1 /* $OpenBSD: subr_hibernate.c,v 1.66 2013/10/20 17:16:47 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hiber_info; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hiber_info->io_func = get_hibernate_io_function(); 650 if (hiber_info->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hiber_info->device = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 dl.d_partitions[1].p_size == 0) 667 return (1); 668 669 hiber_info->secsize = dl.d_secsize; 670 671 /* Make sure the signature can fit in one block */ 672 if(sizeof(union hibernate_info) > hiber_info->secsize) 673 return (1); 674 675 /* Magic number */ 676 hiber_info->magic = HIBERNATE_MAGIC; 677 678 /* Calculate swap offset from start of disk */ 679 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 680 681 /* Calculate signature block location */ 682 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 683 dl.d_partitions[1].p_size - 684 sizeof(union hibernate_info)/hiber_info->secsize; 685 686 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 687 688 /* Stash kernel version information */ 689 bzero(&hiber_info->kernel_version, 128); 690 bcopy(version, &hiber_info->kernel_version, 691 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 692 693 if (suspend) { 694 /* Allocate piglet region */ 695 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 696 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 697 HIBERNATE_CHUNK_SIZE)) { 698 printf("Hibernate failed to allocate the piglet\n"); 699 return (1); 700 } 701 hiber_info->io_page = (void *)hiber_info->piglet_va; 702 703 /* 704 * Initialization of the hibernate IO function for drivers 705 * that need to do prep work (such as allocating memory or 706 * setting up data structures that cannot safely be done 707 * during suspend without causing side effects). There is 708 * a matching HIB_DONE call performed after the write is 709 * completed. 710 */ 711 if (hiber_info->io_func(hiber_info->device, 0, 712 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 713 goto fail; 714 715 } else { 716 /* 717 * Resuming kernels use a regular I/O page since we won't 718 * have access to the suspended kernel's piglet VA at this 719 * point. No need to free this I/O page as it will vanish 720 * as part of the resume. 721 */ 722 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 723 if (!hiber_info->io_page) 724 return (1); 725 } 726 727 728 if (get_hibernate_info_md(hiber_info)) 729 goto fail; 730 731 /* Calculate memory image location in swap */ 732 hiber_info->image_offset = dl.d_partitions[1].p_offset + 733 dl.d_partitions[1].p_size - 734 (hiber_info->image_size / hiber_info->secsize) - 735 sizeof(union hibernate_info)/hiber_info->secsize - 736 chunktable_size; 737 738 return (0); 739 fail: 740 if (suspend) 741 uvm_pmr_free_piglet(hiber_info->piglet_va, 742 HIBERNATE_CHUNK_SIZE * 3); 743 744 return (1); 745 } 746 747 /* 748 * Allocate nitems*size bytes from the hiballoc area presently in use 749 */ 750 void * 751 hibernate_zlib_alloc(void *unused, int nitems, int size) 752 { 753 struct hibernate_zlib_state *hibernate_state; 754 755 hibernate_state = 756 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 757 758 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 759 } 760 761 /* 762 * Free the memory pointed to by addr in the hiballoc area presently in 763 * use 764 */ 765 void 766 hibernate_zlib_free(void *unused, void *addr) 767 { 768 struct hibernate_zlib_state *hibernate_state; 769 770 hibernate_state = 771 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 772 773 hib_free(&hibernate_state->hiballoc_arena, addr); 774 } 775 776 /* 777 * Gets the next RLE value from the image stream 778 */ 779 int 780 hibernate_get_next_rle(void) 781 { 782 int rle, i; 783 struct hibernate_zlib_state *hibernate_state; 784 785 hibernate_state = 786 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 787 788 /* Read RLE code */ 789 hibernate_state->hib_stream.next_out = (char *)&rle; 790 hibernate_state->hib_stream.avail_out = sizeof(rle); 791 792 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 793 if (i != Z_OK && i != Z_STREAM_END) { 794 /* 795 * XXX - this will likely reboot/hang most machines 796 * since the console output buffer will be unmapped, 797 * but there's not much else we can do here. 798 */ 799 panic("inflate rle error"); 800 } 801 802 /* Sanity check what RLE value we got */ 803 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 804 panic("invalid RLE code"); 805 806 if (i == Z_STREAM_END) 807 rle = -1; 808 809 return rle; 810 } 811 812 /* 813 * Inflate next page of data from the image stream 814 */ 815 int 816 hibernate_inflate_page(void) 817 { 818 struct hibernate_zlib_state *hibernate_state; 819 int i; 820 821 hibernate_state = 822 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 823 824 /* Set up the stream for inflate */ 825 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 826 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 827 828 /* Process next block of data */ 829 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 830 if (i != Z_OK && i != Z_STREAM_END) { 831 /* 832 * XXX - this will likely reboot/hang most machines 