1 /* $OpenBSD: subr_hibernate.c,v 1.71 2013/11/06 12:06:58 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hiber_info; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hiber_info->io_func = get_hibernate_io_function(); 650 if (hiber_info->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hiber_info->device = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 667 return (1); 668 669 hiber_info->secsize = dl.d_secsize; 670 671 /* Make sure the signature can fit in one block */ 672 if(sizeof(union hibernate_info) > hiber_info->secsize) 673 return (1); 674 675 /* Magic number */ 676 hiber_info->magic = HIBERNATE_MAGIC; 677 678 /* Calculate signature block location */ 679 hiber_info->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 680 sizeof(union hibernate_info)/hiber_info->secsize; 681 682 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 683 684 /* Stash kernel version information */ 685 bzero(&hiber_info->kernel_version, 128); 686 bcopy(version, &hiber_info->kernel_version, 687 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 688 689 if (suspend) { 690 /* Allocate piglet region */ 691 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 692 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 693 HIBERNATE_CHUNK_SIZE)) { 694 printf("Hibernate failed to allocate the piglet\n"); 695 return (1); 696 } 697 hiber_info->io_page = (void *)hiber_info->piglet_va; 698 699 /* 700 * Initialization of the hibernate IO function for drivers 701 * that need to do prep work (such as allocating memory or 702 * setting up data structures that cannot safely be done 703 * during suspend without causing side effects). There is 704 * a matching HIB_DONE call performed after the write is 705 * completed. 706 */ 707 if (hiber_info->io_func(hiber_info->device, 708 DL_GETPOFFSET(&dl.d_partitions[1]), 709 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 710 HIB_INIT, hiber_info->io_page)) 711 goto fail; 712 713 } else { 714 /* 715 * Resuming kernels use a regular I/O page since we won't 716 * have access to the suspended kernel's piglet VA at this 717 * point. No need to free this I/O page as it will vanish 718 * as part of the resume. 719 */ 720 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 721 if (!hiber_info->io_page) 722 return (1); 723 } 724 725 726 if (get_hibernate_info_md(hiber_info)) 727 goto fail; 728 729 730 return (0); 731 fail: 732 if (suspend) 733 uvm_pmr_free_piglet(hiber_info->piglet_va, 734 HIBERNATE_CHUNK_SIZE * 3); 735 736 return (1); 737 } 738 739 /* 740 * Allocate nitems*size bytes from the hiballoc area presently in use 741 */ 742 void * 743 hibernate_zlib_alloc(void *unused, int nitems, int size) 744 { 745 struct hibernate_zlib_state *hibernate_state; 746 747 hibernate_state = 748 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 749 750 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 751 } 752 753 /* 754 * Free the memory pointed to by addr in the hiballoc area presently in 755 * use 756 */ 757 void 758 hibernate_zlib_free(void *unused, void *addr) 759 { 760 struct hibernate_zlib_state *hibernate_state; 761 762 hibernate_state = 763 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 764 765 hib_free(&hibernate_state->hiballoc_arena, addr); 766 } 767 768 /* 769 * Gets the next RLE value from the image stream 770 */ 771 int 772 hibernate_get_next_rle(void) 773 { 774 int rle, i; 775 struct hibernate_zlib_state *hibernate_state; 776 777 hibernate_state = 778 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 779 780 /* Read RLE code */ 781 hibernate_state->hib_stream.next_out = (char *)&rle; 782 hibernate_state->hib_stream.avail_out = sizeof(rle); 783 784 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 785 if (i != Z_OK && i != Z_STREAM_END) { 786 /* 787 * XXX - this will likely reboot/hang most machines 788 * since the console output buffer will be unmapped, 789 * but there's not much else we can do here. 790 */ 791 panic("inflate rle error"); 792 } 793 794 /* Sanity check what RLE value we got */ 795 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 796 panic("invalid RLE code"); 797 798 if (i == Z_STREAM_END) 799 rle = -1; 800 801 return rle; 802 } 803 804 /* 805 * Inflate next page of data from the image stream 806 */ 807 int 808 hibernate_inflate_page(void) 809 { 810 struct hibernate_zlib_state *hibernate_state; 811 int i; 812 813 hibernate_state = 814 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 815 816 /* Set up the stream for inflate */ 817 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 818 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 819 820 /* Process next block of data */ 821 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 822 if (i != Z_OK && i != Z_STREAM_END) { 823 /* 824 * XXX - this will likely reboot/hang most machines 825 * since the console output buffer will be unmapped, 826 * but there's not much else we can do here. 827 */ 828 panic("inflate error"); 829 } 830 831 /* We should always have extracted a full page ... */ 832 if (hibernate_state->hib_stream.avail_out != 0) { 833 /* 834 * XXX - this will likely reboot/hang most machines 835 * since the console output buffer will be unmapped, 836 * but there's not much else we can do here. 837 */ 838 panic("incomplete page"); 839 } 840 841 return (i == Z_STREAM_END); 842 } 843 844 /* 845 * Inflate size bytes from src into dest, skipping any pages in 846 * [src..dest] that are special (see hibernate_inflate_skip) 847 * 848 * This function executes while using the resume-time stack 849 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 850 * will likely hang or reset the machine since the console output buffer 851 * will be unmapped. 