1 /* $OpenBSD: subr_hibernate.c,v 1.151 2025/01/13 17:50:54 krw Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* Make sure the signature can fit in one block */ 39 CTASSERT((offsetof(union hibernate_info, sec_size) + sizeof(u_int32_t)) <= DEV_BSIZE); 40 41 /* 42 * Hibernate piglet layout information 43 * 44 * The piglet is a scratch area of memory allocated by the suspending kernel. 45 * Its phys and virt addrs are recorded in the signature block. The piglet is 46 * used to guarantee an unused area of memory that can be used by the resuming 47 * kernel for various things. The piglet is excluded during unpack operations. 48 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 49 * 50 * Offset from piglet_base Purpose 51 * ---------------------------------------------------------------------------- 52 * 0 Private page for suspend I/O write functions 53 * 1*PAGE_SIZE I/O page used during hibernate suspend 54 * 2*PAGE_SIZE I/O page used during hibernate suspend 55 * 3*PAGE_SIZE copy page used during hibernate suspend 56 * 4*PAGE_SIZE final chunk ordering list (24 pages) 57 * 28*PAGE_SIZE RLE utility page 58 * 29*PAGE_SIZE start of hiballoc area 59 * 30*PAGE_SIZE preserved entropy 60 * 110*PAGE_SIZE end of hiballoc area (80 pages) 61 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 62 * ... unused 63 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 64 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 65 * 4*HIBERNATE_CHUNK_SIZE end of piglet 66 */ 67 68 /* Temporary vaddr ranges used during hibernate */ 69 vaddr_t hibernate_temp_page; 70 vaddr_t hibernate_copy_page; 71 vaddr_t hibernate_rle_page; 72 73 /* Hibernate info as read from disk during resume */ 74 union hibernate_info disk_hib; 75 struct bdevsw *bdsw; 76 77 /* 78 * Global copy of the pig start address. This needs to be a global as we 79 * switch stacks after computing it - it can't be stored on the stack. 80 */ 81 paddr_t global_pig_start; 82 83 /* 84 * Global copies of the piglet start addresses (PA/VA). We store these 85 * as globals to avoid having to carry them around as parameters, as the 86 * piglet is allocated early and freed late - its lifecycle extends beyond 87 * that of the hibernate info union which is calculated on suspend/resume. 88 */ 89 vaddr_t global_piglet_va; 90 paddr_t global_piglet_pa; 91 92 /* #define HIB_DEBUG */ 93 #ifdef HIB_DEBUG 94 int hib_debug = 99; 95 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 96 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 97 #else 98 #define DPRINTF(x...) 99 #define DNPRINTF(n,x...) 100 #endif 101 102 #define ROUNDUP(_x, _y) ((((_x)+(_y)-1)/(_y))*(_y)) 103 104 #ifndef NO_PROPOLICE 105 extern long __guard_local; 106 #endif /* ! NO_PROPOLICE */ 107 108 /* Retguard phys address (need to skip this region during unpack) */ 109 paddr_t retguard_start_phys, retguard_end_phys; 110 extern char __retguard_start, __retguard_end; 111 112 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 113 int hibernate_calc_rle(paddr_t, paddr_t); 114 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 115 size_t *); 116 117 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 118 119 /* 120 * Hib alloc enforced alignment. 121 */ 122 #define HIB_ALIGN 8 /* bytes alignment */ 123 124 /* 125 * sizeof builtin operation, but with alignment constraint. 126 */ 127 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 128 129 struct hiballoc_entry { 130 size_t hibe_use; 131 size_t hibe_space; 132 RBT_ENTRY(hiballoc_entry) hibe_entry; 133 }; 134 135 #define IO_TYPE_IMG 1 136 #define IO_TYPE_CHK 2 137 #define IO_TYPE_SIG 3 138 139 int 140 hibernate_write(union hibernate_info *hib, daddr_t offset, vaddr_t addr, 141 size_t size, int io_type) 142 { 143 const uint64_t blks = btodb(size); 144 145 if (hib == NULL || offset < 0 || blks == 0) { 146 printf("%s: hib is NULL, offset < 0 or blks == 0\n", __func__); 147 return (EINVAL); 148 } 149 150 switch (io_type) { 151 case IO_TYPE_IMG: 152 if (offset + blks > hib->image_size) { 153 printf("%s: image write is out of bounds: " 154 "offset-image=%lld, offset-write=%lld, blks=%llu\n", 155 __func__, hib->image_offset, offset, blks); 156 return (EIO); 157 } 158 offset += hib->image_offset; 159 break; 160 case IO_TYPE_CHK: 161 if (offset + blks > btodb(HIBERNATE_CHUNK_TABLE_SIZE)) { 162 printf("%s: chunktable write is out of bounds: " 163 "offset-chunk=%lld, offset-write=%lld, blks=%llu\n", 164 __func__, hib->chunktable_offset, offset, blks); 165 return (EIO); 166 } 167 offset += hib->chunktable_offset; 168 break; 169 case IO_TYPE_SIG: 170 if (offset != hib->sig_offset || size != hib->sec_size) { 171 printf("%s: signature write is out of bounds: " 172 "offset-sig=%lld, offset-write=%lld, blks=%llu\n", 173 __func__, hib->sig_offset, offset, blks); 174 return (EIO); 175 } 176 break; 177 default: 178 printf("%s: unsupported io type %d\n", __func__, io_type); 179 return (EINVAL); 180 } 181 182 return (hib->io_func(hib->dev, offset, addr, size, HIB_W, 183 hib->io_page)); 184 } 185 186 /* 187 * Sort hibernate memory ranges by ascending PA 188 */ 189 void 190 hibernate_sort_ranges(union hibernate_info *hib_info) 191 { 192 int i, j; 193 struct hibernate_memory_range *ranges; 194 paddr_t base, end; 195 196 ranges = hib_info->ranges; 197 198 for (i = 1; i < hib_info->nranges; i++) { 199 j = i; 200 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 201 base = ranges[j].base; 202 end = ranges[j].end; 203 ranges[j].base = ranges[j - 1].base; 204 ranges[j].end = ranges[j - 1].end; 205 ranges[j - 1].base = base; 206 ranges[j - 1].end = end; 207 j--; 208 } 209 } 210 } 211 212 /* 213 * Compare hiballoc entries based on the address they manage. 214 * 215 * Since the address is fixed, relative to struct hiballoc_entry, 216 * we just compare the hiballoc_entry pointers. 217 */ 218 static __inline int 219 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 220 { 221 vaddr_t vl = (vaddr_t)l; 222 vaddr_t vr = (vaddr_t)r; 223 224 return vl < vr ? -1 : (vl > vr); 225 } 226 227 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 228 229 /* 230 * Given a hiballoc entry, return the address it manages. 231 */ 232 static __inline void * 233 hib_entry_to_addr(struct hiballoc_entry *entry) 234 { 235 caddr_t addr; 236 237 addr = (caddr_t)entry; 238 addr += HIB_SIZEOF(struct hiballoc_entry); 239 return addr; 240 } 241 242 /* 243 * Given an address, find the hiballoc that corresponds. 244 */ 245 static __inline struct hiballoc_entry* 246 hib_addr_to_entry(void *addr_param) 247 { 248 caddr_t addr; 249 250 addr = (caddr_t)addr_param; 251 addr -= HIB_SIZEOF(struct hiballoc_entry); 252 return (struct hiballoc_entry*)addr; 253 } 254 255 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 256 257 /* 258 * Allocate memory from the arena. 259 * 260 * Returns NULL if no memory is available. 261 */ 262 void * 263 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 264 { 265 struct hiballoc_entry *entry, *new_entry; 266 size_t find_sz; 267 268 /* 269 * Enforce alignment of HIB_ALIGN bytes. 270 * 271 * Note that, because the entry is put in front of the allocation, 272 * 0-byte allocations are guaranteed a unique address. 273 */ 274 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 275 276 /* 277 * Find an entry with hibe_space >= find_sz. 278 * 279 * If the root node is not large enough, we switch to tree traversal. 280 * Because all entries are made at the bottom of the free space, 281 * traversal from the end has a slightly better chance of yielding 282 * a sufficiently large space. 