833 * since the console output buffer will be unmapped, 834 * but there's not much else we can do here. 835 */ 836 panic("inflate error"); 837 } 838 839 /* We should always have extracted a full page ... */ 840 if (hibernate_state->hib_stream.avail_out != 0) { 841 /* 842 * XXX - this will likely reboot/hang most machines 843 * since the console output buffer will be unmapped, 844 * but there's not much else we can do here. 845 */ 846 panic("incomplete page"); 847 } 848 849 return (i == Z_STREAM_END); 850 } 851 852 /* 853 * Inflate size bytes from src into dest, skipping any pages in 854 * [src..dest] that are special (see hibernate_inflate_skip) 855 * 856 * This function executes while using the resume-time stack 857 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 858 * will likely hang or reset the machine since the console output buffer 859 * will be unmapped. 860 */ 861 void 862 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 863 paddr_t src, size_t size) 864 { 865 int end_stream = 0 ; 866 struct hibernate_zlib_state *hibernate_state; 867 868 hibernate_state = 869 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 870 871 hibernate_state->hib_stream.next_in = (char *)src; 872 hibernate_state->hib_stream.avail_in = size; 873 874 do { 875 /* Flush cache and TLB */ 876 hibernate_flush(); 877 878 /* 879 * Is this a special page? If yes, redirect the 880 * inflate output to a scratch page (eg, discard it) 881 */ 882 if (hibernate_inflate_skip(hiber_info, dest)) { 883 hibernate_enter_resume_mapping( 884 HIBERNATE_INFLATE_PAGE, 885 HIBERNATE_INFLATE_PAGE, 0); 886 } else { 887 hibernate_enter_resume_mapping( 888 HIBERNATE_INFLATE_PAGE, dest, 0); 889 } 890 891 hibernate_flush(); 892 end_stream = hibernate_inflate_page(); 893 894 dest += PAGE_SIZE; 895 } while (!end_stream); 896 } 897 898 /* 899 * deflate from src into the I/O page, up to 'remaining' bytes 900 * 901 * Returns number of input bytes consumed, and may reset 902 * the 'remaining' parameter if not all the output space was consumed 903 * (this information is needed to know how much to write to disk 904 */ 905 size_t 906 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 907 size_t *remaining) 908 { 909 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 910 struct hibernate_zlib_state *hibernate_state; 911 912 hibernate_state = 913 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 914 915 /* Set up the stream for deflate */ 916 hibernate_state->hib_stream.next_in = (caddr_t)src; 917 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 918 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 919 (PAGE_SIZE - *remaining); 920 hibernate_state->hib_stream.avail_out = *remaining; 921 922 /* Process next block of data */ 923 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 924 panic("hibernate zlib deflate error"); 925 926 /* Update pointers and return number of bytes consumed */ 927 *remaining = hibernate_state->hib_stream.avail_out; 928 return (PAGE_SIZE - (src & PAGE_MASK)) - 929 hibernate_state->hib_stream.avail_in; 930 } 931 932 /* 933 * Write the hibernation information specified in hiber_info 934 * to the location in swap previously calculated (last block of 935 * swap), called the "signature block". 936 */ 937 int 938 hibernate_write_signature(union hibernate_info *hiber_info) 939 { 940 /* Write hibernate info to disk */ 941 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 942 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 943 hiber_info->io_page)); 944 } 945 946 /* 947 * Write the memory chunk table to the area in swap immediately 948 * preceding the signature block. The chunk table is stored 949 * in the piglet when this function is called. 950 * 951 * Return values: 952 * 953 * 0 - success 954 * EIO - I/O error writing the chunktable 955 */ 956 int 957 hibernate_write_chunktable(union hibernate_info *hiber_info) 958 { 959 struct hibernate_disk_chunk *chunks; 960 vaddr_t hibernate_chunk_table_start; 961 size_t hibernate_chunk_table_size; 962 daddr_t chunkbase; 963 int i, err; 964 965 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 966 967 chunkbase = hiber_info->sig_offset - 968 (hibernate_chunk_table_size / hiber_info->secsize); 969 970 hibernate_chunk_table_start = hiber_info->piglet_va + 971 HIBERNATE_CHUNK_SIZE; 972 973 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 974 HIBERNATE_CHUNK_SIZE); 975 976 /* Write chunk table */ 977 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 978 if ((err = hiber_info->io_func(hiber_info->device, 979 chunkbase + (i/hiber_info->secsize), 980 (vaddr_t)(hibernate_chunk_table_start + i), 981 MAXPHYS, HIB_W, hiber_info->io_page))) { 982 DPRINTF("chunktable write error: %d\n", err); 983 return (EIO); 984 } 985 } 986 987 return (0); 988 } 989 990 /* 991 * Write an empty hiber_info to the swap signature block, which is 992 * guaranteed to not match any valid hiber_info. 993 */ 994 int 995 hibernate_clear_signature(void) 996 { 997 union hibernate_info blank_hiber_info; 998 union hibernate_info hiber_info; 999 1000 /* Zero out a blank hiber_info */ 1001 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 1002 1003 /* Get the signature block location */ 1004 if (get_hibernate_info(&hiber_info, 0)) 1005 return (1); 1006 1007 /* Write (zeroed) hibernate info to disk */ 1008 DPRINTF("clearing hibernate signature block location: %lld\n", 1009 hiber_info.sig_offset - hiber_info.swap_offset); 1010 if (hibernate_block_io(&hiber_info, 1011 hiber_info.sig_offset - hiber_info.swap_offset, 1012 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 1013 printf("Warning: could not clear hibernate signature\n"); 1014 1015 return (0); 1016 } 1017 1018 /* 1019 * Check chunk range overlap when calculating whether or not to copy a 1020 * compressed chunk to the piglet area before decompressing. 