restored (fchunks).
1236  *
1237  * Note that due to the stack smash protector and the fact that we have
1238  * switched stacks, it is not permitted to return from this function.
1239  */
1240 void
1241 hibernate_unpack_image(union hibernate_info *hiber_info)
1242 {
1243 	struct hibernate_disk_chunk *chunks;
1244 	union hibernate_info local_hiber_info;
1245 	paddr_t image_cur = global_pig_start;
1246 	short i, *fchunks;
1247 	char *pva = (char *)hiber_info->piglet_va;
1248 	struct hibernate_zlib_state *hibernate_state;
1249 
1250 	hibernate_state =
1251 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1252 
1253 	/* Mask off based on arch-specific piglet page size */
1254 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1255 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1256 
1257 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1258 
1259 	/* Can't use hiber_info that's passed in after this point */
1260 	bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info));
1261 
1262 	/*
1263 	 * Point of no return. Once we pass this point, only kernel code can
1264 	 * be accessed. No global variables or other kernel data structures
1265 	 * are guaranteed to be coherent after unpack starts.
1266 	 *
1267 	 * The image is now in high memory (pig area), we unpack from the pig
1268 	 * to the correct location in memory. We'll eventually end up copying
1269 	 * on top of ourself, but we are assured the kernel code here is the
1270 	 * same between the hibernated and resuming kernel, and we are running
1271 	 * on our own stack, so the overwrite is ok.
1272 	 */
1273 	hibernate_activate_resume_pt_machdep();
1274 
1275 	for (i = 0; i < local_hiber_info.chunk_ctr; i++) {
1276 		/* Reset zlib for inflate */
1277 		if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK)
1278 			panic("hibernate failed to reset zlib for inflate");
1279 
1280 		hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]],
1281 		    image_cur);
1282 
1283 		image_cur += chunks[fchunks[i]].compressed_size;
1284 
1285 	}
1286 
1287 	/*
1288 	 * Resume the loaded kernel by jumping to the MD resume vector.
1289 	 * We won't be returning from this call.
1290 	 */
1291 	hibernate_resume_machdep();
1292 }
1293 
1294 /*
1295  * Bounce a compressed image chunk to the piglet, entering mappings for the
1296  * copied pages as needed
1297  */
1298 void
1299 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1300 {
1301 	size_t ct, ofs;
1302 	paddr_t src = img_cur;
1303 	vaddr_t dest = piglet;
1304 
1305 	/* Copy first partial page */
1306 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1307 	ofs = (src & PAGE_MASK);
1308 
1309 	if (ct < PAGE_SIZE) {
1310 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1311 			(src - ofs), 0);
1312 		hibernate_flush();
1313 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1314 		src += ct;
1315 		dest += ct;
1316 	}
1317 
1318 	/* Copy remaining pages */
1319 	while (src < size + img_cur) {
1320 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1321 		hibernate_flush();
1322 		ct = PAGE_SIZE;
1323 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1324 		hibernate_flush();
1325 		src += ct;
1326 		dest += ct;
1327 	}
1328 }
1329 
1330 /*
1331  * Process a chunk by bouncing it to the piglet, followed by unpacking
1332  */
1333 void
1334 hibernate_process_chunk(union hibernate_info *hiber_info,
1335     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1336 {
1337 	char *pva = (char *)hiber_info->piglet_va;
1338 
1339 	hibernate_copy_chunk_to_piglet(img_cur,
1340 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1341 
1342 	hibernate_inflate_region(hiber_info, chunk->base,
1343 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1344 	    chunk->compressed_size);
1345 }
1346 
1347 /*
1348  * Write a compressed version of this machine's memory to disk, at the
1349  * precalculated swap offset:
1350  *
1351  * end of swap - signature block size - chunk table size - memory size
1352  *
1353  * The function begins by looping through each phys mem range, cutting each
1354  * one into MD sized chunks. These chunks are then compressed individually
1355  * and written out to disk, in phys mem order. Some chunks might compress
1356  * more than others, and for this reason, each chunk's size is recorded
1357  * in the chunk table, which is written to disk after the image has
1358  * properly been compressed and written (in hibernate_write_chunktable).