283 */ 284 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 285 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 286 if (entry != NULL && entry->hibe_space < find_sz) { 287 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 288 if (entry->hibe_space >= find_sz) 289 break; 290 } 291 } 292 293 /* 294 * Insufficient or too fragmented memory. 295 */ 296 if (entry == NULL) 297 return NULL; 298 299 /* 300 * Create new entry in allocated space. 301 */ 302 new_entry = (struct hiballoc_entry*)( 303 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 304 new_entry->hibe_space = entry->hibe_space - find_sz; 305 new_entry->hibe_use = alloc_sz; 306 307 /* 308 * Insert entry. 309 */ 310 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 311 panic("hib_alloc: insert failure"); 312 entry->hibe_space = 0; 313 314 /* Return address managed by entry. */ 315 return hib_entry_to_addr(new_entry); 316 } 317 318 void 319 hib_getentropy(char **bufp, size_t *bufplen) 320 { 321 if (!bufp || !bufplen) 322 return; 323 324 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 325 *bufplen = PAGE_SIZE; 326 } 327 328 /* 329 * Free a pointer previously allocated from this arena. 330 * 331 * If addr is NULL, this will be silently accepted. 332 */ 333 void 334 hib_free(struct hiballoc_arena *arena, void *addr) 335 { 336 struct hiballoc_entry *entry, *prev; 337 338 if (addr == NULL) 339 return; 340 341 /* 342 * Derive entry from addr and check it is really in this arena. 343 */ 344 entry = hib_addr_to_entry(addr); 345 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 346 panic("hib_free: freed item %p not in hib arena", addr); 347 348 /* 349 * Give the space in entry to its predecessor. 350 * 351 * If entry has no predecessor, change its used space into free space 352 * instead. 353 */ 354 prev = RBT_PREV(hiballoc_addr, entry); 355 if (prev != NULL && 356 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 357 prev->hibe_use + prev->hibe_space) == entry) { 358 /* Merge entry. */ 359 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 360 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 361 entry->hibe_use + entry->hibe_space; 362 } else { 363 /* Flip used memory to free space. */ 364 entry->hibe_space += entry->hibe_use; 365 entry->hibe_use = 0; 366 } 367 } 368 369 /* 370 * Initialize hiballoc. 371 * 372 * The allocator will manage memory at ptr, which is len bytes. 373 */ 374 int 375 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 376 { 377 struct hiballoc_entry *entry; 378 caddr_t ptr; 379 size_t len; 380 381 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 382 383 /* 384 * Hib allocator enforces HIB_ALIGN alignment. 385 * Fixup ptr and len. 386 */ 387 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 388 len = p_len - ((size_t)ptr - (size_t)p_ptr); 389 len &= ~((size_t)HIB_ALIGN - 1); 390 391 /* 392 * Insufficient memory to be able to allocate and also do bookkeeping. 393 */ 394 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 395 return ENOMEM; 396 397 /* 398 * Create entry describing space. 399 */ 400 entry = (struct hiballoc_entry*)ptr; 401 entry->hibe_use = 0; 402 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 403 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 404 405 return 0; 406 } 407 408 /* 409 * Mark all memory as dirty. 410 * 411 * Used to inform the system that there are no pre-zero'd (PG_ZERO) free pages 412 * when we came back from hibernate. 413 */ 414 void 415 uvm_pmr_dirty_everything(void) 416 { 417 struct uvm_pmemrange *pmr; 418 struct vm_page *pg; 419 int i; 420 421 uvm_lock_fpageq(); 422 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 423 /* Dirty single pages. */ 424 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 425 != NULL) { 426 uvm_pmr_remove(pmr, pg); 427 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 428 uvm_pmr_insert(pmr, pg, 0); 429 } 430 431 /* Dirty multi page ranges. */ 432 while ((pg = RBT_ROOT(uvm_pmr_size, 433 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 434 pg--; /* Size tree always has second page. */ 435 uvm_pmr_remove(pmr, pg); 436 for (i = 0; i < pg->fpgsz; i++) 437 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 438 uvm_pmr_insert(pmr, pg, 0); 439 } 440 } 441 442 uvmexp.zeropages = 0; 443 uvm_unlock_fpageq(); 444 } 445 446 /* 447 * Allocate an area that can hold sz bytes and doesn't overlap with 448 * the piglet at piglet_pa. 449 */ 450 int 451 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 452 { 453 struct uvm_constraint_range pig_constraint; 454 struct kmem_pa_mode kp_pig = { 455 .kp_constraint = &pig_constraint, 456 .kp_maxseg = 1 457 }; 458 vaddr_t va; 459 460 sz = round_page(sz); 461 462 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 463 pig_constraint.ucr_high = -1; 464 465 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 466 if (va == 0) { 467 pig_constraint.ucr_low = 0; 468 pig_constraint.ucr_high = piglet_pa - 1; 469 470 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 471 if (va == 0) 472 return ENOMEM; 473 } 474 475 pmap_extract(pmap_kernel(), va, pa); 476 return 0; 477 } 478 479 /* 480 * Allocate a piglet area. 481 * 482 * This needs to be in DMA-safe memory. 483 * Piglets are aligned. 484 * 485 * sz and align in bytes. 486 */ 487 int 488 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 489 { 490 struct kmem_pa_mode kp_piglet = { 491 .kp_constraint = &dma_constraint, 492 .kp_align = align, 493 .kp_maxseg = 1 494 }; 495 496 /* Ensure align is a power of 2 */ 497 KASSERT((align & (align - 1)) == 0); 498 499 /* 500 * Fixup arguments: align must be at least PAGE_SIZE, 501 * sz will be converted to pagecount, since that is what 502 * pmemrange uses internally. 503 */ 504 if (align < PAGE_SIZE) 505 kp_piglet.kp_align = PAGE_SIZE; 506 507 sz = round_page(sz); 508 509 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 510 if (*va == 0) 511 return ENOMEM; 512 513 pmap_extract(pmap_kernel(), *va, pa); 514 return 0; 515 } 516 517 /* 518 * Free a piglet area. 519 */ 520 void 521 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 522 { 523 /* 524 * Fix parameters. 525 */ 526 sz = round_page(sz); 527 528 /* 529 * Free the physical and virtual memory. 530 */ 531 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 532 } 533 534 /* 535 * Physmem RLE compression support. 536 * 537 * Given a physical page address, return the number of pages starting at the 538 * address that are free. Clamps to the number of pages in 539 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 540 */ 541 int 542 uvm_page_rle(paddr_t addr) 543 { 544 struct vm_page *pg, *pg_end; 545 struct vm_physseg *vmp; 546 int pseg_idx, off_idx; 547 548 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 549 if (pseg_idx == -1) 550 return 0; 551 552 vmp = &vm_physmem[pseg_idx]; 553 pg = &vmp->pgs[off_idx]; 554 if (!