852 */ 853 void 854 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 855 paddr_t src, size_t size) 856 { 857 int end_stream = 0 ; 858 struct hibernate_zlib_state *hibernate_state; 859 860 hibernate_state = 861 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 862 863 hibernate_state->hib_stream.next_in = (char *)src; 864 hibernate_state->hib_stream.avail_in = size; 865 866 do { 867 /* Flush cache and TLB */ 868 hibernate_flush(); 869 870 /* 871 * Is this a special page? If yes, redirect the 872 * inflate output to a scratch page (eg, discard it) 873 */ 874 if (hibernate_inflate_skip(hiber_info, dest)) { 875 hibernate_enter_resume_mapping( 876 HIBERNATE_INFLATE_PAGE, 877 HIBERNATE_INFLATE_PAGE, 0); 878 } else { 879 hibernate_enter_resume_mapping( 880 HIBERNATE_INFLATE_PAGE, dest, 0); 881 } 882 883 hibernate_flush(); 884 end_stream = hibernate_inflate_page(); 885 886 dest += PAGE_SIZE; 887 } while (!end_stream); 888 } 889 890 /* 891 * deflate from src into the I/O page, up to 'remaining' bytes 892 * 893 * Returns number of input bytes consumed, and may reset 894 * the 'remaining' parameter if not all the output space was consumed 895 * (this information is needed to know how much to write to disk 896 */ 897 size_t 898 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 899 size_t *remaining) 900 { 901 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 902 struct hibernate_zlib_state *hibernate_state; 903 904 hibernate_state = 905 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 906 907 /* Set up the stream for deflate */ 908 hibernate_state->hib_stream.next_in = (caddr_t)src; 909 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 910 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 911 (PAGE_SIZE - *remaining); 912 hibernate_state->hib_stream.avail_out = *remaining; 913 914 /* Process next block of data */ 915 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 916 panic("hibernate zlib deflate error"); 917 918 /* Update pointers and return number of bytes consumed */ 919 *remaining = hibernate_state->hib_stream.avail_out; 920 return (PAGE_SIZE - (src & PAGE_MASK)) - 921 hibernate_state->hib_stream.avail_in; 922 } 923 924 /* 925 * Write the hibernation information specified in hiber_info 926 * to the location in swap previously calculated (last block of 927 * swap), called the "signature block". 928 */ 929 int 930 hibernate_write_signature(union hibernate_info *hiber_info) 931 { 932 /* Write hibernate info to disk */ 933 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 934 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 935 hiber_info->io_page)); 936 } 937 938 /* 939 * Write the memory chunk table to the area in swap immediately 940 * preceding the signature block. The chunk table is stored 941 * in the piglet when this function is called. 942 * 943 * Return values: 944 * 945 * 0 - success 946 * EIO - I/O error writing the chunktable 947 */ 948 int 949 hibernate_write_chunktable(union hibernate_info *hiber_info) 950 { 951 struct hibernate_disk_chunk *chunks; 952 vaddr_t hibernate_chunk_table_start; 953 size_t hibernate_chunk_table_size; 954 daddr_t chunkbase; 955 int i, err; 956 957 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 958 959 chunkbase = hiber_info->sig_offset - 960 (hibernate_chunk_table_size / hiber_info->secsize); 961 962 hibernate_chunk_table_start = hiber_info->piglet_va + 963 HIBERNATE_CHUNK_SIZE; 964 965 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 966 HIBERNATE_CHUNK_SIZE); 967 968 /* Write chunk table */ 969 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 970 if ((err = hiber_info->io_func(hiber_info->device, 971 chunkbase + (i/hiber_info->secsize), 972 (vaddr_t)(hibernate_chunk_table_start + i), 973 MAXPHYS, HIB_W, hiber_info->io_page))) { 974 DPRINTF("chunktable write error: %d\n", err); 975 return (EIO); 976 } 977 } 978 979 return (0); 980 } 981 982 /* 983 * Write an empty hiber_info to the swap signature block, which is 984 * guaranteed to not match any valid hiber_info. 985 */ 986 int 987 hibernate_clear_signature(void) 988 { 989 union hibernate_info blank_hiber_info; 990 union hibernate_info hiber_info; 991 992 /* Zero out a blank hiber_info */ 993 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 994 995 /* Get the signature block location */ 996 if (get_hibernate_info(&hiber_info, 0)) 997 return (1); 998 999 /* Write (zeroed) hibernate info to disk */ 1000 DPRINTF("clearing hibernate signature block location: %lld\n", 1001 hiber_info.sig_offset); 1002 if (hibernate_block_io(&hiber_info, 1003 hiber_info.sig_offset, 1004 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 1005 printf("Warning: could not clear hibernate signature\n"); 1006 1007 return (0); 1008 } 1009 1010 /* 1011 * Check chunk range overlap when calculating whether or not to copy a 1012 * compressed chunk to the piglet area before decompressing. 