1359  *
1360  * When this function is called, the machine is nearly suspended - most
1361  * devices are quiesced/suspended, interrupts are off, and cold has
1362  * been set. This means that there can be no side effects once the
1363  * write has started, and the write function itself can also have no
1364  * side effects. This also means no printfs are permitted (since printf
1365  * has side effects.)
1366  *
1367  * Return values :
1368  *
1369  * 0      - success
1370  * EIO    - I/O error occurred writing the chunks
1371  * EINVAL - Failed to write a complete range
1372  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1373  */
1374 int
1375 hibernate_write_chunks(union hibernate_info *hiber_info)
1376 {
1377 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1378 	size_t nblocks, out_remaining, used;
1379 	struct hibernate_disk_chunk *chunks;
1380 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
1381 	daddr_t blkctr = hiber_info->image_offset, offset = 0;
1382 	int i;
1383 	struct hibernate_zlib_state *hibernate_state;
1384 
1385 	hibernate_state =
1386 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1387 
1388 	hiber_info->chunk_ctr = 0;
1389 
1390 	/*
1391 	 * Allocate VA for the temp and copy page.
1392 	 *
1393 	 * These will become part of the suspended kernel and will
1394 	 * be freed in hibernate_free, upon resume.
1395 	 */
1396 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1397 	    &kp_none, &kd_nowait);
1398 	if (!hibernate_temp_page)
1399 		return (ENOMEM);
1400 
1401 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1402 	    &kp_none, &kd_nowait);
1403 	if (!hibernate_copy_page)
1404 		return (ENOMEM);
1405 
1406 	pmap_kenter_pa(hibernate_copy_page,
1407 	    (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1408 
1409 	pmap_activate(curproc);
1410 
1411 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
1412 	    HIBERNATE_CHUNK_SIZE);
1413 
1414 	/* Calculate the chunk regions */
1415 	for (i = 0; i < hiber_info->nranges; i++) {
1416 		range_base = hiber_info->ranges[i].base;
1417 		range_end = hiber_info->ranges[i].end;
1418 
1419 		inaddr = range_base;
1420 
1421 		while (inaddr < range_end) {
1422 			chunks[hiber_info->chunk_ctr].base = inaddr;
1423 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1424 				chunks[hiber_info->chunk_ctr].end = inaddr +
1425 				    HIBERNATE_CHUNK_SIZE;
1426 			else
1427 				chunks[hiber_info->chunk_ctr].end = range_end;
1428 
1429 			inaddr += HIBERNATE_CHUNK_SIZE;
1430 			hiber_info->chunk_ctr ++;
1431 		}
1432 	}
1433 
1434 	/* Compress and write the chunks in the chunktable */
1435 	for (i = 0; i < hiber_info->chunk_ctr; i++) {
1436 		range_base = chunks[i].base;
1437 		range_end = chunks[i].end;
1438 
1439 		chunks[i].offset = blkctr;
1440 
1441 		/* Reset zlib for deflate */
1442 		if (hibernate_zlib_reset(hiber_info, 1) != Z_OK)
1443 			return (ENOMEM);
1444 
1445 		inaddr = range_base;
1446 
1447 		/*
1448 		 * For each range, loop through its phys mem region
1449 		 * and write out the chunks (the last chunk might be
1450 		 * smaller than the chunk size).
1451 		 */
1452 		while (inaddr < range_end) {
1453 			out_remaining = PAGE_SIZE;
1454 			while (out_remaining > 0 && inaddr < range_end) {
1455 
1456 				/*
1457 				 * Adjust for regions that are not evenly
1458 				 * divisible by PAGE_SIZE or overflowed
1459 				 * pages from the previous iteration.