1021 * 1022 * returns zero if the ranges do not overlap, non-zero otherwise. 1023 */ 1024 int 1025 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1026 { 1027 /* case A : end of r1 overlaps start of r2 */ 1028 if (r1s < r2s && r1e > r2s) 1029 return (1); 1030 1031 /* case B : r1 entirely inside r2 */ 1032 if (r1s >= r2s && r1e <= r2e) 1033 return (1); 1034 1035 /* case C : r2 entirely inside r1 */ 1036 if (r2s >= r1s && r2e <= r1e) 1037 return (1); 1038 1039 /* case D : end of r2 overlaps start of r1 */ 1040 if (r2s < r1s && r2e > r1s) 1041 return (1); 1042 1043 return (0); 1044 } 1045 1046 /* 1047 * Compare two hibernate_infos to determine if they are the same (eg, 1048 * we should be performing a hibernate resume on this machine. 1049 * Not all fields are checked - just enough to verify that the machine 1050 * has the same memory configuration and kernel as the one that 1051 * wrote the signature previously. 1052 */ 1053 int 1054 hibernate_compare_signature(union hibernate_info *mine, 1055 union hibernate_info *disk) 1056 { 1057 u_int i; 1058 1059 if (mine->nranges != disk->nranges) { 1060 DPRINTF("hibernate memory range count mismatch\n"); 1061 return (1); 1062 } 1063 1064 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1065 DPRINTF("hibernate kernel version mismatch\n"); 1066 return (1); 1067 } 1068 1069 for (i = 0; i < mine->nranges; i++) { 1070 if ((mine->ranges[i].base != disk->ranges[i].base) || 1071 (mine->ranges[i].end != disk->ranges[i].end) ) { 1072 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1073 i, mine->ranges[i].base, mine->ranges[i].end, 1074 disk->ranges[i].base, disk->ranges[i].end); 1075 return (1); 1076 } 1077 } 1078 1079 return (0); 1080 } 1081 1082 /* 1083 * Transfers xfer_size bytes between the hibernate device specified in 1084 * hib_info at offset blkctr and the vaddr specified at dest. 1085 * 1086 * Separate offsets and pages are used to handle misaligned reads (reads 1087 * that span a page boundary). 1088 * 1089 * blkctr specifies a relative offset (relative to the start of swap), 1090 * not an absolute disk offset 1091 * 1092 */ 1093 int 1094 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1095 size_t xfer_size, vaddr_t dest, int iswrite) 1096 { 1097 struct buf *bp; 1098 struct bdevsw *bdsw; 1099 int error; 1100 1101 bp = geteblk(xfer_size); 1102 bdsw = &bdevsw[major(hib_info->device)]; 1103 1104 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1105 if (error) { 1106 printf("hibernate_block_io open failed\n"); 1107 return (1); 1108 } 1109 1110 if (iswrite) 1111 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1112 1113 bp->b_bcount = xfer_size; 1114 bp->b_blkno = blkctr; 1115 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1116 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1117 bp->b_dev = hib_info->device; 1118 bp->b_cylinder = 0; 1119 (*bdsw->d_strategy)(bp); 1120 1121 error = biowait(bp); 1122 if (error) { 1123 printf("hib block_io biowait error %d blk %lld size %zu\n", 1124 error, (long long)blkctr, xfer_size); 1125 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1126 curproc); 1127 if (error) 1128 printf("hibernate_block_io error close failed\n"); 1129 return (1); 1130 } 1131 1132 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1133 if (error) { 1134 printf("hibernate_block_io close failed\n"); 1135 return (1); 1136 } 1137 1138 if (!iswrite) 1139 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1140 1141 bp->b_flags |= B_INVAL; 1142 brelse(bp); 1143 1144 return (0); 1145 } 1146 1147 /* 1148 * Reads the signature block from swap, checks against the current machine's 1149 * information. If the information matches, perform a resume by reading the 1150 * saved image into the pig area, and unpacking. 1151 */ 1152 void 1153 hibernate_resume(void) 1154 { 1155 union hibernate_info hiber_info; 1156 int s; 1157 1158 /* Get current running machine's hibernate info */ 1159 bzero(&hiber_info, sizeof(hiber_info)); 1160 if (get_hibernate_info(&hiber_info, 0)) { 1161 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1162 return; 1163 } 1164 1165 /* Read hibernate info from disk */ 1166 s = splbio(); 1167 1168 DPRINTF("reading hibernate signature block location: %lld\n", 1169 hiber_info.sig_offset - hiber_info.swap_offset); 1170 1171 if (hibernate_block_io(&hiber_info, 1172 hiber_info.sig_offset - hiber_info.swap_offset, 1173 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) { 1174 DPRINTF("error in hibernate read"); 1175 splx(s); 1176 return; 1177 } 1178 1179 /* Check magic number */ 1180 if (disk_hiber_info.magic != HIBERNATE_MAGIC) { 1181 DPRINTF("wrong magic number in hibernate signature: %x\n", 1182 disk_hiber_info.magic); 1183 splx(s); 1184 return; 1185 } 1186 1187 /* 1188 * We (possibly) found a hibernate signature. Clear signature first, 1189 * to prevent accidental resume or endless resume cycles later. 