(pg->pg_flags & PQ_FREE)) 555 return 0; 556 557 /* 558 * Search for the first non-free page after pg. 559 * Note that the page may not be the first page in a free pmemrange, 560 * therefore pg->fpgsz cannot be used. 561 */ 562 for (pg_end = pg; pg_end <= vmp->lastpg && 563 (pg_end->pg_flags & PQ_FREE) == PQ_FREE && 564 (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++) 565 ; 566 return pg_end - pg; 567 } 568 569 /* 570 * Fills out the hibernate_info union pointed to by hib 571 * with information about this machine (swap signature block 572 * offsets, number of memory ranges, kernel in use, etc) 573 */ 574 int 575 get_hibernate_info(union hibernate_info *hib, int suspend) 576 { 577 struct disklabel dl; 578 char err_string[128], *dl_ret; 579 int part; 580 SHA2_CTX ctx; 581 void *fn; 582 583 #ifndef NO_PROPOLICE 584 /* Save propolice guard */ 585 hib->guard = __guard_local; 586 #endif /* ! NO_PROPOLICE */ 587 588 /* Determine I/O function to use */ 589 hib->io_func = get_hibernate_io_function(swdevt[0]); 590 if (hib->io_func == NULL) 591 return (1); 592 593 /* Calculate hibernate device */ 594 hib->dev = swdevt[0]; 595 596 /* Read disklabel (used to calculate signature and image offsets) */ 597 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 598 599 if (dl_ret) { 600 printf("Hibernate error reading disklabel: %s\n", dl_ret); 601 return (1); 602 } 603 604 /* Make sure we have a swap partition. */ 605 part = DISKPART(hib->dev); 606 if (dl.d_npartitions <= part || 607 dl.d_secsize > sizeof(union hibernate_info) || 608 dl.d_partitions[part].p_fstype != FS_SWAP || 609 DL_GETPSIZE(&dl.d_partitions[part]) == 0) 610 return (1); 611 612 /* Magic number */ 613 hib->magic = HIBERNATE_MAGIC; 614 615 /* Calculate signature block location */ 616 hib->sec_size = dl.d_secsize; 617 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part]) - 1; 618 hib->sig_offset = DL_SECTOBLK(&dl, hib->sig_offset); 619 620 SHA256Init(&ctx); 621 SHA256Update(&ctx, version, strlen(version)); 622 fn = printf; 623 SHA256Update(&ctx, &fn, sizeof(fn)); 624 fn = malloc; 625 SHA256Update(&ctx, &fn, sizeof(fn)); 626 fn = km_alloc; 627 SHA256Update(&ctx, &fn, sizeof(fn)); 628 fn = strlen; 629 SHA256Update(&ctx, &fn, sizeof(fn)); 630 SHA256Final((u_int8_t *)&hib->kern_hash, &ctx); 631 632 if (suspend) { 633 /* Grab the previously-allocated piglet addresses */ 634 hib->piglet_va = global_piglet_va; 635 hib->piglet_pa = global_piglet_pa; 636 hib->io_page = (void *)hib->piglet_va; 637 638 /* 639 * Initialization of the hibernate IO function for drivers 640 * that need to do prep work (such as allocating memory or 641 * setting up data structures that cannot safely be done 642 * during suspend without causing side effects). There is 643 * a matching HIB_DONE call performed after the write is 644 * completed. 645 */ 646 if (hib->io_func(hib->dev, 647 DL_SECTOBLK(&dl, DL_GETPOFFSET(&dl.d_partitions[part])), 648 (vaddr_t)NULL, 649 DL_SECTOBLK(&dl, DL_GETPSIZE(&dl.d_partitions[part])), 650 HIB_INIT, hib->io_page)) 651 goto fail; 652 653 } else { 654 /* 655 * Resuming kernels use a regular private page for the driver 656 * No need to free this I/O page as it will vanish as part of 657 * the resume. 658 */ 659 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 660 if (!hib->io_page) 661 goto fail; 662 } 663 664 if (get_hibernate_info_md(hib)) 665 goto fail; 666 667 return (0); 668 669 fail: 670 return (1); 671 } 672 673 /* 674 * Allocate nitems*size bytes from the hiballoc area presently in use 675 */ 676 void * 677 hibernate_zlib_alloc(void *unused, int nitems, int size) 678 { 679 struct hibernate_zlib_state *hibernate_state; 680 681 hibernate_state = 682 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 683 684 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 685 } 686 687 /* 688 * Free the memory pointed to by addr in the hiballoc area presently in 689 * use 690 */ 691 void 692 hibernate_zlib_free(void *unused, void *addr) 693 { 694 struct hibernate_zlib_state *hibernate_state; 695 696 hibernate_state = 697 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 698 699 hib_free(&hibernate_state->hiballoc_arena, addr); 700 } 701 702 /* 703 * Inflate next page of data from the image stream. 704 * The rle parameter is modified on exit to contain the number of pages to 705 * skip in the output stream (or 0 if this page was inflated into). 706 * 707 * Returns 0 if the stream contains additional data, or 1 if the stream is 708 * finished. 709 */ 710 int 711 hibernate_inflate_page(int *rle) 712 { 713 struct hibernate_zlib_state *hibernate_state; 714 int i; 715 716 hibernate_state = 717 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 718 719 /* Set up the stream for RLE code inflate */ 720 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 721 hibernate_state->hib_stream.avail_out = sizeof(*rle); 722 723 /* Inflate RLE code */ 724 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 725 if (i != Z_OK && i != Z_STREAM_END) { 726 /* 727 * XXX - this will likely reboot/hang most machines 728 * since the console output buffer will be unmapped, 729 * but there's not much else we can do here. 730 */ 731 panic("rle inflate stream error"); 732 } 733 734 if (hibernate_state->hib_stream.avail_out != 0) { 735 /* 736 * XXX - this will likely reboot/hang most machines 737 * since the console output buffer will be unmapped, 738 * but there's not much else we can do here. 739 */ 740 panic("rle short inflate error"); 741 } 742 743 if (*rle < 0 || *rle > 1024) { 744 /* 745 * XXX - this will likely reboot/hang most machines 746 * since the console output buffer will be unmapped, 747 * but there's not much else we can do here. 748 */ 749 panic("invalid rle count"); 750 } 751 752 if (i == Z_STREAM_END) 753 return (1); 754 755 if (*rle != 0) 756 return (0); 757 758 /* Set up the stream for page inflate */ 759 hibernate_state->hib_stream.next_out = 760 (unsigned char *)HIBERNATE_INFLATE_PAGE; 761 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 762 763 /* Process next block of data */ 764 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 765 if (i != Z_OK && i != Z_STREAM_END) { 766 /* 767 * XXX - this will likely reboot/hang most machines 768 * since the console output buffer will be unmapped, 769 * but there's not much else we can do here. 770 */ 771 panic("inflate error"); 772 } 773 774 /* We should always have extracted a full page ... */ 775 if (hibernate_state->hib_stream.avail_out != 0) { 776 /* 777 * XXX - this will likely reboot/hang most machines 778 * since the console output buffer will be unmapped, 779 * but there's not much else we can do here. 780 */ 781 panic("incomplete page"); 782 } 783 784 return (i == Z_STREAM_END); 785 } 786 787 /* 788 * Inflate size bytes from src into dest, skipping any pages in 789 * [src..dest] that are special (see hibernate_inflate_skip) 790 * 791 * This function executes while using the resume-time stack 792 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 793 * will likely hang or reset the machine since the console output buffer 794 * will be unmapped. 