1460 				 */
1461 				temp_inaddr = (inaddr & PAGE_MASK) +
1462 				    hibernate_copy_page;
1463 
1464 				/* Deflate from temp_inaddr to IO page */
1465 				if (inaddr != range_end) {
1466 					pmap_kenter_pa(hibernate_temp_page,
1467 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1468 
1469 					pmap_activate(curproc);
1470 
1471 					bcopy((caddr_t)hibernate_temp_page,
1472 					    (caddr_t)hibernate_copy_page,
1473 					    PAGE_SIZE);
1474 					inaddr += hibernate_deflate(hiber_info,
1475 					    temp_inaddr, &out_remaining);
1476 				}
1477 
1478 				if (out_remaining == 0) {
1479 					/* Filled up the page */
1480 					nblocks =
1481 					    PAGE_SIZE / hiber_info->secsize;
1482 
1483 					if (hiber_info->io_func(
1484 					    hiber_info->device,
1485 					    blkctr, (vaddr_t)hibernate_io_page,
1486 					    PAGE_SIZE, HIB_W,
1487 					    hiber_info->io_page))
1488 						return (EIO);
1489 
1490 					blkctr += nblocks;
1491 				}
1492 			}
1493 		}
1494 
1495 		if (inaddr != range_end)
1496 			return (EINVAL);
1497 
1498 		/*
1499 		 * End of range. Round up to next secsize bytes
1500 		 * after finishing compress
1501 		 */
1502 		if (out_remaining == 0)
1503 			out_remaining = PAGE_SIZE;
1504 
1505 		/* Finish compress */
1506 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1507 		hibernate_state->hib_stream.avail_in = 0;
1508 		hibernate_state->hib_stream.next_out =
1509 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1510 		hibernate_state->hib_stream.avail_out = out_remaining;
1511 
1512 		if (deflate(&hibernate_state->hib_stream, Z_FINISH) !=
1513 		    Z_STREAM_END)
1514 			return (EIO);
1515 
1516 		out_remaining = hibernate_state->hib_stream.avail_out;
1517 
1518 		used = PAGE_SIZE - out_remaining;
1519 		nblocks = used / hiber_info->secsize;
1520 
1521 		/* Round up to next block if needed */
1522 		if (used % hiber_info->secsize != 0)
1523 			nblocks ++;
1524 
1525 		/* Write final block(s) for this chunk */
1526 		if (hiber_info->io_func(hiber_info->device, blkctr,
1527 		    (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize,
1528 		    HIB_W, hiber_info->io_page))
1529 			return (EIO);
1530 
1531 		blkctr += nblocks;
1532 
1533 		offset = blkctr;
1534 		chunks[i].compressed_size = (offset - chunks[i].offset) *
1535 		    hiber_info->secsize;
1536 	}
1537 
1538 	return (0);
1539 }
1540 
1541 /*
1542  * Reset the zlib stream state and allocate a new hiballoc area for either
1543  * inflate or deflate. This function is called once for each hibernate chunk.
1544  * Calling hiballoc_init multiple times is acceptable since the memory it is
1545  * provided is unmanaged memory (stolen). We use the memory provided to us
1546  * by the piglet allocated via the supplied hiber_info.
1547  */
1548 int
1549 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate)
1550 {
1551 	vaddr_t hibernate_zlib_start;
1552 	size_t hibernate_zlib_size;
1553 	char *pva = (char *)hiber_info->piglet_va;
1554 	struct hibernate_zlib_state *hibernate_state;
1555 
1556 	hibernate_state =
1557 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1558 
1559 	if(!deflate)
1560 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1561 
1562 	hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE));
1563 	hibernate_zlib_size = 80 * PAGE_SIZE;
1564 
1565 	bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1566 	bzero((caddr_t)hibernate_state, PAGE_SIZE);
1567 
1568 	/* Set up stream structure */
1569 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1570 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1571 
1572 	/* Initialize the hiballoc arena for zlib allocs/frees */
1573 	hiballoc_init(&hibernate_state->hiballoc_arena,
1574 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1575 
1576 	if (deflate) {
1577 		return deflateInit(&hibernate_state->hib_stream,
1578 		    Z_BEST_SPEED);
1579 	} else
1580 		return inflateInit(&hibernate_state->hib_stream);
1581 }
1582 
1583 /*
1584  * Reads the hibernated memory image from disk, whose location and
1585  * size are recorded in hiber_info. Begin by reading the persisted
1586  * chunk table, which records the original chunk placement location
1587  * and compressed size for each. Next, allocate a pig region of
1588  * sufficient size to hold the compressed image. Next, read the
1589  * chunks into the pig area (calling hibernate_read_chunks to do this),
1590  * and finally, if all of the above succeeds, clear the hibernate signature.