1190 */ 1191 if (hibernate_clear_signature()) { 1192 DPRINTF("error clearing hibernate signature block\n"); 1193 splx(s); 1194 return; 1195 } 1196 1197 /* 1198 * If on-disk and in-memory hibernate signatures match, 1199 * this means we should do a resume from hibernate. 1200 */ 1201 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1202 DPRINTF("mismatched hibernate signature block\n"); 1203 splx(s); 1204 return; 1205 } 1206 1207 #ifdef MULTIPROCESSOR 1208 hibernate_quiesce_cpus(); 1209 #endif /* MULTIPROCESSOR */ 1210 1211 printf("Unhibernating..."); 1212 1213 /* Read the image from disk into the image (pig) area */ 1214 if (hibernate_read_image(&disk_hiber_info)) 1215 goto fail; 1216 1217 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1218 goto fail; 1219 1220 (void) splhigh(); 1221 hibernate_disable_intr_machdep(); 1222 cold = 1; 1223 1224 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1225 cold = 0; 1226 hibernate_enable_intr_machdep(); 1227 goto fail; 1228 } 1229 1230 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1231 VM_PROT_ALL); 1232 pmap_activate(curproc); 1233 1234 printf("Unpacking image...\n"); 1235 1236 /* Switch stacks */ 1237 hibernate_switch_stack_machdep(); 1238 1239 /* Unpack and resume */ 1240 hibernate_unpack_image(&disk_hiber_info); 1241 1242 fail: 1243 splx(s); 1244 printf("\nUnable to resume hibernated image\n"); 1245 } 1246 1247 /* 1248 * Unpack image from pig area to original location by looping through the 1249 * list of output chunks in the order they should be restored (fchunks). 1250 * 1251 * Note that due to the stack smash protector and the fact that we have 1252 * switched stacks, it is not permitted to return from this function. 1253 */ 1254 void 1255 hibernate_unpack_image(union hibernate_info *hiber_info) 1256 { 1257 struct hibernate_disk_chunk *chunks; 1258 union hibernate_info local_hiber_info; 1259 paddr_t image_cur = global_pig_start; 1260 short i, *fchunks; 1261 char *pva = (char *)hiber_info->piglet_va; 1262 struct hibernate_zlib_state *hibernate_state; 1263 1264 hibernate_state = 1265 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1266 1267 /* Mask off based on arch-specific piglet page size */ 1268 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1269 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1270 1271 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1272 1273 /* Can't use hiber_info that's passed in after this point */ 1274 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1275 1276 /* 1277 * Point of no return. Once we pass this point, only kernel code can 1278 * be accessed. No global variables or other kernel data structures 1279 * are guaranteed to be coherent after unpack starts. 1280 * 1281 * The image is now in high memory (pig area), we unpack from the pig 1282 * to the correct location in memory. We'll eventually end up copying 1283 * on top of ourself, but we are assured the kernel code here is the 1284 * same between the hibernated and resuming kernel, and we are running 1285 * on our own stack, so the overwrite is ok. 1286 */ 1287 hibernate_activate_resume_pt_machdep(); 1288 1289 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1290 /* Reset zlib for inflate */ 1291 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1292 panic("hibernate failed to reset zlib for inflate"); 1293 1294 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1295 image_cur); 1296 1297 image_cur += chunks[fchunks[i]].compressed_size; 1298 1299 } 1300 1301 /* 1302 * Resume the loaded kernel by jumping to the MD resume vector. 1303 * We won't be returning from this call. 1304 */ 1305 hibernate_resume_machdep(); 1306 } 1307 1308 /* 1309 * Bounce a compressed image chunk to the piglet, entering mappings for the 1310 * copied pages as needed 1311 */ 1312 void 1313 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1314 { 1315 size_t ct, ofs; 1316 paddr_t src = img_cur; 1317 vaddr_t dest = piglet; 1318 1319 /* Copy first partial page */ 1320 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1321 ofs = (src & PAGE_MASK); 1322 1323 if (ct < PAGE_SIZE) { 1324 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1325 (src - ofs), 0); 1326 hibernate_flush(); 1327 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1328 src += ct; 1329 dest += ct; 1330 } 1331 wbinvd(); 1332 1333 /* Copy remaining pages */ 1334 while (src < size + img_cur) { 1335 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1336 hibernate_flush(); 1337 ct = PAGE_SIZE; 1338 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1339 hibernate_flush(); 1340 src += ct; 1341 dest += ct; 1342 } 1343 1344 hibernate_flush(); 1345 wbinvd(); 1346 } 1347 1348 /* 1349 * Process a chunk by bouncing it to the piglet, followed by unpacking 1350 */ 1351 void 1352 hibernate_process_chunk(union