1013 * 1014 * returns zero if the ranges do not overlap, non-zero otherwise. 1015 */ 1016 int 1017 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1018 { 1019 /* case A : end of r1 overlaps start of r2 */ 1020 if (r1s < r2s && r1e > r2s) 1021 return (1); 1022 1023 /* case B : r1 entirely inside r2 */ 1024 if (r1s >= r2s && r1e <= r2e) 1025 return (1); 1026 1027 /* case C : r2 entirely inside r1 */ 1028 if (r2s >= r1s && r2e <= r1e) 1029 return (1); 1030 1031 /* case D : end of r2 overlaps start of r1 */ 1032 if (r2s < r1s && r2e > r1s) 1033 return (1); 1034 1035 return (0); 1036 } 1037 1038 /* 1039 * Compare two hibernate_infos to determine if they are the same (eg, 1040 * we should be performing a hibernate resume on this machine. 1041 * Not all fields are checked - just enough to verify that the machine 1042 * has the same memory configuration and kernel as the one that 1043 * wrote the signature previously. 1044 */ 1045 int 1046 hibernate_compare_signature(union hibernate_info *mine, 1047 union hibernate_info *disk) 1048 { 1049 u_int i; 1050 1051 if (mine->nranges != disk->nranges) { 1052 DPRINTF("hibernate memory range count mismatch\n"); 1053 return (1); 1054 } 1055 1056 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1057 DPRINTF("hibernate kernel version mismatch\n"); 1058 return (1); 1059 } 1060 1061 for (i = 0; i < mine->nranges; i++) { 1062 if ((mine->ranges[i].base != disk->ranges[i].base) || 1063 (mine->ranges[i].end != disk->ranges[i].end) ) { 1064 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1065 i, mine->ranges[i].base, mine->ranges[i].end, 1066 disk->ranges[i].base, disk->ranges[i].end); 1067 return (1); 1068 } 1069 } 1070 1071 return (0); 1072 } 1073 1074 /* 1075 * Transfers xfer_size bytes between the hibernate device specified in 1076 * hib_info at offset blkctr and the vaddr specified at dest. 1077 * 1078 * Separate offsets and pages are used to handle misaligned reads (reads 1079 * that span a page boundary). 1080 * 1081 * blkctr specifies a relative offset (relative to the start of swap), 1082 * not an absolute disk offset 1083 * 1084 */ 1085 int 1086 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1087 size_t xfer_size, vaddr_t dest, int iswrite) 1088 { 1089 struct buf *bp; 1090 struct bdevsw *bdsw; 1091 int error; 1092 1093 bp = geteblk(xfer_size); 1094 bdsw = &bdevsw[major(hib_info->device)]; 1095 1096 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1097 if (error) { 1098 printf("hibernate_block_io open failed\n"); 1099 return (1); 1100 } 1101 1102 if (iswrite) 1103 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1104 1105 bp->b_bcount = xfer_size; 1106 bp->b_blkno = blkctr; 1107 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1108 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1109 bp->b_dev = hib_info->device; 1110 bp->b_cylinder = 0; 1111 (*bdsw->d_strategy)(bp); 1112 1113 error = biowait(bp); 1114 if (error) { 1115 printf("hib block_io biowait error %d blk %lld size %zu\n", 1116 error, (long long)blkctr, xfer_size); 1117 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1118 curproc); 1119 if (error) 1120 printf("hibernate_block_io error close failed\n"); 1121 return (1); 1122 } 1123 1124 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1125 if (error) { 1126 printf("hibernate_block_io close failed\n"); 1127 return (1); 1128 } 1129 1130 if (!iswrite) 1131 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1132 1133 bp->b_flags |= B_INVAL; 1134 brelse(bp); 1135 1136 return (0); 1137 } 1138 1139 /* 1140 * Reads the signature block from swap, checks against the current machine's 1141 * information. If the information matches, perform a resume by reading the 1142 * saved image into the pig area, and unpacking. 1143 */ 1144 void 1145 hibernate_resume(void) 1146 { 1147 union hibernate_info hiber_info; 1148 int s; 1149 1150 /* Get current running machine's hibernate info */ 1151 bzero(&hiber_info, sizeof(hiber_info)); 1152 if (get_hibernate_info(&hiber_info, 0)) { 1153 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1154 return; 1155 } 1156 1157 /* Read hibernate info from disk */ 1158 s = splbio(); 1159 1160 DPRINTF("reading hibernate signature block location: %lld\n", 1161 hiber_info.sig_offset); 1162 1163 if (hibernate_block_io(&hiber_info, 1164 hiber_info.sig_offset, 1165 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) { 1166 DPRINTF("error in hibernate read"); 1167 splx(s); 1168 return; 1169 } 1170 1171 /* Check magic number */ 1172 if (disk_hiber_info.magic != HIBERNATE_MAGIC) { 1173 DPRINTF("wrong magic number in hibernate signature: %x\n", 1174 disk_hiber_info.magic); 1175 splx(s); 1176 return; 1177 } 1178 1179 /* 1180 * We (possibly) found a hibernate signature. Clear signature first, 1181 * to prevent accidental resume or endless resume cycles later. 