1591  * The function will then return to hibernate_resume, which will proceed
1592  * to unpack the pig image to the correct place in memory.
1593  */
1594 int
1595 hibernate_read_image(union hibernate_info *hiber_info)
1596 {
1597 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1598 	paddr_t image_start, image_end, pig_start, pig_end;
1599 	struct hibernate_disk_chunk *chunks;
1600 	daddr_t blkctr;
1601 	vaddr_t chunktable = (vaddr_t)NULL;
1602 	paddr_t piglet_chunktable = hiber_info->piglet_pa +
1603 	    HIBERNATE_CHUNK_SIZE;
1604 	int i;
1605 
1606 	pmap_activate(curproc);
1607 
1608 	/* Calculate total chunk table size in disk blocks */
1609 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
1610 
1611 	blkctr = hiber_info->sig_offset - chunktable_size -
1612 			hiber_info->swap_offset;
1613 
1614 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1615 	    &kp_none, &kd_nowait);
1616 
1617 	if (!chunktable)
1618 		return (1);
1619 
1620 	/* Read the chunktable from disk into the piglet chunktable */
1621 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1622 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) {
1623 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1624 		    VM_PROT_ALL);
1625 		pmap_update(pmap_kernel());
1626 		hibernate_block_io(hiber_info, blkctr, PAGE_SIZE,
1627 		    chunktable + i, 0);
1628 	}
1629 
1630 	blkctr = hiber_info->image_offset;
1631 	compressed_size = 0;
1632 
1633 	chunks = (struct hibernate_disk_chunk *)chunktable;
1634 
1635 	for (i = 0; i < hiber_info->chunk_ctr; i++)
1636 		compressed_size += chunks[i].compressed_size;
1637 
1638 	disk_size = compressed_size;
1639 
1640 	/* Allocate the pig area */
1641 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1642 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1643 		return (1);
1644 
1645 	pig_end = pig_start + pig_sz;
1646 
1647 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1648 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1649 	image_start = pig_start;
1650 
1651 	image_start = image_end - disk_size;
1652 
1653 	hibernate_read_chunks(hiber_info, image_start, image_end, disk_size,
1654 	    chunks);
1655 
1656 	pmap_kremove(chunktable, PAGE_SIZE);
1657 	pmap_update(pmap_kernel());
1658 
1659 	/* Prepare the resume time pmap/page table */
1660 	hibernate_populate_resume_pt(hiber_info, image_start, image_end);
1661 
1662 	return (0);
1663 }
1664 
1665 /*
1666  * Read the hibernated memory chunks from disk (chunk information at this
1667  * point is stored in the piglet) into the pig area specified by
1668  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1669  * only chunk with overlap possibilities.
1670  */
1671 int
1672 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start,
1673     paddr_t pig_end, size_t image_compr_size,
1674     struct hibernate_disk_chunk *chunks)
1675 {
1676 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1677 	paddr_t copy_start, copy_end, piglet_cur;
1678 	paddr_t piglet_base = hib_info->piglet_pa;
1679 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1680 	daddr_t blkctr;
1681 	size_t processed, compressed_size, read_size;
1682 	int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0;
1683 	short *ochunks, *pchunks, *fchunks, i, j;
1684 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1685 
1686 	global_pig_start = pig_start;
1687 
1688 	pmap_activate(curproc);
1689 
1690 	/*
1691 	 * These mappings go into the resuming kernel's page table, and are
1692 	 * used only during image read. They dissappear from existence
1693 	 * when the suspended kernel is unpacked on top of us.
1694 	 */
1695 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1696 	if (!tempva)
1697 		return (1);
1698 	hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any,
1699 	    &kp_none, &kd_nowait);
1700 	if (!hibernate_fchunk_area)
1701 		return (1);
1702 
1703 	/* Final output chunk ordering VA */
1704 	fchunks = (short *)hibernate_fchunk_area;
1705 
1706 	/* Piglet chunk ordering VA */
1707 	pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE));
1708 
1709 	/* Final chunk ordering VA */
1710 	ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE));
1711 
1712 	/* Map the chunk ordering region */
1713 	for(i=0; i<24 ; i++) {
1714 		pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE),
1715 			piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL);
1716 		pmap_update(pmap_kernel());
1717 	}
1718 
1719 	nchunks = hib_info->chunk_ctr;
1720 
1721 	/* Initially start all chunks as unplaced */
1722 	for (i = 0; i < nchunks; i++)
1723 		chunks[i].flags = 0;
1724 
1725 	/*
1726 	 * Search the list for chunks that are outside the pig area. These
1727 	 * can be placed first in the final output list.
