1 /* $OpenBSD: subr_hibernate.c,v 1.104 2014/10/16 04:19:33 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 Private page for suspend I/O write functions 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (24 pages) 51 * 28*PAGE_SIZE RLE utility page 52 * 29*PAGE_SIZE start of hiballoc area 53 * 109*PAGE_SIZE end of hiballoc area (80 pages) 54 * ... unused 55 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 56 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 57 * 4*HIBERNATE_CHUNK_SIZE end of piglet 58 */ 59 60 /* Temporary vaddr ranges used during hibernate */ 61 vaddr_t hibernate_temp_page; 62 vaddr_t hibernate_copy_page; 63 vaddr_t hibernate_rle_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 paddr_t global_piglet_pa; 70 71 /* #define HIB_DEBUG */ 72 #ifdef HIB_DEBUG 73 int hib_debug = 99; 74 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 75 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 76 #else 77 #define DPRINTF(x...) 78 #define DNPRINTF(n,x...) 79 #endif 80 81 #ifndef NO_PROPOLICE 82 extern long __guard_local; 83 #endif /* ! NO_PROPOLICE */ 84 85 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 86 int hibernate_calc_rle(paddr_t, paddr_t); 87 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 88 size_t *); 89 90 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 91 92 /* 93 * Hib alloc enforced alignment. 94 */ 95 #define HIB_ALIGN 8 /* bytes alignment */ 96 97 /* 98 * sizeof builtin operation, but with alignment constraint. 99 */ 100 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 101 102 struct hiballoc_entry { 103 size_t hibe_use; 104 size_t hibe_space; 105 RB_ENTRY(hiballoc_entry) hibe_entry; 106 }; 107 108 /* 109 * Sort hibernate memory ranges by ascending PA 110 */ 111 void 112 hibernate_sort_ranges(union hibernate_info *hib_info) 113 { 114 int i, j; 115 struct hibernate_memory_range *ranges; 116 paddr_t base, end; 117 118 ranges = hib_info->ranges; 119 120 for (i = 1; i < hib_info->nranges; i++) { 121 j = i; 122 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 123 base = ranges[j].base; 124 end = ranges[j].end; 125 ranges[j].base = ranges[j - 1].base; 126 ranges[j].end = ranges[j - 1].end; 127 ranges[j - 1].base = base; 128 ranges[j - 1].end = end; 129 j--; 130 } 131 } 132 } 133 134 /* 135 * Compare hiballoc entries based on the address they manage. 136 * 137 * Since the address is fixed, relative to struct hiballoc_entry, 138 * we just compare the hiballoc_entry pointers. 139 */ 140 static __inline int 141 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 142 { 143 return l < r ? -1 : (l > r); 144 } 145 146 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 147 148 /* 149 * Given a hiballoc entry, return the address it manages. 150 */ 151 static __inline void * 152 hib_entry_to_addr(struct hiballoc_entry *entry) 153 { 154 caddr_t addr; 155 156 addr = (caddr_t)entry; 157 addr += HIB_SIZEOF(struct hiballoc_entry); 158 return addr; 159 } 160 161 /* 162 * Given an address, find the hiballoc that corresponds. 163 */ 164 static __inline struct hiballoc_entry* 165 hib_addr_to_entry(void *addr_param) 166 { 167 caddr_t addr; 168 169 addr = (caddr_t)addr_param; 170 addr -= HIB_SIZEOF(struct hiballoc_entry); 171 return (struct hiballoc_entry*)addr; 172 } 173 174 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 175 176 /* 177 * Allocate memory from the arena. 178 * 179 * Returns NULL if no memory is available. 180 */ 181 void * 182 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 183 { 184 struct hiballoc_entry *entry, *new_entry; 185 size_t find_sz; 186 187 /* 188 * Enforce alignment of HIB_ALIGN bytes. 189 * 190 * Note that, because the entry is put in front of the allocation, 191 * 0-byte allocations are guaranteed a unique address. 192 */ 193 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 194 195 /* 196 * Find an entry with hibe_space >= find_sz. 197 * 198 * If the root node is not large enough, we switch to tree traversal. 199 * Because all entries are made at the bottom of the free space, 200 * traversal from the end has a slightly better chance of yielding 201 * a sufficiently large space. 202 */ 203 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 204 entry = RB_ROOT(&arena->hib_addrs); 205 if (entry != NULL && entry->hibe_space < find_sz) { 206 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 207 if (entry->hibe_space >= find_sz) 208 break; 209 } 210 } 211 212 /* 213 * Insufficient or too fragmented memory. 214 */ 215 if (entry == NULL) 216 return NULL; 217 218 /* 219 * Create new entry in allocated space. 220 */ 221 new_entry = (struct hiballoc_entry*)( 222 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 223 new_entry->hibe_space = entry->hibe_space - find_sz; 224 new_entry->hibe_use = alloc_sz; 225 226 /* 227 * Insert entry. 228 */ 229 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 230 panic("hib_alloc: insert failure"); 231 entry->hibe_space = 0; 232 233 /* Return address managed by entry. */ 234 return hib_entry_to_addr(new_entry); 235 } 236 237 /* 238 * Free a pointer previously allocated from this arena. 239 * 240 * If addr is NULL, this will be silently accepted. 