1182 */ 1183 if (hibernate_clear_signature()) { 1184 DPRINTF("error clearing hibernate signature block\n"); 1185 splx(s); 1186 return; 1187 } 1188 1189 /* 1190 * If on-disk and in-memory hibernate signatures match, 1191 * this means we should do a resume from hibernate. 1192 */ 1193 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1194 DPRINTF("mismatched hibernate signature block\n"); 1195 splx(s); 1196 return; 1197 } 1198 1199 #ifdef MULTIPROCESSOR 1200 hibernate_quiesce_cpus(); 1201 #endif /* MULTIPROCESSOR */ 1202 1203 /* Read the image from disk into the image (pig) area */ 1204 if (hibernate_read_image(&disk_hiber_info)) 1205 goto fail; 1206 1207 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1208 goto fail; 1209 1210 (void) splhigh(); 1211 hibernate_disable_intr_machdep(); 1212 cold = 1; 1213 1214 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1215 cold = 0; 1216 hibernate_enable_intr_machdep(); 1217 goto fail; 1218 } 1219 1220 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1221 VM_PROT_ALL); 1222 pmap_activate(curproc); 1223 1224 printf("Unpacking image...\n"); 1225 1226 /* Switch stacks */ 1227 hibernate_switch_stack_machdep(); 1228 1229 /* Unpack and resume */ 1230 hibernate_unpack_image(&disk_hiber_info); 1231 1232 fail: 1233 splx(s); 1234 printf("\nUnable to resume hibernated image\n"); 1235 } 1236 1237 /* 1238 * Unpack image from pig area to original location by looping through the 1239 * list of output chunks in the order they should be restored (fchunks). 1240 * 1241 * Note that due to the stack smash protector and the fact that we have 1242 * switched stacks, it is not permitted to return from this function. 1243 */ 1244 void 1245 hibernate_unpack_image(union hibernate_info *hiber_info) 1246 { 1247 struct hibernate_disk_chunk *chunks; 1248 union hibernate_info local_hiber_info; 1249 paddr_t image_cur = global_pig_start; 1250 short i, *fchunks; 1251 char *pva = (char *)hiber_info->piglet_va; 1252 struct hibernate_zlib_state *hibernate_state; 1253 1254 hibernate_state = 1255 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1256 1257 /* Mask off based on arch-specific piglet page size */ 1258 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1259 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1260 1261 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1262 1263 /* Can't use hiber_info that's passed in after this point */ 1264 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1265 1266 /* 1267 * Point of no return. Once we pass this point, only kernel code can 1268 * be accessed. No global variables or other kernel data structures 1269 * are guaranteed to be coherent after unpack starts. 1270 * 1271 * The image is now in high memory (pig area), we unpack from the pig 1272 * to the correct location in memory. We'll eventually end up copying 1273 * on top of ourself, but we are assured the kernel code here is the 1274 * same between the hibernated and resuming kernel, and we are running 1275 * on our own stack, so the overwrite is ok. 1276 */ 1277 hibernate_activate_resume_pt_machdep(); 1278 1279 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1280 /* Reset zlib for inflate */ 1281 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1282 panic("hibernate failed to reset zlib for inflate"); 1283 1284 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1285 image_cur); 1286 1287 image_cur += chunks[fchunks[i]].compressed_size; 1288 1289 } 1290 1291 /* 1292 * Resume the loaded kernel by jumping to the MD resume vector. 1293 * We won't be returning from this call. 1294 */ 1295 hibernate_resume_machdep(); 1296 } 1297 1298 /* 1299 * Bounce a compressed image chunk to the piglet, entering mappings for the 1300 * copied pages as needed 1301 */ 1302 void 1303 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1304 { 1305 size_t ct, ofs; 1306 paddr_t src = img_cur; 1307 vaddr_t dest = piglet; 1308 1309 /* Copy first partial page */ 1310 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1311 ofs = (src & PAGE_MASK); 1312 1313 if (ct < PAGE_SIZE) { 1314 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1315 (src - ofs), 0); 1316 hibernate_flush(); 1317 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1318 src += ct; 1319 dest += ct; 1320 } 1321 wbinvd(); 1322 1323 /* Copy remaining pages */ 1324 while (src < size + img_cur) { 1325 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1326 hibernate_flush(); 1327 ct = PAGE_SIZE; 1328 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1329 hibernate_flush(); 1330 src += ct; 1331 dest += ct; 1332 } 1333 1334 hibernate_flush(); 1335 wbinvd(); 1336 } 1337 1338 /* 1339 * Process a chunk by bouncing it to the piglet, followed by unpacking 1340 */ 1341 void 1342 hibernate_process_chunk(union hibernate_info *hiber_info, 1343 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1344 { 1345 char *pva = (char *)hiber_info->piglet_va; 1346 1347 hibernate_copy_chunk_to_piglet(img_cur, 1348 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1349 1350 hibernate_inflate_region(hiber_info, chunk->base, 1351 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1352 chunk->compressed_size); 1353 } 1354 1355 /* 1356 * Write a compressed version of this machine's memory to disk, at the 1357 * precalculated swap offset: 1358 * 1359 * end of swap - signature block size - chunk table size - memory size 1360 * 1361 * The function begins by looping through each phys mem range, cutting each 1362 * one into MD sized chunks. These chunks are then compressed individually 1363 * and written out to disk, in phys mem order. Some chunks might compress 1364 * more than others, and for this reason, each chunk's size is recorded 1365 * in the chunk table, which is written to disk after the image has 1366 * properly been compressed and written (in hibernate_write_chunktable). 