hibernate_info *hiber_info, 1353 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1354 { 1355 char *pva = (char *)hiber_info->piglet_va; 1356 1357 hibernate_copy_chunk_to_piglet(img_cur, 1358 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1359 1360 hibernate_inflate_region(hiber_info, chunk->base, 1361 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1362 chunk->compressed_size); 1363 } 1364 1365 /* 1366 * Write a compressed version of this machine's memory to disk, at the 1367 * precalculated swap offset: 1368 * 1369 * end of swap - signature block size - chunk table size - memory size 1370 * 1371 * The function begins by looping through each phys mem range, cutting each 1372 * one into MD sized chunks. These chunks are then compressed individually 1373 * and written out to disk, in phys mem order. Some chunks might compress 1374 * more than others, and for this reason, each chunk's size is recorded 1375 * in the chunk table, which is written to disk after the image has 1376 * properly been compressed and written (in hibernate_write_chunktable). 1377 * 1378 * When this function is called, the machine is nearly suspended - most 1379 * devices are quiesced/suspended, interrupts are off, and cold has 1380 * been set. This means that there can be no side effects once the 1381 * write has started, and the write function itself can also have no 1382 * side effects. This also means no printfs are permitted (since printf 1383 * has side effects.) 1384 * 1385 * Return values : 1386 * 1387 * 0 - success 1388 * EIO - I/O error occurred writing the chunks 1389 * EINVAL - Failed to write a complete range 1390 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1391 */ 1392 int 1393 hibernate_write_chunks(union hibernate_info *hiber_info) 1394 { 1395 paddr_t range_base, range_end, inaddr, temp_inaddr; 1396 size_t nblocks, out_remaining, used; 1397 struct hibernate_disk_chunk *chunks; 1398 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1399 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1400 int i, err; 1401 struct hibernate_zlib_state *hibernate_state; 1402 1403 hibernate_state = 1404 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1405 1406 hiber_info->chunk_ctr = 0; 1407 1408 /* 1409 * Allocate VA for the temp and copy page. 1410 * 1411 * These will become part of the suspended kernel and will 1412 * be freed in hibernate_free, upon resume. 1413 */ 1414 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1415 &kp_none, &kd_nowait); 1416 if (!hibernate_temp_page) 1417 return (ENOMEM); 1418 1419 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1420 &kp_none, &kd_nowait); 1421 if (!hibernate_copy_page) { 1422 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1423 return (ENOMEM); 1424 } 1425 1426 pmap_kenter_pa(hibernate_copy_page, 1427 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1428 1429 pmap_activate(curproc); 1430 1431 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1432 HIBERNATE_CHUNK_SIZE); 1433 1434 /* Calculate the chunk regions */ 1435 for (i = 0; i < hiber_info->nranges; i++) { 1436 range_base = hiber_info->ranges[i].base; 1437 range_end = hiber_info->ranges[i].end; 1438 1439 inaddr = range_base; 1440 1441 while (inaddr < range_end) { 1442 chunks[hiber_info->chunk_ctr].base = inaddr; 1443 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1444 chunks[hiber_info->chunk_ctr].end = inaddr + 1445 HIBERNATE_CHUNK_SIZE; 1446 else 1447 chunks[hiber_info->chunk_ctr].end = range_end; 1448 1449 inaddr += HIBERNATE_CHUNK_SIZE; 1450 hiber_info->chunk_ctr ++; 1451 } 1452 } 1453 1454 /* Compress and write the chunks in the chunktable */ 1455 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1456 range_base = chunks[i].base; 1457 range_end = chunks[i].end; 1458 1459 chunks[i].offset = blkctr; 1460 1461 /* Reset zlib for deflate */ 1462 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) { 1463 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1464 return (ENOMEM); 1465 } 1466 1467 inaddr = range_base; 1468 1469 /* 1470 * For each range, loop through its phys mem region 1471 * and write out the chunks (the last chunk might be 1472 * smaller than the chunk size). 1473 */ 1474 while (inaddr < range_end) { 1475 out_remaining = PAGE_SIZE; 1476 while (out_remaining > 0 && inaddr < range_end) { 1477 1478 /* 1479 * Adjust for regions that are not evenly 1480 * divisible by PAGE_SIZE or overflowed 1481 * pages from the previous iteration. 