795 */ 796 void 797 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 798 paddr_t src, size_t size) 799 { 800 int end_stream = 0, rle, skip; 801 struct hibernate_zlib_state *hibernate_state; 802 803 hibernate_state = 804 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 805 806 hibernate_state->hib_stream.next_in = (unsigned char *)src; 807 hibernate_state->hib_stream.avail_in = size; 808 809 do { 810 /* 811 * Is this a special page? If yes, redirect the 812 * inflate output to a scratch page (eg, discard it) 813 */ 814 skip = hibernate_inflate_skip(hib, dest); 815 if (skip == HIB_SKIP) { 816 hibernate_enter_resume_mapping( 817 HIBERNATE_INFLATE_PAGE, 818 HIBERNATE_INFLATE_PAGE, 0); 819 } else if (skip == HIB_MOVE) { 820 /* 821 * Special case : retguard region. This gets moved 822 * temporarily into the piglet region and copied into 823 * place immediately before resume 824 */ 825 hibernate_enter_resume_mapping( 826 HIBERNATE_INFLATE_PAGE, 827 hib->piglet_pa + (110 * PAGE_SIZE) + 828 hib->retguard_ofs, 0); 829 hib->retguard_ofs += PAGE_SIZE; 830 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 831 /* 832 * XXX - this will likely reboot/hang most 833 * machines since the console output 834 * buffer will be unmapped, but there's 835 * not much else we can do here. 836 */ 837 panic("retguard move error, out of space"); 838 } 839 } else { 840 hibernate_enter_resume_mapping( 841 HIBERNATE_INFLATE_PAGE, dest, 0); 842 } 843 844 hibernate_flush(); 845 end_stream = hibernate_inflate_page(&rle); 846 847 if (rle == 0) 848 dest += PAGE_SIZE; 849 else 850 dest += (rle * PAGE_SIZE); 851 } while (!end_stream); 852 } 853 854 /* 855 * deflate from src into the I/O page, up to 'remaining' bytes 856 * 857 * Returns number of input bytes consumed, and may reset 858 * the 'remaining' parameter if not all the output space was consumed 859 * (this information is needed to know how much to write to disk) 860 */ 861 size_t 862 hibernate_deflate(union hibernate_info *hib, paddr_t src, 863 size_t *remaining) 864 { 865 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 866 struct hibernate_zlib_state *hibernate_state; 867 868 hibernate_state = 869 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 870 871 /* Set up the stream for deflate */ 872 hibernate_state->hib_stream.next_in = (unsigned char *)src; 873 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 874 hibernate_state->hib_stream.next_out = 875 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 876 hibernate_state->hib_stream.avail_out = *remaining; 877 878 /* Process next block of data */ 879 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 880 panic("hibernate zlib deflate error"); 881 882 /* Update pointers and return number of bytes consumed */ 883 *remaining = hibernate_state->hib_stream.avail_out; 884 return (PAGE_SIZE - (src & PAGE_MASK)) - 885 hibernate_state->hib_stream.avail_in; 886 } 887 888 /* 889 * Write the hibernation information specified in hiber_info 890 * to the location in swap previously calculated (last block of 891 * swap), called the "signature block". 892 */ 893 int 894 hibernate_write_signature(union hibernate_info *hib) 895 { 896 memset(&disk_hib, 0, hib->sec_size); 897 memcpy(&disk_hib, hib, DEV_BSIZE); 898 899 /* Write hibernate info to disk */ 900 return (hibernate_write(hib, hib->sig_offset, 901 (vaddr_t)&disk_hib, hib->sec_size, IO_TYPE_SIG)); 902 } 903 904 /* 905 * Write the memory chunk table to the area in swap immediately 906 * preceding the signature block. The chunk table is stored 907 * in the piglet when this function is called. Returns errno. 908 */ 909 int 910 hibernate_write_chunktable(union hibernate_info *hib) 911 { 912 vaddr_t hibernate_chunk_table_start; 913 size_t hibernate_chunk_table_size; 914 int i, err; 915 916 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 917 918 hibernate_chunk_table_start = hib->piglet_va + 919 HIBERNATE_CHUNK_SIZE; 920 921 /* Write chunk table */ 922 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 923 if ((err = hibernate_write(hib, btodb(i), 924 (vaddr_t)(hibernate_chunk_table_start + i), 925 MAXPHYS, IO_TYPE_CHK))) { 926 DPRINTF("chunktable write error: %d\n", err); 927 return (err); 928 } 929 } 930 931 return (0); 932 } 933 934 /* 935 * Write an empty hiber_info to the swap signature block, which is 936 * guaranteed to not match any valid hib. 937 */ 938 int 939 hibernate_clear_signature(union hibernate_info *hib) 940 { 941 uint8_t buf[DEV_BSIZE]; 942 943 /* Zero out a blank hiber_info */ 944 memcpy(&buf, &disk_hib, sizeof(buf)); 945 memset(&disk_hib, 0, hib->sec_size); 946 947 /* Write (zeroed) hibernate info to disk */ 948 DPRINTF("clearing hibernate signature block location: %lld\n", 949 hib->sig_offset); 950 if (hibernate_block_io(hib, 951 hib->sig_offset, 952 hib->sec_size, (vaddr_t)&disk_hib, 1)) 953 printf("Warning: could not clear hibernate signature\n"); 954 955 memcpy(&disk_hib, buf, sizeof(buf)); 956 return (0); 957 } 958 959 /* 960 * Compare two hibernate_infos to determine if they are the same (eg, 961 * we should be performing a hibernate resume on this machine. 962 * Not all fields are checked - just enough to verify that the machine 963 * has the same memory configuration and kernel as the one that 964 * wrote the signature previously. 965 */ 966 int 967 hibernate_compare_signature(union hibernate_info *mine, 968 union hibernate_info *disk) 969 { 970 u_int i; 971 972 if (mine->nranges != disk->nranges) { 973 printf("unhibernate failed: memory layout changed\n"); 974 return (1); 975 } 976 977 if (bcmp(mine->kern_hash, disk->kern_hash, SHA256_DIGEST_LENGTH) != 0) { 978 printf("unhibernate failed: original kernel changed\n"); 979 return (1); 980 } 981 982 for (i = 0; i < mine->nranges; i++) { 983 if ((mine->ranges[i].base != disk->ranges[i].base) || 984 (mine->ranges[i].end != disk->ranges[i].end) ) { 985 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 986 i, 987 (void *)mine->ranges[i].base, 988 (void *)mine->ranges[i].end, 989 (void *)disk->ranges[i].base, 990 (void *)disk->ranges[i].end); 991 printf("unhibernate failed: memory size changed\n"); 992 return (1); 993 } 994 } 995 996 return (0); 997 } 998 999 /* 1000 * Transfers xfer_size bytes between the hibernate device specified in 1001 * hib_info at offset blkctr and the vaddr specified at dest. 1002 * 1003 * Separate offsets and pages are used to handle misaligned reads (reads 1004 * that span a page boundary). 1005 * 1006 * blkctr specifies a relative offset (relative to the start of swap), 1007 * not an absolute disk offset 1008 * 1009 */ 1010 int 1011 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1012 size_t xfer_size, vaddr_t dest, int iswrite) 1013 { 1014 struct buf *bp; 1015 int error; 1016 1017 bp = geteblk(xfer_size); 1018 if (iswrite) 1019 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1020 1021 bp->b_bcount = xfer_size; 1022 bp->b_blkno = blkctr; 1023 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1024 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1025 bp->b_dev = hib->dev; 1026 (*bdsw->d_strategy)(bp); 1027 1028 error = biowait(bp); 1029 if (error) { 1030 printf("hib block_io biowait error %d blk %lld size %zu\n", 1031 error, (long long)blkctr, xfer_size); 1032 } else if (!iswrite) 1033 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1034 1035 bp->b_flags |= B_INVAL; 1036 brelse(bp); 1037 1038 return (error != 0); 1039 } 1040 1041 /* 1042 * Preserve one page worth of random data, generated from the resuming 1043 * kernel's arc4random. After resume, this preserved entropy can be used 1044 * to further improve the un-hibernated machine's entropy pool. This 1045 * random data is stored in the piglet, which is preserved across the 1046 * unpack operation, and is restored later in the resume process (see 1047 * hib_getentropy) 1048 */ 1049 void 1050 hibernate_preserve_entropy(union hibernate_info *hib) 1051 { 1052 void *entropy; 1053 1054 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1055 1056 if (!entropy) 1057 return; 1058 1059 pmap_activate(curproc); 1060 pmap_kenter_pa((vaddr_t)entropy, 1061 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1062 PROT_READ | PROT_WRITE); 1063 1064 arc4random_buf((void *)entropy, PAGE_SIZE); 1065 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1066 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1067 } 1068 1069 #ifndef NO_PROPOLICE 1070 vaddr_t 1071 hibernate_unprotect_ssp(void) 1072 { 1073 struct kmem_dyn_mode kd_avoidalias; 1074 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1075 paddr_t pa; 1076 1077 pmap_extract(pmap_kernel(), va, &pa); 1078 1079 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1080 kd_avoidalias.kd_prefer = pa; 1081 kd_avoidalias.kd_waitok = 1; 1082 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1083 if (!va) 1084 panic("hibernate_unprotect_ssp"); 1085 1086 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1087 pmap_update(pmap_kernel()); 1088 1089 return va; 1090 } 1091 1092 void 1093 hibernate_reprotect_ssp(vaddr_t va) 1094 { 1095 pmap_kremove(va, PAGE_SIZE); 1096 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1097 } 1098 #endif /* NO_PROPOLICE */ 1099 1100 /* 1101 * Reads the signature block from swap, checks against the current machine's 1102 * information. If the information matches, perform a resume by reading the 1103 * saved image into the pig area, and unpacking. 