1367 * 1368 * When this function is called, the machine is nearly suspended - most 1369 * devices are quiesced/suspended, interrupts are off, and cold has 1370 * been set. This means that there can be no side effects once the 1371 * write has started, and the write function itself can also have no 1372 * side effects. This also means no printfs are permitted (since printf 1373 * has side effects.) 1374 * 1375 * Return values : 1376 * 1377 * 0 - success 1378 * EIO - I/O error occurred writing the chunks 1379 * EINVAL - Failed to write a complete range 1380 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1381 */ 1382 int 1383 hibernate_write_chunks(union hibernate_info *hiber_info) 1384 { 1385 paddr_t range_base, range_end, inaddr, temp_inaddr; 1386 size_t nblocks, out_remaining, used; 1387 struct hibernate_disk_chunk *chunks; 1388 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1389 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1390 int i, err; 1391 struct hibernate_zlib_state *hibernate_state; 1392 1393 hibernate_state = 1394 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1395 1396 hiber_info->chunk_ctr = 0; 1397 1398 /* 1399 * Allocate VA for the temp and copy page. 1400 * 1401 * These will become part of the suspended kernel and will 1402 * be freed in hibernate_free, upon resume. 1403 */ 1404 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1405 &kp_none, &kd_nowait); 1406 if (!hibernate_temp_page) 1407 return (ENOMEM); 1408 1409 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1410 &kp_none, &kd_nowait); 1411 if (!hibernate_copy_page) { 1412 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1413 return (ENOMEM); 1414 } 1415 1416 pmap_kenter_pa(hibernate_copy_page, 1417 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1418 1419 pmap_activate(curproc); 1420 1421 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1422 HIBERNATE_CHUNK_SIZE); 1423 1424 /* Calculate the chunk regions */ 1425 for (i = 0; i < hiber_info->nranges; i++) { 1426 range_base = hiber_info->ranges[i].base; 1427 range_end = hiber_info->ranges[i].end; 1428 1429 inaddr = range_base; 1430 1431 while (inaddr < range_end) { 1432 chunks[hiber_info->chunk_ctr].base = inaddr; 1433 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1434 chunks[hiber_info->chunk_ctr].end = inaddr + 1435 HIBERNATE_CHUNK_SIZE; 1436 else 1437 chunks[hiber_info->chunk_ctr].end = range_end; 1438 1439 inaddr += HIBERNATE_CHUNK_SIZE; 1440 hiber_info->chunk_ctr ++; 1441 } 1442 } 1443 1444 /* Compress and write the chunks in the chunktable */ 1445 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1446 range_base = chunks[i].base; 1447 range_end = chunks[i].end; 1448 1449 chunks[i].offset = blkctr; 1450 1451 /* Reset zlib for deflate */ 1452 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) { 1453 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1454 return (ENOMEM); 1455 } 1456 1457 inaddr = range_base; 1458 1459 /* 1460 * For each range, loop through its phys mem region 1461 * and write out the chunks (the last chunk might be 1462 * smaller than the chunk size). 1463 */ 1464 while (inaddr < range_end) { 1465 out_remaining = PAGE_SIZE; 1466 while (out_remaining > 0 && inaddr < range_end) { 1467 1468 /* 1469 * Adjust for regions that are not evenly 1470 * divisible by PAGE_SIZE or overflowed 1471 * pages from the previous iteration. 1472 */ 1473 temp_inaddr = (inaddr & PAGE_MASK) + 1474 hibernate_copy_page; 1475 1476 /* Deflate from temp_inaddr to IO page */ 1477 if (inaddr != range_end) { 1478 pmap_kenter_pa(hibernate_temp_page, 1479 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1480 1481 pmap_activate(curproc); 1482 1483 bcopy((caddr_t)hibernate_temp_page, 1484 (caddr_t)hibernate_copy_page, 1485 PAGE_SIZE); 1486 inaddr += hibernate_deflate(hiber_info, 1487 temp_inaddr, &out_remaining); 1488 } 1489 1490 if (out_remaining == 0) { 1491 /* Filled up the page */ 1492 nblocks = 1493 PAGE_SIZE / hiber_info->secsize; 1494 1495 if ((err = hiber_info->io_func( 1496 hiber_info->device, 1497 blkctr, (vaddr_t)hibernate_io_page, 1498 PAGE_SIZE, HIB_W, 1499 hiber_info->io_page))) { 1500 DPRINTF("hib write error %d\n", 1501 err); 1502 return (EIO); 1503 } 1504 1505 blkctr += nblocks; 1506 } 1507 } 1508 } 1509 1510 if (inaddr != range_end) { 1511 DPRINTF("deflate range ended prematurely\n"); 1512 return (EINVAL); 1513 } 1514 1515 /* 1516 * End of range. Round up to next secsize bytes 1517 * after finishing