1482 */ 1483 temp_inaddr = (inaddr & PAGE_MASK) + 1484 hibernate_copy_page; 1485 1486 /* Deflate from temp_inaddr to IO page */ 1487 if (inaddr != range_end) { 1488 pmap_kenter_pa(hibernate_temp_page, 1489 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1490 1491 pmap_activate(curproc); 1492 1493 bcopy((caddr_t)hibernate_temp_page, 1494 (caddr_t)hibernate_copy_page, 1495 PAGE_SIZE); 1496 inaddr += hibernate_deflate(hiber_info, 1497 temp_inaddr, &out_remaining); 1498 } 1499 1500 if (out_remaining == 0) { 1501 /* Filled up the page */ 1502 nblocks = 1503 PAGE_SIZE / hiber_info->secsize; 1504 1505 if ((err = hiber_info->io_func( 1506 hiber_info->device, 1507 blkctr, (vaddr_t)hibernate_io_page, 1508 PAGE_SIZE, HIB_W, 1509 hiber_info->io_page))) { 1510 DPRINTF("hib write error %d\n", 1511 err); 1512 return (EIO); 1513 } 1514 1515 blkctr += nblocks; 1516 } 1517 } 1518 } 1519 1520 if (inaddr != range_end) { 1521 DPRINTF("deflate range ended prematurely\n"); 1522 return (EINVAL); 1523 } 1524 1525 /* 1526 * End of range. Round up to next secsize bytes 1527 * after finishing compress 1528 */ 1529 if (out_remaining == 0) 1530 out_remaining = PAGE_SIZE; 1531 1532 /* Finish compress */ 1533 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1534 hibernate_state->hib_stream.avail_in = 0; 1535 hibernate_state->hib_stream.next_out = 1536 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1537 1538 /* We have an extra output page available for finalize */ 1539 hibernate_state->hib_stream.avail_out = 1540 out_remaining + PAGE_SIZE; 1541 1542 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1543 Z_STREAM_END) { 1544 DPRINTF("deflate error in output stream: %d\n", err); 1545 return (EIO); 1546 } 1547 1548 out_remaining = hibernate_state->hib_stream.avail_out; 1549 1550 used = 2*PAGE_SIZE - out_remaining; 1551 nblocks = used / hiber_info->secsize; 1552 1553 /* Round up to next block if needed */ 1554 if (used % hiber_info->secsize != 0) 1555 nblocks ++; 1556 1557 /* Write final block(s) for this chunk */ 1558 if ((err = hiber_info->io_func(hiber_info->device, blkctr, 1559 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1560 HIB_W, hiber_info->io_page))) { 1561 DPRINTF("hib final write error %d\n", err); 1562 return (EIO); 1563 } 1564 1565 blkctr += nblocks; 1566 1567 offset = blkctr; 1568 chunks[i].compressed_size = (offset - chunks[i].offset) * 1569 hiber_info->secsize; 1570 } 1571 1572 return (0); 1573 } 1574 1575 /* 1576 * Reset the zlib stream state and allocate a new hiballoc area for either 1577 * inflate or deflate. This function is called once for each hibernate chunk. 1578 * Calling hiballoc_init multiple times is acceptable since the memory it is 1579 * provided is unmanaged memory (stolen). We use the memory provided to us 1580 * by the piglet allocated via the supplied hiber_info. 1581 */ 1582 int 1583 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1584 { 1585 vaddr_t hibernate_zlib_start; 1586 size_t hibernate_zlib_size; 1587 char *pva = (char *)hiber_info->piglet_va; 1588 struct hibernate_zlib_state *hibernate_state; 1589 1590 hibernate_state = 1591 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1592 1593 if(!deflate) 1594 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1595 1596 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1597 hibernate_zlib_size = 80 * PAGE_SIZE; 1598 1599 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1600 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1601 1602 /* Set up stream structure */ 1603 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1604 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1605 1606 /* Initialize the hiballoc arena for zlib allocs/frees */ 1607 hiballoc_init(&hibernate_state->hiballoc_arena, 1608 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1609 1610 if (deflate) { 1611 return deflateInit(&hibernate_state->hib_stream, 1612 Z_BEST_SPEED); 1613 } else 1614 return inflateInit(&hibernate_state->hib_stream); 1615 } 1616 1617 /* 1618 * Reads the hibernated memory image from disk, whose location and 1619 * size are recorded in hiber_info. Begin by reading the persisted 1620 * chunk table, which records the original chunk placement location 1621 * and compressed size for each. Next, allocate a pig region of 1622 * sufficient size to hold the compressed image. Next, read the 1623 * chunks into the pig area (calling hibernate_read_chunks to do this), 1624 * and finally, if all of the above succeeds, clear the hibernate signature. 1625 * The function will then return to hibernate_resume, which will proceed 1626 * to unpack the pig image to the correct place in memory. 1627 */ 1628 int 1629 hibernate_read_image(union hibernate_info *hiber_info) 1630 { 1631 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1632 paddr_t image_start, image_end, pig_start, pig_end; 1633 struct hibernate_disk_chunk *chunks; 1634 daddr_t blkctr; 1635 vaddr_t chunktable = (vaddr_t)NULL; 1636 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1637 HIBERNATE_CHUNK_SIZE; 1638 int i; 1639 1640 pmap_activate(curproc); 1641 1642 /* Calculate total chunk table size in disk blocks */ 1643 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1644 1645 blkctr = hiber_info->sig_offset - chunktable_size - 1646 hiber_info->swap_offset; 1647 1648 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1649 &kp_none, &kd_nowait); 1650 1651 if (!chunktable) 1652 return (1); 1653 1654 /* Read the chunktable from disk into the piglet chunktable */ 1655 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1656 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1657 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1658 VM_PROT_ALL); 1659 pmap_update(pmap_kernel()); 1660 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1661 chunktable + i, 0); 1662 } 1663 1664 blkctr = hiber_info->image_offset; 1665 compressed_size = 0; 1666 