1104 * 1105 * Must be called with interrupts enabled. 1106 */ 1107 void 1108 hibernate_resume(void) 1109 { 1110 uint8_t buf[DEV_BSIZE]; 1111 union hibernate_info *hib = (union hibernate_info *)&buf; 1112 int s; 1113 #ifndef NO_PROPOLICE 1114 vsize_t off = (vaddr_t)&__guard_local - 1115 trunc_page((vaddr_t)&__guard_local); 1116 vaddr_t guard_va; 1117 #endif 1118 1119 /* Get current running machine's hibernate info */ 1120 memset(buf, 0, sizeof(buf)); 1121 if (get_hibernate_info(hib, 0)) { 1122 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1123 return; 1124 } 1125 1126 /* Read hibernate info from disk */ 1127 s = splbio(); 1128 1129 bdsw = &bdevsw[major(hib->dev)]; 1130 if ((*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc)) { 1131 printf("hibernate_resume device open failed\n"); 1132 splx(s); 1133 return; 1134 } 1135 1136 DPRINTF("reading hibernate signature block location: %lld\n", 1137 hib->sig_offset); 1138 1139 if (hibernate_block_io(hib, 1140 hib->sig_offset, 1141 hib->sec_size, (vaddr_t)&disk_hib, 0)) { 1142 DPRINTF("error in hibernate read\n"); 1143 goto fail; 1144 } 1145 1146 /* Check magic number */ 1147 if (disk_hib.magic != HIBERNATE_MAGIC) { 1148 DPRINTF("wrong magic number in hibernate signature: %x\n", 1149 disk_hib.magic); 1150 goto fail; 1151 } 1152 1153 /* 1154 * We (possibly) found a hibernate signature. Clear signature first, 1155 * to prevent accidental resume or endless resume cycles later. 1156 */ 1157 if (hibernate_clear_signature(hib)) { 1158 DPRINTF("error clearing hibernate signature block\n"); 1159 goto fail; 1160 } 1161 1162 /* 1163 * If on-disk and in-memory hibernate signatures match, 1164 * this means we should do a resume from hibernate. 1165 */ 1166 if (hibernate_compare_signature(hib, &disk_hib)) { 1167 DPRINTF("mismatched hibernate signature block\n"); 1168 goto fail; 1169 } 1170 disk_hib.dev = hib->dev; 1171 1172 #ifdef MULTIPROCESSOR 1173 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1174 DPRINTF("hibernate: quiescing APs\n"); 1175 hibernate_quiesce_cpus(); 1176 #endif /* MULTIPROCESSOR */ 1177 1178 /* Read the image from disk into the image (pig) area */ 1179 if (hibernate_read_image(&disk_hib)) 1180 goto fail; 1181 if ((*bdsw->d_close)(hib->dev, 0, S_IFCHR, curproc)) 1182 printf("hibernate_resume device close failed\n"); 1183 bdsw = NULL; 1184 1185 DPRINTF("hibernate: quiescing devices\n"); 1186 if (config_suspend_all(DVACT_QUIESCE) != 0) 1187 goto fail; 1188 1189 #ifndef NO_PROPOLICE 1190 guard_va = hibernate_unprotect_ssp(); 1191 #endif /* NO_PROPOLICE */ 1192 1193 (void) splhigh(); 1194 hibernate_disable_intr_machdep(); 1195 cold = 2; 1196 1197 DPRINTF("hibernate: suspending devices\n"); 1198 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1199 cold = 0; 1200 hibernate_enable_intr_machdep(); 1201 #ifndef NO_PROPOLICE 1202 hibernate_reprotect_ssp(guard_va); 1203 #endif /* ! NO_PROPOLICE */ 1204 goto fail; 1205 } 1206 1207 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1208 &retguard_start_phys); 1209 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1210 &retguard_end_phys); 1211 1212 hibernate_preserve_entropy(&disk_hib); 1213 1214 printf("Unpacking image...\n"); 1215 1216 /* Switch stacks */ 1217 DPRINTF("hibernate: switching stacks\n"); 1218 hibernate_switch_stack_machdep(); 1219 1220 #ifndef NO_PROPOLICE 1221 /* Start using suspended kernel's propolice guard */ 1222 *(long *)(guard_va + off) = disk_hib.guard; 1223 hibernate_reprotect_ssp(guard_va); 1224 #endif /* ! NO_PROPOLICE */ 1225 1226 /* Unpack and resume */ 1227 hibernate_unpack_image(&disk_hib); 1228 1229 fail: 1230 if (!bdsw) 1231 printf("\nUnable to resume hibernated image\n"); 1232 else if ((*bdsw->d_close)(hib->dev, 0, S_IFCHR, curproc)) 1233 printf("hibernate_resume device close failed\n"); 1234 splx(s); 1235 } 1236 1237 /* 1238 * Unpack image from pig area to original location by looping through the 1239 * list of output chunks in the order they should be restored (fchunks). 1240 * 1241 * Note that due to the stack smash protector and the fact that we have 1242 * switched stacks, it is not permitted to return from this function. 1243 */ 1244 void 1245 hibernate_unpack_image(union hibernate_info *hib) 1246 { 1247 uint8_t buf[DEV_BSIZE]; 1248 struct hibernate_disk_chunk *chunks; 1249 union hibernate_info *local_hib = (union hibernate_info *)&buf; 1250 paddr_t image_cur = global_pig_start; 1251 short i, *fchunks; 1252 char *pva; 1253 1254 /* Piglet will be identity mapped (VA == PA) */ 1255 pva = (char *)hib->piglet_pa; 1256 1257 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1258 1259 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1260 1261 /* Can't use hiber_info that's passed in after this point */ 1262 memcpy(buf, hib, sizeof(buf)); 1263 local_hib->retguard_ofs = 0; 1264 1265 /* VA == PA */ 1266 local_hib->piglet_va = local_hib->piglet_pa; 1267 1268 /* 1269 * Point of no return. Once we pass this point, only kernel code can 1270 * be accessed. No global variables or other kernel data structures 1271 * are guaranteed to be coherent after unpack starts. 1272 * 1273 * The image is now in high memory (pig area), we unpack from the pig 1274 * to the correct location in memory. We'll eventually end up copying 1275 * on top of ourself, but we are assured the kernel code here is the 1276 * same between the hibernated and resuming kernel, and we are running 1277 * on our own stack, so the overwrite is ok. 1278 */ 1279 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1280 hibernate_activate_resume_pt_machdep(); 1281 1282 for (i = 0; i < local_hib->chunk_ctr; i++) { 1283 /* Reset zlib for inflate */ 1284 if (hibernate_zlib_reset(local_hib, 0) != Z_OK) 1285 panic("hibernate failed to reset zlib for inflate"); 1286 1287 hibernate_process_chunk(local_hib, &chunks[fchunks[i]], 1288 image_cur); 1289 1290 image_cur += chunks[fchunks[i]].compressed_size; 1291 } 1292 1293 /* 1294 * Resume the loaded kernel by jumping to the MD resume vector. 1295 * We won't be returning from this call. We pass the location of 1296 * the retguard save area so the MD code can replace it before 1297 * resuming. See the piglet layout at the top of this file for 1298 * more information on the layout of the piglet area. 1299 * 1300 * We use 'global_piglet_va' here since by the time we are at 1301 * this point, we have already unpacked the image, and we want 1302 * the suspended kernel's view of what the piglet was, before 1303 * suspend occurred (since we will need to use that in the retguard 1304 * copy code in hibernate_resume_machdep.) 