compress 1518 */ 1519 if (out_remaining == 0) 1520 out_remaining = PAGE_SIZE; 1521 1522 /* Finish compress */ 1523 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1524 hibernate_state->hib_stream.avail_in = 0; 1525 hibernate_state->hib_stream.next_out = 1526 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1527 1528 /* We have an extra output page available for finalize */ 1529 hibernate_state->hib_stream.avail_out = 1530 out_remaining + PAGE_SIZE; 1531 1532 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1533 Z_STREAM_END) { 1534 DPRINTF("deflate error in output stream: %d\n", err); 1535 return (EIO); 1536 } 1537 1538 out_remaining = hibernate_state->hib_stream.avail_out; 1539 1540 used = 2*PAGE_SIZE - out_remaining; 1541 nblocks = used / hiber_info->secsize; 1542 1543 /* Round up to next block if needed */ 1544 if (used % hiber_info->secsize != 0) 1545 nblocks ++; 1546 1547 /* Write final block(s) for this chunk */ 1548 if ((err = hiber_info->io_func(hiber_info->device, blkctr, 1549 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1550 HIB_W, hiber_info->io_page))) { 1551 DPRINTF("hib final write error %d\n", err); 1552 return (EIO); 1553 } 1554 1555 blkctr += nblocks; 1556 1557 offset = blkctr; 1558 chunks[i].compressed_size = (offset - chunks[i].offset) * 1559 hiber_info->secsize; 1560 } 1561 1562 return (0); 1563 } 1564 1565 /* 1566 * Reset the zlib stream state and allocate a new hiballoc area for either 1567 * inflate or deflate. This function is called once for each hibernate chunk. 1568 * Calling hiballoc_init multiple times is acceptable since the memory it is 1569 * provided is unmanaged memory (stolen). We use the memory provided to us 1570 * by the piglet allocated via the supplied hiber_info. 1571 */ 1572 int 1573 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1574 { 1575 vaddr_t hibernate_zlib_start; 1576 size_t hibernate_zlib_size; 1577 char *pva = (char *)hiber_info->piglet_va; 1578 struct hibernate_zlib_state *hibernate_state; 1579 1580 hibernate_state = 1581 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1582 1583 if(!deflate) 1584 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1585 1586 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1587 hibernate_zlib_size = 80 * PAGE_SIZE; 1588 1589 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1590 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1591 1592 /* Set up stream structure */ 1593 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1594 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1595 1596 /* Initialize the hiballoc arena for zlib allocs/frees */ 1597 hiballoc_init(&hibernate_state->hiballoc_arena, 1598 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1599 1600 if (deflate) { 1601 return deflateInit(&hibernate_state->hib_stream, 1602 Z_BEST_SPEED); 1603 } else 1604 return inflateInit(&hibernate_state->hib_stream); 1605 } 1606 1607 /* 1608 * Reads the hibernated memory image from disk, whose location and 1609 * size are recorded in hiber_info. Begin by reading the persisted 1610 * chunk table, which records the original chunk placement location 1611 * and compressed size for each. Next, allocate a pig region of 1612 * sufficient size to hold the compressed image. Next, read the 1613 * chunks into the pig area (calling hibernate_read_chunks to do this), 1614 * and finally, if all of the above succeeds, clear the hibernate signature. 1615 * The function will then return to hibernate_resume, which will proceed 1616 * to unpack the pig image to the correct place in memory. 1617 */ 1618 int 1619 hibernate_read_image(union hibernate_info *hiber_info) 1620 { 1621 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1622 paddr_t image_start, image_end, pig_start, pig_end; 1623 struct hibernate_disk_chunk *chunks; 1624 daddr_t blkctr; 1625 vaddr_t chunktable = (vaddr_t)NULL; 1626 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1627 HIBERNATE_CHUNK_SIZE; 1628 int i; 1629 1630 pmap_activate(curproc); 1631 1632 /* Calculate total chunk table size in disk blocks */ 1633 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1634 1635 blkctr = hiber_info->sig_offset - chunktable_size; 1636 1637 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1638 &kp_none, &kd_nowait); 1639 1640 if (!chunktable) 1641 return (1); 1642 1643 /* Read the chunktable from disk into the piglet chunktable */ 1644 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1645 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1646 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1647 VM_PROT_ALL); 1648 pmap_update(pmap_kernel()); 1649 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1650 chunktable + i, 0); 1651 } 1652 1653 blkctr = hiber_info->image_offset; 1654 compressed_size = 0; 1655 1656 chunks = (struct hibernate_disk_chunk *)chunktable; 1657 1658 for (i = 0; i < hiber_info->chunk_ctr; i++) 1659 compressed_size += chunks[i].compressed_size; 1660 1661 disk_size = compressed_size; 1662 1663 printf("unhibernating @ block %lld length %lu blocks\n", 1664 hiber_info->sig_offset - chunktable_size, 1665 compressed_size); 1666 1667 /* Allocate the pig