1728 	 */
1729 	for (i = 0; i < nchunks; i++) {
1730 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1731 			ochunks[nochunks] = i;
1732 			fchunks[nfchunks] = i;
1733 			nochunks++;
1734 			nfchunks++;
1735 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Walk the ordering, place the chunks in ascending memory order.
1741 	 * Conflicts might arise, these are handled next.
1742 	 */
1743 	do {
1744 		img_index = -1;
1745 		found = 0;
1746 		j = -1;
1747 		for (i = 0; i < nchunks; i++)
1748 			if (chunks[i].base < img_index &&
1749 			    chunks[i].flags == 0 ) {
1750 				j = i;
1751 				img_index = chunks[i].base;
1752 			}
1753 
1754 		if (j != -1) {
1755 			found = 1;
1756 			ochunks[nochunks] = j;
1757 			nochunks++;
1758 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1759 		}
1760 	} while (found);
1761 
1762 	img_index = pig_start;
1763 
1764 	/*
1765 	 * Identify chunk output conflicts (chunks whose pig load area
1766 	 * corresponds to their original memory placement location)
1767 	 */
1768 	for (i = 0; i < nochunks ; i++) {
1769 		overlap = 0;
1770 		r1s = img_index;
1771 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1772 		r2s = chunks[ochunks[i]].base;
1773 		r2e = chunks[ochunks[i]].end;
1774 
1775 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1776 		if (overlap)
1777 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1778 		img_index += chunks[ochunks[i]].compressed_size;
1779 	}
1780 
1781 	/*
1782 	 * Prepare the final output chunk list. Calculate an output
1783 	 * inflate strategy for overlapping chunks if needed.
1784 	 */
1785 	img_index = pig_start;
1786 	for (i = 0; i < nochunks ; i++) {
1787 		/*
1788 		 * If a conflict is detected, consume enough compressed
1789 		 * output chunks to fill the piglet
1790 		 */
1791 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1792 			copy_start = piglet_base;
1793 			copy_end = piglet_end;
1794 			piglet_cur = piglet_base;
1795 			npchunks = 0;
1796 			j = i;
1797 
1798 			while (copy_start < copy_end && j < nochunks) {
1799 				piglet_cur +=
1800 				    chunks[ochunks[j]].compressed_size;
1801 				pchunks[npchunks] = ochunks[j];
1802 				npchunks++;
1803 				copy_start +=
1804 				    chunks[ochunks[j]].compressed_size;
1805 				img_index += chunks[ochunks[j]].compressed_size;
1806 				i++;
1807 				j++;
1808 			}
1809 
1810 			piglet_cur = piglet_base;
1811 			for (j = 0; j < npchunks; j++) {
1812 				piglet_cur +=
1813 				    chunks[pchunks[j]].compressed_size;
1814 				fchunks[nfchunks] = pchunks[j];
1815 				chunks[pchunks[j]].flags |=
1816 				    HIBERNATE_CHUNK_USED;
1817 				nfchunks++;
1818 			}
1819 		} else {
1820 			/*
1821 			 * No conflict, chunk can be added without copying
1822 			 */
1823 			if ((chunks[ochunks[i]].flags &
1824 			    HIBERNATE_CHUNK_USED) == 0) {
1825 				fchunks[nfchunks] = ochunks[i];
1826 				chunks[ochunks[i]].flags |=
1827 				    HIBERNATE_CHUNK_USED;
1828 				nfchunks++;
1829 			}
1830 			img_index += chunks[ochunks[i]].compressed_size;
1831 		}
1832 	}
1833 
1834 	img_index = pig_start;
1835 	for (i = 0; i < nfchunks; i++) {
1836 		piglet_cur = piglet_base;
1837 		img_index += chunks[fchunks[i]].compressed_size;
1838 	}
1839 
1840 	img_cur = pig_start;
1841 
1842 	for (i = 0; i < nfchunks; i++) {
1843 		blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset;
1844 		processed = 0;
1845 		compressed_size = chunks[fchunks[i]].compressed_size;
1846 
1847 		while (processed < compressed_size) {
1848 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1849 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1850 			    VM_PROT_ALL);