1305 */ 1306 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1307 } 1308 1309 /* 1310 * Bounce a compressed image chunk to the piglet, entering mappings for the 1311 * copied pages as needed 1312 */ 1313 void 1314 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1315 { 1316 size_t ct, ofs; 1317 paddr_t src = img_cur; 1318 vaddr_t dest = piglet; 1319 1320 /* Copy first partial page */ 1321 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1322 ofs = (src & PAGE_MASK); 1323 1324 if (ct < PAGE_SIZE) { 1325 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1326 (src - ofs), 0); 1327 hibernate_flush(); 1328 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1329 src += ct; 1330 dest += ct; 1331 } 1332 1333 /* Copy remaining pages */ 1334 while (src < size + img_cur) { 1335 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1336 hibernate_flush(); 1337 ct = PAGE_SIZE; 1338 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1339 hibernate_flush(); 1340 src += ct; 1341 dest += ct; 1342 } 1343 } 1344 1345 /* 1346 * Process a chunk by bouncing it to the piglet, followed by unpacking 1347 */ 1348 void 1349 hibernate_process_chunk(union hibernate_info *hib, 1350 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1351 { 1352 char *pva = (char *)hib->piglet_va; 1353 1354 hibernate_copy_chunk_to_piglet(img_cur, 1355 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1356 hibernate_inflate_region(hib, chunk->base, 1357 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1358 chunk->compressed_size); 1359 } 1360 1361 /* 1362 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1363 * inaddr and range_end. 1364 */ 1365 int 1366 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1367 { 1368 int rle; 1369 1370 rle = uvm_page_rle(inaddr); 1371 KASSERT(rle >= 0 && rle <= MAX_RLE); 1372 1373 /* Clamp RLE to range end */ 1374 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1375 rle = (range_end - inaddr) / PAGE_SIZE; 1376 1377 return (rle); 1378 } 1379 1380 /* 1381 * Write the RLE byte for page at 'inaddr' to the output stream. 1382 * Returns the number of pages to be skipped at 'inaddr'. 1383 */ 1384 int 1385 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1386 paddr_t range_end, daddr_t *blkctr, 1387 size_t *out_remaining) 1388 { 1389 int rle, err, *rleloc; 1390 struct hibernate_zlib_state *hibernate_state; 1391 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1392 1393 hibernate_state = 1394 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1395 1396 rle = hibernate_calc_rle(inaddr, range_end); 1397 1398 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1399 *rleloc = rle; 1400 1401 /* Deflate the RLE byte into the stream */ 1402 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1403 1404 /* Did we fill the output page? If so, flush to disk */ 1405 if (*out_remaining == 0) { 1406 if ((err = hibernate_write(hib, *blkctr, 1407 (vaddr_t)hibernate_io_page, PAGE_SIZE, IO_TYPE_IMG))) { 1408 DPRINTF("hib write error %d\n", err); 1409 return -1; 1410 } 1411 1412 *blkctr += btodb(PAGE_SIZE); 1413 *out_remaining = PAGE_SIZE; 1414 1415 /* If we didn't deflate the entire RLE byte, finish it now */ 1416 if (hibernate_state->hib_stream.avail_in != 0) 1417 hibernate_deflate(hib, 1418 (vaddr_t)hibernate_state->hib_stream.next_in, 1419 out_remaining); 1420 } 1421 1422 return (rle); 1423 } 1424 1425 /* 1426 * Write a compressed version of this machine's memory to disk, at the 1427 * precalculated swap offset: 1428 * 1429 * end of swap - signature block size - chunk table size - memory size 1430 * 1431 * The function begins by looping through each phys mem range, cutting each 1432 * one into MD sized chunks. These chunks are then compressed individually 1433 * and written out to disk, in phys mem order. Some chunks might compress 1434 * more than others, and for this reason, each chunk's size is recorded 1435 * in the chunk table, which is written to disk after the image has 1436 * properly been compressed and written (in hibernate_write_chunktable). 1437 * 1438 * When this function is called, the machine is nearly suspended - most 1439 * devices are quiesced/suspended, interrupts are off, and cold has 1440 * been set. This means that there can be no side effects once the 1441 * write has started, and the write function itself can also have no 1442 * side effects. This also means no printfs are permitted (since printf 1443 * has side effects.) 1444 * 1445 * Return values : 1446 * 1447 * 0 - success 1448 * EIO - I/O error occurred writing the chunks 1449 * EINVAL - Failed to write a complete range 1450 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1451 */ 1452 int 1453 hibernate_write_chunks(union hibernate_info *hib) 1454 { 1455 paddr_t range_base, range_end, inaddr, temp_inaddr; 1456 size_t out_remaining, used; 1457 struct hibernate_disk_chunk *chunks; 1458 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1459 daddr_t blkctr = 0; 1460 int i, rle, err; 1461 struct hibernate_zlib_state *hibernate_state; 1462 1463 hibernate_state = 1464 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1465 1466 hib->chunk_ctr = 0; 1467 1468 /* 1469 * Map the utility VAs to the piglet. See the piglet map at the 1470 * top of this file for piglet layout information. 1471 */ 1472 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1473 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1474 1475 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1476 HIBERNATE_CHUNK_SIZE); 1477 1478 /* Calculate the chunk regions */ 1479 for (i = 0; i < hib->nranges; i++) { 1480 range_base = hib->ranges[i].base; 1481 range_end = hib->ranges[i].end; 1482 1483 inaddr = range_base; 1484 1485 while (inaddr < range_end) { 1486 chunks[hib->chunk_ctr].base = inaddr; 1487 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1488 chunks[hib->chunk_ctr].end = inaddr + 1489 HIBERNATE_CHUNK_SIZE; 1490 else 1491 chunks[hib->chunk_ctr].end = range_end; 1492 1493 inaddr += HIBERNATE_CHUNK_SIZE; 1494 hib->chunk_ctr ++; 1495 } 1496 } 1497 1498 uvm_pmr_dirty_everything(); 1499 1500 /* Compress and write the chunks in the chunktable */ 1501 for (i = 0; i < hib->chunk_ctr; i++) { 1502 range_base = chunks[i].base; 1503 range_end = chunks[i].end; 1504 1505 chunks[i].offset = blkctr; 1506 1507 /* Reset zlib for deflate */ 1508 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1509 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1510 return (ENOMEM); 1511 } 1512 1513 inaddr = range_base; 1514 1515 /* 1516 * For each range, loop through its phys mem region 1517 * and write out the chunks (the last chunk might be 1518 * smaller than the chunk size). 1519 */ 1520 while (inaddr < range_end) { 1521 out_remaining = PAGE_SIZE; 1522 while (out_remaining > 0 && inaddr < range_end) { 1523 /* 1524 * Adjust for regions that are not evenly 1525 * divisible by PAGE_SIZE or overflowed 1526 * pages from the previous iteration. 