area */ 1668 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1669 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1670 return (1); 1671 1672 pig_end = pig_start + pig_sz; 1673 1674 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1675 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1676 image_start = image_end - disk_size; 1677 1678 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1679 chunks); 1680 1681 pmap_kremove(chunktable, PAGE_SIZE); 1682 pmap_update(pmap_kernel()); 1683 1684 /* Prepare the resume time pmap/page table */ 1685 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1686 1687 return (0); 1688 } 1689 1690 /* 1691 * Read the hibernated memory chunks from disk (chunk information at this 1692 * point is stored in the piglet) into the pig area specified by 1693 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1694 * only chunk with overlap possibilities. 1695 */ 1696 int 1697 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1698 paddr_t pig_end, size_t image_compr_size, 1699 struct hibernate_disk_chunk *chunks) 1700 { 1701 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1702 paddr_t copy_start, copy_end, piglet_cur; 1703 paddr_t piglet_base = hib_info->piglet_pa; 1704 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1705 daddr_t blkctr; 1706 size_t processed, compressed_size, read_size; 1707 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1708 short *ochunks, *pchunks, *fchunks, i, j; 1709 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1710 1711 global_pig_start = pig_start; 1712 1713 pmap_activate(curproc); 1714 1715 /* 1716 * These mappings go into the resuming kernel's page table, and are 1717 * used only during image read. They dissappear from existence 1718 * when the suspended kernel is unpacked on top of us. 1719 */ 1720 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1721 if (!tempva) 1722 return (1); 1723 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1724 &kp_none, &kd_nowait); 1725 if (!hibernate_fchunk_area) 1726 return (1); 1727 1728 /* Final output chunk ordering VA */ 1729 fchunks = (short *)hibernate_fchunk_area; 1730 1731 /* Piglet chunk ordering VA */ 1732 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1733 1734 /* Final chunk ordering VA */ 1735 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1736 1737 /* Map the chunk ordering region */ 1738 for(i=0; i<24 ; i++) { 1739 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1740 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1741 pmap_update(pmap_kernel()); 1742 } 1743 1744 nchunks = hib_info->chunk_ctr; 1745 1746 /* Initially start all chunks as unplaced */ 1747 for (i = 0; i < nchunks; i++) 1748 chunks[i].flags = 0; 1749 1750 /* 1751 * Search the list for chunks that are outside the pig area. These 1752 * can be placed first in the final output list. 1753 */ 1754 for (i = 0; i < nchunks; i++) { 1755 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1756 ochunks[nochunks] = i; 1757 fchunks[nfchunks] = i; 1758 nochunks++; 1759 nfchunks++; 1760 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1761 } 1762 } 1763 1764 /* 1765 * Walk the ordering, place the chunks in ascending memory order. 1766 * Conflicts might arise, these are handled next. 1767 */ 1768 do { 1769 img_index = -1; 1770 found = 0; 1771 j = -1; 1772 for (i = 0; i < nchunks; i++) 1773 if (chunks[i].base < img_index && 1774 chunks[i].flags == 0 ) { 1775 j = i; 1776 img_index = chunks[i].base; 1777 } 1778 1779 if (j != -1) { 1780 found = 1; 1781 ochunks[nochunks] = j; 1782 nochunks++; 1783 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1784 } 1785 } while (found); 1786 1787 img_index = pig_start; 1788 1789 /* 1790 * Identify chunk output conflicts (chunks whose pig load area 1791 * corresponds to their original memory placement location) 1792 */ 1793 for (i = 0; i < nochunks ; i++) { 1794 overlap = 0; 1795 r1s = img_index; 1796 r1e = img_index + chunks[ochunks[i]].compressed_size; 1797 r2s = chunks[ochunks[i]].base; 1798 r2e = chunks[ochunks[i]].end; 1799 1800 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1801 if (overlap) 1802 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1803 img_index += chunks[ochunks[i]].compressed_size; 1804 } 1805 1806 /* 1807 * Prepare the final output chunk list. Calculate an output 1808 * inflate strategy for overlapping chunks if needed. 