1851 			pmap_update(pmap_kernel());
1852 
1853 			if (compressed_size - processed >= PAGE_SIZE)
1854 				read_size = PAGE_SIZE;
1855 			else
1856 				read_size = compressed_size - processed;
1857 
1858 			hibernate_block_io(hib_info, blkctr, read_size,
1859 			    tempva + (img_cur & PAGE_MASK), 0);
1860 
1861 			blkctr += (read_size / hib_info->secsize);
1862 
1863 			hibernate_flush();
1864 			pmap_kremove(tempva, PAGE_SIZE);
1865 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1866 			processed += read_size;
1867 			img_cur += read_size;
1868 		}
1869 	}
1870 
1871 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1872 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1873 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1874 	pmap_update(pmap_kernel());
1875 
1876 	return (0);
1877 }
1878 
1879 /*
1880  * Hibernating a machine comprises the following operations:
1881  *  1. Calculating this machine's hibernate_info information
1882  *  2. Allocating a piglet and saving the piglet's physaddr
1883  *  3. Calculating the memory chunks
1884  *  4. Writing the compressed chunks to disk
1885  *  5. Writing the chunk table
1886  *  6. Writing the signature block (hibernate_info)
1887  *
1888  * On most architectures, the function calling hibernate_suspend would
1889  * then power off the machine using some MD-specific implementation.
1890  */
1891 int
1892 hibernate_suspend(void)
1893 {
1894 	union hibernate_info hib_info;
1895 	size_t swap_size;
1896 
1897 	/*
1898 	 * Calculate memory ranges, swap offsets, etc.
1899 	 * This also allocates a piglet whose physaddr is stored in
1900 	 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va
1901 	 */
1902 	if (get_hibernate_info(&hib_info, 1))
1903 		return (1);
1904 
1905 	swap_size = hib_info.image_size + hib_info.secsize +
1906 		HIBERNATE_CHUNK_TABLE_SIZE;
1907 
1908 	if (uvm_swap_check_range(hib_info.device, swap_size)) {
1909 		printf("insufficient swap space for hibernate\n");
1910 		return (1);
1911 	}
1912 
1913 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1914 		VM_PROT_ALL);
1915 	pmap_activate(curproc);
1916 
1917 	/* Stash the piglet VA so we can free it in the resuming kernel */
1918 	global_piglet_va = hib_info.piglet_va;
1919 
1920 	if (hibernate_write_chunks(&hib_info))
1921 		return (1);
1922 
1923 	if (hibernate_write_chunktable(&hib_info))
1924 		return (1);
1925 
1926 	if (hibernate_write_signature(&hib_info))
1927 		return (1);
1928 
1929 	/* Allow the disk to settle */
1930 	delay(500000);
1931 
1932 	/*
1933 	 * Give the device-specific I/O function a notification that we're
1934 	 * done, and that it can clean up or shutdown as needed.
1935 	 */
1936 	hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0,
1937 	    HIB_DONE, hib_info.io_page);
1938 
1939 	return (0);
1940 }
1941 
1942 /*
1943  * Free items allocated by hibernate_suspend()
1944  */
1945 void
1946 hibernate_free(void)
1947 {
1948 	if (global_piglet_va)
1949 		uvm_pmr_free_piglet(global_piglet_va,
1950 		    3*HIBERNATE_CHUNK_SIZE);
1951 
1952 	if (hibernate_copy_page)
1953 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1954 	if (hibernate_temp_page)
1955 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1956 
1957 	pmap_update(pmap_kernel());
1958 
1959 	if (hibernate_copy_page)
1960 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
1961 		    &kv_any, &kp_none);
1962 	if (hibernate_temp_page)
1963 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
1964 		    &kv_any, &kp_none);
1965 
1966 	global_piglet_va = 0;
1967 	hibernate_copy_page = 0;
1968 	hibernate_temp_page = 0;
1969 }
1970