1667 chunks = (struct hibernate_disk_chunk *)chunktable; 1668 1669 for (i = 0; i < hiber_info->chunk_ctr; i++) 1670 compressed_size += chunks[i].compressed_size; 1671 1672 disk_size = compressed_size; 1673 1674 printf(" (image size: %zu)\n", compressed_size); 1675 1676 /* Allocate the pig area */ 1677 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1678 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1679 return (1); 1680 1681 pig_end = pig_start + pig_sz; 1682 1683 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1684 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1685 image_start = pig_start; 1686 1687 image_start = image_end - disk_size; 1688 1689 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1690 chunks); 1691 1692 pmap_kremove(chunktable, PAGE_SIZE); 1693 pmap_update(pmap_kernel()); 1694 1695 /* Prepare the resume time pmap/page table */ 1696 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1697 1698 return (0); 1699 } 1700 1701 /* 1702 * Read the hibernated memory chunks from disk (chunk information at this 1703 * point is stored in the piglet) into the pig area specified by 1704 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1705 * only chunk with overlap possibilities. 1706 */ 1707 int 1708 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1709 paddr_t pig_end, size_t image_compr_size, 1710 struct hibernate_disk_chunk *chunks) 1711 { 1712 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1713 paddr_t copy_start, copy_end, piglet_cur; 1714 paddr_t piglet_base = hib_info->piglet_pa; 1715 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1716 daddr_t blkctr; 1717 size_t processed, compressed_size, read_size; 1718 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1719 short *ochunks, *pchunks, *fchunks, i, j; 1720 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1721 1722 global_pig_start = pig_start; 1723 1724 pmap_activate(curproc); 1725 1726 /* 1727 * These mappings go into the resuming kernel's page table, and are 1728 * used only during image read. They dissappear from existence 1729 * when the suspended kernel is unpacked on top of us. 1730 */ 1731 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1732 if (!tempva) 1733 return (1); 1734 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1735 &kp_none, &kd_nowait); 1736 if (!hibernate_fchunk_area) 1737 return (1); 1738 1739 /* Final output chunk ordering VA */ 1740 fchunks = (short *)hibernate_fchunk_area; 1741 1742 /* Piglet chunk ordering VA */ 1743 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1744 1745 /* Final chunk ordering VA */ 1746 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1747 1748 /* Map the chunk ordering region */ 1749 for(i=0; i<24 ; i++) { 1750 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1751 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1752 pmap_update(pmap_kernel()); 1753 } 1754 1755 nchunks = hib_info->chunk_ctr; 1756 1757 /* Initially start all chunks as unplaced */ 1758 for (i = 0; i < nchunks; i++) 1759 chunks[i].flags = 0; 1760 1761 /* 1762 * Search the list for chunks that are outside the pig area. These 1763 * can be placed first in the final output list. 1764 */ 1765 for (i = 0; i < nchunks; i++) { 1766 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1767 ochunks[nochunks] = i; 1768 fchunks[nfchunks] = i; 1769 nochunks++; 1770 nfchunks++; 1771 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1772 } 1773 } 1774 1775 /* 1776 * Walk the ordering, place the chunks in ascending memory order. 1777 * Conflicts might arise, these are handled next. 1778 */ 1779 do { 1780 img_index = -1; 1781 found = 0; 1782 j = -1; 1783 for (i = 0; i < nchunks; i++) 1784 if (chunks[i].base < img_index && 1785 chunks[i].flags == 0 ) { 1786 j = i; 1787 img_index = chunks[i].base; 1788 } 1789 1790 if (j != -1) { 1791 found = 1; 1792 ochunks[nochunks] = j; 1793 nochunks++; 1794 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1795 } 1796 } while (found); 1797 1798 img_index = pig_start; 1799 1800 /* 1801 * Identify chunk output conflicts (chunks whose pig load area 1802 * corresponds to their original memory placement location) 1803 */ 1804 for (i = 0; i < nochunks ; i++) { 1805 overlap = 0; 1806 r1s = img_index; 1807 r1e = img_index + chunks[ochunks[i]].compressed_size; 1808 r2s = chunks[ochunks[i]].base; 1809 r2e = chunks[ochunks[i]].end; 1810 1811 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1812 if (overlap) 1813 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1814 img_index += chunks[ochunks[i]].compressed_size; 1815 } 1816 1817 /* 1818 * Prepare the final output chunk list. Calculate an output 1819 * inflate strategy for overlapping chunks if needed. 