1809 */ 1810 img_index = pig_start; 1811 for (i = 0; i < nochunks ; i++) { 1812 /* 1813 * If a conflict is detected, consume enough compressed 1814 * output chunks to fill the piglet 1815 */ 1816 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1817 copy_start = piglet_base; 1818 copy_end = piglet_end; 1819 piglet_cur = piglet_base; 1820 npchunks = 0; 1821 j = i; 1822 1823 while (copy_start < copy_end && j < nochunks) { 1824 piglet_cur += 1825 chunks[ochunks[j]].compressed_size; 1826 pchunks[npchunks] = ochunks[j]; 1827 npchunks++; 1828 copy_start += 1829 chunks[ochunks[j]].compressed_size; 1830 img_index += chunks[ochunks[j]].compressed_size; 1831 i++; 1832 j++; 1833 } 1834 1835 piglet_cur = piglet_base; 1836 for (j = 0; j < npchunks; j++) { 1837 piglet_cur += 1838 chunks[pchunks[j]].compressed_size; 1839 fchunks[nfchunks] = pchunks[j]; 1840 chunks[pchunks[j]].flags |= 1841 HIBERNATE_CHUNK_USED; 1842 nfchunks++; 1843 } 1844 } else { 1845 /* 1846 * No conflict, chunk can be added without copying 1847 */ 1848 if ((chunks[ochunks[i]].flags & 1849 HIBERNATE_CHUNK_USED) == 0) { 1850 fchunks[nfchunks] = ochunks[i]; 1851 chunks[ochunks[i]].flags |= 1852 HIBERNATE_CHUNK_USED; 1853 nfchunks++; 1854 } 1855 img_index += chunks[ochunks[i]].compressed_size; 1856 } 1857 } 1858 1859 img_index = pig_start; 1860 for (i = 0; i < nfchunks; i++) { 1861 piglet_cur = piglet_base; 1862 img_index += chunks[fchunks[i]].compressed_size; 1863 } 1864 1865 img_cur = pig_start; 1866 1867 for (i = 0; i < nfchunks; i++) { 1868 blkctr = chunks[fchunks[i]].offset; 1869 processed = 0; 1870 compressed_size = chunks[fchunks[i]].compressed_size; 1871 1872 while (processed < compressed_size) { 1873 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1874 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1875 VM_PROT_ALL); 1876 pmap_update(pmap_kernel()); 1877 1878 if (compressed_size - processed >= PAGE_SIZE) 1879 read_size = PAGE_SIZE; 1880 else 1881 read_size = compressed_size - processed; 1882 1883 hibernate_block_io(hib_info, blkctr, read_size, 1884 tempva + (img_cur & PAGE_MASK), 0); 1885 1886 blkctr += (read_size / hib_info->secsize); 1887 1888 pmap_kremove(tempva, PAGE_SIZE); 1889 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1890 processed += read_size; 1891 img_cur += read_size; 1892 } 1893 } 1894 1895 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1896 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1897 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1898 pmap_update(pmap_kernel()); 1899 1900 return (0); 1901 } 1902 1903 /* 1904 * Hibernating a machine comprises the following operations: 1905 * 1. Calculating this machine's hibernate_info information 1906 * 2. Allocating a piglet and saving the piglet's physaddr 1907 * 3. Calculating the memory chunks 1908 * 4. Writing the compressed chunks to disk 1909 * 5. Writing the chunk table 1910 * 6. Writing the signature block (hibernate_info) 1911 * 1912 * On most architectures, the function calling hibernate_suspend would 1913 * then power off the machine using some MD-specific implementation. 1914 */ 1915 int 1916 hibernate_suspend(void) 1917 { 1918 union hibernate_info hib_info; 1919 u_long start, end; 1920 1921 /* 1922 * Calculate memory ranges, swap offsets, etc. 1923 * This also allocates a piglet whose physaddr is stored in 1924 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1925 */ 1926 if (get_hibernate_info(&hib_info, 1)) { 1927 DPRINTF("failed to obtain hibernate info\n"); 1928 return (1); 1929 } 1930 1931 /* Find a page-addressed region in swap [start,end] */ 1932 if (uvm_hibswap(hib_info.device, &start, &end)) { 1933 printf("cannot find any swap\n"); 1934 return (1); 1935 } 1936 1937 if (end - start < 1000) { 1938 printf("%lu\n is too small", end - start); 1939 return (1); 1940 } 1941 1942 /* Calculate block offsets in swap */ 1943 hib_info.image_offset = ctod(start); 1944 1945 /* XXX side effect */ 1946 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1947 hib_info.image_offset, ctod(end) - ctod(start)); 1948 1949 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1950 VM_PROT_ALL); 1951 pmap_activate(curproc); 1952 1953 /* Stash the piglet VA so we can free it in the resuming kernel */ 1954 global_piglet_va = hib_info.piglet_va; 1955 1956 DPRINTF("hibernate: writing chunks\n"); 1957 if (hibernate_write_chunks(&hib_info)) { 1958 DPRINTF("hibernate_write_chunks failed\n"); 1959 return (1); 1960 } 1961 1962 DPRINTF("hibernate: writing chunktable\n"); 1963 if (hibernate_write_chunktable(&hib_info)) { 1964 DPRINTF("hibernate_write_chunktable failed\n"); 1965 return (1); 1966 } 1967 1968 DPRINTF("hibernate: writing signature\n"); 1969 if (hibernate_write_signature(&hib_info)) { 1970 DPRINTF("hibernate_write_signature failed\n"); 1971 return (1); 1972 } 1973 1974 /* Allow the disk to settle */ 1975 delay(500000); 1976 1977 /* 1978 * Give the device-specific I/O function a notification that we're 1979 * done, and that it can clean up or shutdown as needed. 1980 */ 1981 hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0, 1982 HIB_DONE, hib_info.io_page); 1983 1984 return (0); 1985 } 1986 1987 /* 1988 * Free items allocated by hibernate_suspend() 1989 */ 1990 void 1991 hibernate_free(void) 1992 { 1993 if (global_piglet_va) 1994 uvm_pmr_free_piglet(global_piglet_va, 1995 3*HIBERNATE_CHUNK_SIZE); 1996 1997 if (hibernate_copy_page) 1998 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1999 if (hibernate_temp_page) 2000 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2001 2002 pmap_update(pmap_kernel()); 2003 2004 if (hibernate_copy_page) 2005 km_free((void *)hibernate_copy_page, PAGE_SIZE, 2006 &kv_any, &kp_none); 2007 if (hibernate_temp_page) 2008 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2009 &kv_any, &kp_none); 2010 2011 global_piglet_va = 0; 2012 hibernate_copy_page = 0; 2013 hibernate_temp_page = 0; 2014 } 2015