1527 */ 1528 temp_inaddr = (inaddr & PAGE_MASK) + 1529 hibernate_copy_page; 1530 1531 /* Deflate from temp_inaddr to IO page */ 1532 if (inaddr != range_end) { 1533 rle = 0; 1534 if (inaddr % PAGE_SIZE == 0) { 1535 rle = hibernate_write_rle(hib, 1536 inaddr, 1537 range_end, 1538 &blkctr, 1539 &out_remaining); 1540 } 1541 1542 switch (rle) { 1543 case -1: 1544 return EIO; 1545 case 0: 1546 pmap_kenter_pa(hibernate_temp_page, 1547 inaddr & PMAP_PA_MASK, 1548 PROT_READ); 1549 1550 bcopy((caddr_t)hibernate_temp_page, 1551 (caddr_t)hibernate_copy_page, 1552 PAGE_SIZE); 1553 inaddr += hibernate_deflate(hib, 1554 temp_inaddr, 1555 &out_remaining); 1556 break; 1557 default: 1558 inaddr += rle * PAGE_SIZE; 1559 if (inaddr > range_end) 1560 inaddr = range_end; 1561 break; 1562 } 1563 1564 } 1565 1566 if (out_remaining == 0) { 1567 /* Filled up the page */ 1568 if ((err = hibernate_write(hib, blkctr, 1569 (vaddr_t)hibernate_io_page, 1570 PAGE_SIZE, IO_TYPE_IMG))) { 1571 DPRINTF("hib write error %d\n", 1572 err); 1573 return (err); 1574 } 1575 blkctr += btodb(PAGE_SIZE); 1576 } 1577 } 1578 } 1579 1580 if (inaddr != range_end) { 1581 DPRINTF("deflate range ended prematurely\n"); 1582 return (EINVAL); 1583 } 1584 1585 /* 1586 * End of range. Round up to next secsize bytes 1587 * after finishing compress 1588 */ 1589 if (out_remaining == 0) 1590 out_remaining = PAGE_SIZE; 1591 1592 /* Finish compress */ 1593 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1594 hibernate_state->hib_stream.avail_in = 0; 1595 hibernate_state->hib_stream.next_out = 1596 (unsigned char *)hibernate_io_page + 1597 (PAGE_SIZE - out_remaining); 1598 1599 /* We have an extra output page available for finalize */ 1600 hibernate_state->hib_stream.avail_out = 1601 out_remaining + PAGE_SIZE; 1602 1603 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1604 Z_STREAM_END) { 1605 DPRINTF("deflate error in output stream: %d\n", err); 1606 return (err); 1607 } 1608 1609 out_remaining = hibernate_state->hib_stream.avail_out; 1610 1611 /* Round up to next sector if needed */ 1612 used = ROUNDUP(2 * PAGE_SIZE - out_remaining, hib->sec_size); 1613 1614 /* Write final block(s) for this chunk */ 1615 if ((err = hibernate_write(hib, blkctr, 1616 (vaddr_t)hibernate_io_page, used, IO_TYPE_IMG))) { 1617 DPRINTF("hib final write error %d\n", err); 1618 return (err); 1619 } 1620 1621 blkctr += btodb(used); 1622 1623 chunks[i].compressed_size = dbtob(blkctr - chunks[i].offset); 1624 } 1625 1626 return (0); 1627 } 1628 1629 /* 1630 * Reset the zlib stream state and allocate a new hiballoc area for either 1631 * inflate or deflate. This function is called once for each hibernate chunk. 1632 * Calling hiballoc_init multiple times is acceptable since the memory it is 1633 * provided is unmanaged memory (stolen). We use the memory provided to us 1634 * by the piglet allocated via the supplied hib. 1635 */ 1636 int 1637 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1638 { 1639 vaddr_t hibernate_zlib_start; 1640 size_t hibernate_zlib_size; 1641 char *pva = (char *)hib->piglet_va; 1642 struct hibernate_zlib_state *hibernate_state; 1643 1644 hibernate_state = 1645 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1646 1647 if (!deflate) 1648 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1649 1650 /* 1651 * See piglet layout information at the start of this file for 1652 * information on the zlib page assignments. 1653 */ 1654 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1655 hibernate_zlib_size = 80 * PAGE_SIZE; 1656 1657 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1658 memset(hibernate_state, 0, PAGE_SIZE); 1659 1660 /* Set up stream structure */ 1661 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1662 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1663 1664 /* Initialize the hiballoc arena for zlib allocs/frees */ 1665 if (hiballoc_init(&hibernate_state->hiballoc_arena, 1666 (caddr_t)hibernate_zlib_start, hibernate_zlib_size)) 1667 return 1; 1668 1669 if (deflate) { 1670 return deflateInit(&hibernate_state->hib_stream, 1671 Z_BEST_SPEED); 1672 } else 1673 return inflateInit(&hibernate_state->hib_stream); 1674 } 1675 1676 /* 1677 * Reads the hibernated memory image from disk, whose location and 1678 * size are recorded in hib. Begin by reading the persisted 1679 * chunk table, which records the original chunk placement location 1680 * and compressed size for each. Next, allocate a pig region of 1681 * sufficient size to hold the compressed image. Next, read the 1682 * chunks into the pig area (calling hibernate_read_chunks to do this), 1683 * and finally, if all of the above succeeds, clear the hibernate signature. 1684 * The function will then return to hibernate_resume, which will proceed 1685 * to unpack the pig image to the correct place in memory. 1686 */ 1687 int 1688 hibernate_read_image(union hibernate_info *hib) 1689 { 1690 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1691 paddr_t image_start, image_end, pig_start, pig_end; 1692 struct hibernate_disk_chunk *chunks; 1693 daddr_t blkctr; 1694 vaddr_t chunktable = (vaddr_t)NULL; 1695 paddr_t piglet_chunktable = hib->piglet_pa + 1696 HIBERNATE_CHUNK_SIZE; 1697 int i, status; 1698 1699 status = 0; 1700 pmap_activate(curproc); 1701 1702 /* Calculate total chunk table size in disk blocks */ 1703 chunktable_size = btodb(HIBERNATE_CHUNK_TABLE_SIZE); 1704 1705 blkctr = hib->chunktable_offset; 1706 1707 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1708 &kp_none, &kd_nowait); 1709 1710 if (!chunktable) 1711 return (1); 1712 1713 /* Map chunktable pages */ 1714 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1715 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1716 PROT_READ | PROT_WRITE); 1717 pmap_update(pmap_kernel()); 1718 1719 /* Read the chunktable from disk into the piglet chunktable */ 1720 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1721 i += MAXPHYS, blkctr += btodb(MAXPHYS)) { 1722 if (hibernate_block_io(hib, blkctr, MAXPHYS, 1723 chunktable + i, 0)) { 1724 status = 1; 1725 goto unmap; 1726 } 1727 } 1728 1729 blkctr = hib->image_offset; 1730 compressed_size = 0; 1731 1732 chunks = (struct hibernate_disk_chunk *)chunktable; 1733 1734 for (i = 0; i < hib->chunk_ctr; i++) 1735 compressed_size += chunks[i].compressed_size; 1736 1737 disk_size = compressed_size; 1738 1739 printf("unhibernating @ block %lld length %luMB\n", 1740 hib->image_offset, compressed_size / (1024 * 1024)); 1741 1742 /* Allocate the pig area */ 1743 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1744 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1745 status = 1; 1746 goto unmap; 1747 } 1748 1749 pig_end = pig_start + pig_sz; 1750 1751 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1752 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1753 image_start = image_end - disk_size; 1754 1755 if (hibernate_read_chunks(hib, image_start, image_end, disk_size, 1756 chunks)) { 1757 status = 1; 1758 goto unmap; 1759 } 1760 1761 /* Prepare the resume time pmap/page table */ 1762 hibernate_populate_resume_pt(hib, image_start, image_end); 1763 1764 unmap: 1765 /* Unmap chunktable pages */ 1766 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1767 pmap_update(pmap_kernel()); 1768 1769 return (status); 1770 } 1771 1772 /* 1773 * Read the hibernated memory chunks from disk (chunk information at this 1774 * point is stored in the piglet) into the pig area specified by 1775 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1776 * only chunk with overlap possibilities. 