1820 */ 1821 img_index = pig_start; 1822 for (i = 0; i < nochunks ; i++) { 1823 /* 1824 * If a conflict is detected, consume enough compressed 1825 * output chunks to fill the piglet 1826 */ 1827 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1828 copy_start = piglet_base; 1829 copy_end = piglet_end; 1830 piglet_cur = piglet_base; 1831 npchunks = 0; 1832 j = i; 1833 1834 while (copy_start < copy_end && j < nochunks) { 1835 piglet_cur += 1836 chunks[ochunks[j]].compressed_size; 1837 pchunks[npchunks] = ochunks[j]; 1838 npchunks++; 1839 copy_start += 1840 chunks[ochunks[j]].compressed_size; 1841 img_index += chunks[ochunks[j]].compressed_size; 1842 i++; 1843 j++; 1844 } 1845 1846 piglet_cur = piglet_base; 1847 for (j = 0; j < npchunks; j++) { 1848 piglet_cur += 1849 chunks[pchunks[j]].compressed_size; 1850 fchunks[nfchunks] = pchunks[j]; 1851 chunks[pchunks[j]].flags |= 1852 HIBERNATE_CHUNK_USED; 1853 nfchunks++; 1854 } 1855 } else { 1856 /* 1857 * No conflict, chunk can be added without copying 1858 */ 1859 if ((chunks[ochunks[i]].flags & 1860 HIBERNATE_CHUNK_USED) == 0) { 1861 fchunks[nfchunks] = ochunks[i]; 1862 chunks[ochunks[i]].flags |= 1863 HIBERNATE_CHUNK_USED; 1864 nfchunks++; 1865 } 1866 img_index += chunks[ochunks[i]].compressed_size; 1867 } 1868 } 1869 1870 img_index = pig_start; 1871 for (i = 0; i < nfchunks; i++) { 1872 piglet_cur = piglet_base; 1873 img_index += chunks[fchunks[i]].compressed_size; 1874 } 1875 1876 img_cur = pig_start; 1877 1878 for (i = 0; i < nfchunks; i++) { 1879 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1880 processed = 0; 1881 compressed_size = chunks[fchunks[i]].compressed_size; 1882 1883 while (processed < compressed_size) { 1884 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1885 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1886 VM_PROT_ALL); 1887 pmap_update(pmap_kernel()); 1888 1889 if (compressed_size - processed >= PAGE_SIZE) 1890 read_size = PAGE_SIZE; 1891 else 1892 read_size = compressed_size - processed; 1893 1894 hibernate_block_io(hib_info, blkctr, read_size, 1895 tempva + (img_cur & PAGE_MASK), 0); 1896 1897 blkctr += (read_size / hib_info->secsize); 1898 1899 pmap_kremove(tempva, PAGE_SIZE); 1900 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1901 processed += read_size; 1902 img_cur += read_size; 1903 } 1904 } 1905 1906 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1907 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1908 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1909 pmap_update(pmap_kernel()); 1910 1911 return (0); 1912 } 1913 1914 /* 1915 * Hibernating a machine comprises the following operations: 1916 * 1. Calculating this machine's hibernate_info information 1917 * 2. Allocating a piglet and saving the piglet's physaddr 1918 * 3. Calculating the memory chunks 1919 * 4. Writing the compressed chunks to disk 1920 * 5. Writing the chunk table 1921 * 6. Writing the signature block (hibernate_info) 1922 * 1923 * On most architectures, the function calling hibernate_suspend would 1924 * then power off the machine using some MD-specific implementation. 1925 */ 1926 int 1927 hibernate_suspend(void) 1928 { 1929 union hibernate_info hib_info; 1930 size_t swap_size; 1931 1932 /* 1933 * Calculate memory ranges, swap offsets, etc. 1934 * This also allocates a piglet whose physaddr is stored in 1935 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1936 */ 1937 if (get_hibernate_info(&hib_info, 1)) { 1938 DPRINTF("failed to obtain hibernate info\n"); 1939 return (1); 1940 } 1941 1942 swap_size = hib_info.image_size + hib_info.secsize + 1943 HIBERNATE_CHUNK_TABLE_SIZE; 1944 1945 if (uvm_swap_check_range(hib_info.device, swap_size)) { 1946 printf("insufficient swap space for hibernate\n"); 1947 return (1); 1948 } 1949 1950 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1951 VM_PROT_ALL); 1952 pmap_activate(curproc); 1953 1954 /* Stash the piglet VA so we can free it in the resuming kernel */ 1955 global_piglet_va = hib_info.piglet_va; 1956 1957 DPRINTF("hibernate: writing chunks\n"); 1958 if (hibernate_write_chunks(&hib_info)) { 1959 DPRINTF("hibernate_write_chunks failed\n"); 1960 return (1); 1961 } 1962 1963 DPRINTF("hibernate: writing chunktable\n"); 1964 if (hibernate_write_chunktable(&hib_info)) { 1965 DPRINTF("hibernate_write_chunktable failed\n"); 1966 return (1); 1967 } 1968 1969 DPRINTF("hibernate: writing signature\n"); 1970 if (hibernate_write_signature(&hib_info)) { 1971 DPRINTF("hibernate_write_signature failed\n"); 1972 return (1); 1973 } 1974 1975 /* Allow the disk to settle */ 1976 delay(500000); 1977 1978 /* 1979 * Give the device-specific I/O function a notification that we're 1980 * done, and that it can clean up or shutdown as needed. 1981 */ 1982 hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0, 1983 HIB_DONE, hib_info.io_page); 1984 1985 return (0); 1986 } 1987 1988 /* 1989 * Free items allocated by hibernate_suspend() 1990 */ 1991 void 1992 hibernate_free(void) 1993 { 1994 if (global_piglet_va) 1995 uvm_pmr_free_piglet(global_piglet_va, 1996 3*HIBERNATE_CHUNK_SIZE); 1997 1998 if (hibernate_copy_page) 1999 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 2000 if (hibernate_temp_page) 2001 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2002 2003 pmap_update(pmap_kernel()); 2004 2005 if (hibernate_copy_page) 2006 km_free((void *)hibernate_copy_page, PAGE_SIZE, 2007 &kv_any, &kp_none); 2008 if (hibernate_temp_page) 2009 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2010 &kv_any, &kp_none); 2011 2012 global_piglet_va = 0; 2013 hibernate_copy_page = 0; 2014 hibernate_temp_page = 0; 2015 } 2016