1777 */ 1778 int 1779 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1780 paddr_t pig_end, size_t image_compr_size, 1781 struct hibernate_disk_chunk *chunks) 1782 { 1783 paddr_t img_cur, piglet_base; 1784 daddr_t blkctr; 1785 size_t processed, compressed_size, read_size; 1786 int err, nchunks, nfchunks, num_io_pages; 1787 vaddr_t tempva, hibernate_fchunk_area; 1788 short *fchunks, i, j; 1789 1790 tempva = (vaddr_t)NULL; 1791 hibernate_fchunk_area = (vaddr_t)NULL; 1792 nfchunks = 0; 1793 piglet_base = hib->piglet_pa; 1794 global_pig_start = pig_start; 1795 1796 /* 1797 * These mappings go into the resuming kernel's page table, and are 1798 * used only during image read. They disappear from existence 1799 * when the suspended kernel is unpacked on top of us. 1800 */ 1801 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1802 &kd_nowait); 1803 if (!tempva) 1804 return (1); 1805 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1806 &kp_none, &kd_nowait); 1807 if (!hibernate_fchunk_area) 1808 return (1); 1809 1810 /* Final output chunk ordering VA */ 1811 fchunks = (short *)hibernate_fchunk_area; 1812 1813 /* Map the chunk ordering region */ 1814 for(i = 0; i < 24 ; i++) 1815 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1816 piglet_base + ((4 + i) * PAGE_SIZE), 1817 PROT_READ | PROT_WRITE); 1818 pmap_update(pmap_kernel()); 1819 1820 nchunks = hib->chunk_ctr; 1821 1822 /* Initially start all chunks as unplaced */ 1823 for (i = 0; i < nchunks; i++) 1824 chunks[i].flags = 0; 1825 1826 /* 1827 * Search the list for chunks that are outside the pig area. These 1828 * can be placed first in the final output list. 1829 */ 1830 for (i = 0; i < nchunks; i++) { 1831 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1832 fchunks[nfchunks] = i; 1833 nfchunks++; 1834 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1835 } 1836 } 1837 1838 /* 1839 * Walk the ordering, place the chunks in ascending memory order. 1840 */ 1841 for (i = 0; i < nchunks; i++) { 1842 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1843 fchunks[nfchunks] = i; 1844 nfchunks++; 1845 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1846 } 1847 } 1848 1849 img_cur = pig_start; 1850 1851 for (i = 0, err = 0; i < nfchunks && err == 0; i++) { 1852 blkctr = chunks[fchunks[i]].offset + hib->image_offset; 1853 processed = 0; 1854 compressed_size = chunks[fchunks[i]].compressed_size; 1855 1856 while (processed < compressed_size && err == 0) { 1857 if (compressed_size - processed >= MAXPHYS) 1858 read_size = MAXPHYS; 1859 else 1860 read_size = compressed_size - processed; 1861 1862 /* 1863 * We're reading read_size bytes, offset from the 1864 * start of a page by img_cur % PAGE_SIZE, so the 1865 * end will be read_size + (img_cur % PAGE_SIZE) 1866 * from the start of the first page. Round that 1867 * up to the next page size. 1868 */ 1869 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1870 + PAGE_SIZE - 1) / PAGE_SIZE; 1871 1872 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1873 1874 /* Map pages for this read */ 1875 for (j = 0; j < num_io_pages; j ++) 1876 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1877 img_cur + j * PAGE_SIZE, 1878 PROT_READ | PROT_WRITE); 1879 1880 pmap_update(pmap_kernel()); 1881 1882 err = hibernate_block_io(hib, blkctr, read_size, 1883 tempva + (img_cur & PAGE_MASK), 0); 1884 1885 blkctr += btodb(read_size); 1886 1887 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1888 pmap_update(pmap_kernel()); 1889 1890 processed += read_size; 1891 img_cur += read_size; 1892 } 1893 } 1894 1895 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1896 pmap_update(pmap_kernel()); 1897 1898 return (i != nfchunks); 1899 } 1900 1901 /* 1902 * Hibernating a machine comprises the following operations: 1903 * 1. Calculating this machine's hibernate_info information 1904 * 2. Allocating a piglet and saving the piglet's physaddr 1905 * 3. Calculating the memory chunks 1906 * 4. Writing the compressed chunks to disk 1907 * 5. Writing the chunk table 1908 * 6. Writing the signature block (hibernate_info) 1909 * 1910 * On most architectures, the function calling hibernate_suspend would 1911 * then power off the machine using some MD-specific implementation. 1912 */ 1913 int 1914 hibernate_suspend(void) 1915 { 1916 uint8_t buf[DEV_BSIZE]; 1917 union hibernate_info *hib = (union hibernate_info *)&buf; 1918 u_long start, end; 1919 1920 /* 1921 * Calculate memory ranges, swap offsets, etc. 1922 * This also allocates a piglet whose physaddr is stored in 1923 * hib->piglet_pa and vaddr stored in hib->piglet_va 1924 */ 1925 if (get_hibernate_info(hib, 1)) { 1926 DPRINTF("failed to obtain hibernate info\n"); 1927 return (1); 1928 } 1929 1930 /* Find a page-addressed region in swap [start,end] */ 1931 if (uvm_hibswap(hib->dev, &start, &end)) { 1932 printf("hibernate: cannot find any swap\n"); 1933 return (1); 1934 } 1935 1936 if (end - start + 1 < 1000) { 1937 printf("hibernate: insufficient swap (%lu is too small)\n", 1938 end - start + 1); 1939 return (1); 1940 } 1941 1942 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1943 &retguard_start_phys); 1944 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1945 &retguard_end_phys); 1946 1947 /* Calculate block offsets in swap */ 1948 hib->image_offset = ctod(start); 1949 hib->image_size = ctod(end - start + 1) - 1950 btodb(HIBERNATE_CHUNK_TABLE_SIZE); 1951 hib->chunktable_offset = hib->image_offset + hib->image_size; 1952 1953 DPRINTF("hibernate @ block %lld chunks-length %lu blocks, " 1954 "chunktable-length %d blocks\n", hib->image_offset, hib->image_size, 1955 btodb(HIBERNATE_CHUNK_TABLE_SIZE)); 1956 1957 pmap_activate(curproc); 1958 DPRINTF("hibernate: writing chunks\n"); 1959 if (hibernate_write_chunks(hib)) { 1960 DPRINTF("hibernate_write_chunks failed\n"); 1961 return (1); 1962 } 1963 1964 DPRINTF("hibernate: writing chunktable\n"); 1965 if (hibernate_write_chunktable(hib)) { 1966 DPRINTF("hibernate_write_chunktable failed\n"); 1967 return (1); 1968 } 1969 1970 DPRINTF("hibernate: writing signature\n"); 1971 if (hibernate_write_signature(hib)) { 1972 DPRINTF("hibernate_write_signature failed\n"); 1973 return (1); 1974 } 1975 1976 /* Allow the disk to settle */ 1977 delay(500000); 1978 1979 /* 1980 * Give the device-specific I/O function a notification that we're 1981 * done, and that it can clean up or shutdown as needed. 1982 */ 1983 if (hib->io_func(hib->dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib->io_page)) 1984 printf("Warning: hibernate done failed\n"); 1985 return (0); 1986 } 1987 1988 int 1989 hibernate_alloc(void) 1990 { 1991 KASSERT(global_piglet_va == 0); 1992 KASSERT(hibernate_temp_page == 0); 1993 1994 pmap_activate(curproc); 1995 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1996 PROT_READ | PROT_WRITE); 1997 1998 /* Allocate a piglet, store its addresses in the supplied globals */ 1999 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 2000 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 2001 goto unmap; 2002 2003 /* 2004 * Allocate VA for the temp page. 2005 * 2006 * This will become part of the suspended kernel and will 2007 * be freed in hibernate_free, upon resume (or hibernate 2008 * failure) 2009 */ 2010 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 2011 &kp_none, &kd_nowait); 2012 if (!hibernate_temp_page) { 2013 uvm_pmr_free_piglet(global_piglet_va, 4 * HIBERNATE_CHUNK_SIZE); 2014 global_piglet_va = 0; 2015 goto unmap; 2016 } 2017 return (0); 2018 unmap: 2019 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2020 pmap_update(pmap_kernel()); 2021 return (ENOMEM); 2022 } 2023 2024 /* 2025 * Free items allocated by hibernate_alloc() 2026 */ 2027 void 2028 hibernate_free(void) 2029 { 2030 pmap_activate(curproc); 2031 2032 if (global_piglet_va) 2033 uvm_pmr_free_piglet(global_piglet_va, 2034 4 * HIBERNATE_CHUNK_SIZE); 2035 2036 if (hibernate_temp_page) { 2037 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2038 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2039 &kv_any, &kp_none); 2040 } 2041 2042 global_piglet_va = 0; 2043 hibernate_temp_page = 0; 2044 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2045 pmap_update(pmap_kernel()); 2046 } 2047