241 */ 242 void 243 hib_free(struct hiballoc_arena *arena, void *addr) 244 { 245 struct hiballoc_entry *entry, *prev; 246 247 if (addr == NULL) 248 return; 249 250 /* 251 * Derive entry from addr and check it is really in this arena. 252 */ 253 entry = hib_addr_to_entry(addr); 254 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 255 panic("hib_free: freed item %p not in hib arena", addr); 256 257 /* 258 * Give the space in entry to its predecessor. 259 * 260 * If entry has no predecessor, change its used space into free space 261 * instead. 262 */ 263 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 264 if (prev != NULL && 265 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 266 prev->hibe_use + prev->hibe_space) == entry) { 267 /* Merge entry. */ 268 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 269 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 270 entry->hibe_use + entry->hibe_space; 271 } else { 272 /* Flip used memory to free space. */ 273 entry->hibe_space += entry->hibe_use; 274 entry->hibe_use = 0; 275 } 276 } 277 278 /* 279 * Initialize hiballoc. 280 * 281 * The allocator will manage memmory at ptr, which is len bytes. 282 */ 283 int 284 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 285 { 286 struct hiballoc_entry *entry; 287 caddr_t ptr; 288 size_t len; 289 290 RB_INIT(&arena->hib_addrs); 291 292 /* 293 * Hib allocator enforces HIB_ALIGN alignment. 294 * Fixup ptr and len. 295 */ 296 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 297 len = p_len - ((size_t)ptr - (size_t)p_ptr); 298 len &= ~((size_t)HIB_ALIGN - 1); 299 300 /* 301 * Insufficient memory to be able to allocate and also do bookkeeping. 302 */ 303 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 304 return ENOMEM; 305 306 /* 307 * Create entry describing space. 308 */ 309 entry = (struct hiballoc_entry*)ptr; 310 entry->hibe_use = 0; 311 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 312 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 313 314 return 0; 315 } 316 317 /* 318 * Zero all free memory. 319 */ 320 void 321 uvm_pmr_zero_everything(void) 322 { 323 struct uvm_pmemrange *pmr; 324 struct vm_page *pg; 325 int i; 326 327 uvm_lock_fpageq(); 328 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 329 /* Zero single pages. */ 330 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 331 != NULL) { 332 uvm_pmr_remove(pmr, pg); 333 uvm_pagezero(pg); 334 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 335 uvmexp.zeropages++; 336 uvm_pmr_insert(pmr, pg, 0); 337 } 338 339 /* Zero multi page ranges. */ 340 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 341 != NULL) { 342 pg--; /* Size tree always has second page. */ 343 uvm_pmr_remove(pmr, pg); 344 for (i = 0; i < pg->fpgsz; i++) { 345 uvm_pagezero(&pg[i]); 346 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 347 uvmexp.zeropages++; 348 } 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 uvm_unlock_fpageq(); 353 } 354 355 /* 356 * Mark all memory as dirty. 357 * 358 * Used to inform the system that the clean memory isn't clean for some 359 * reason, for example because we just came back from hibernate. 360 */ 361 void 362 uvm_pmr_dirty_everything(void) 363 { 364 struct uvm_pmemrange *pmr; 365 struct vm_page *pg; 366 int i; 367 368 uvm_lock_fpageq(); 369 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 370 /* Dirty single pages. */ 371 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 372 != NULL) { 373 uvm_pmr_remove(pmr, pg); 374 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 375 uvm_pmr_insert(pmr, pg, 0); 376 } 377 378 /* Dirty multi page ranges. */ 379 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 380 != NULL) { 381 pg--; /* Size tree always has second page. */ 382 uvm_pmr_remove(pmr, pg); 383 for (i = 0; i < pg->fpgsz; i++) 384 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 385 uvm_pmr_insert(pmr, pg, 0); 386 } 387 } 388 389 uvmexp.zeropages = 0; 390 uvm_unlock_fpageq(); 391 } 392 393 /* 394 * Allocate an area that can hold sz bytes and doesn't overlap with 395 * the piglet at piglet_pa. 396 */ 397 int 398 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 399 { 400 struct uvm_constraint_range pig_constraint; 401 struct kmem_pa_mode kp_pig = { 402 .kp_constraint = &pig_constraint, 403 .kp_maxseg = 1 404 }; 405 vaddr_t va; 406 407 sz = round_page(sz); 408 409 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 410 pig_constraint.ucr_high = -1; 411 412 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 413 if (va == 0) { 414 pig_constraint.ucr_low = 0; 415 pig_constraint.ucr_high = piglet_pa - 1; 416 417 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 418 if (va == 0) 419 return ENOMEM; 420 } 421 422 pmap_extract(pmap_kernel(), va, pa); 423 return 0; 424 } 425 426 /* 427 * Allocate a piglet area. 428 * 429 * This needs to be in DMA-safe memory. 430 * Piglets are aligned. 431 * 432 * sz and align in bytes. 433 * 434 * The call will sleep for the pagedaemon to attempt to free memory. 435 * The pagedaemon may decide its not possible to free enough memory, causing 436 * the allocation to fail. 437 */ 438 int 439 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 440 { 441 struct kmem_pa_mode kp_piglet = { 442 .kp_constraint = &dma_constraint, 443 .kp_align = align, 444 .kp_maxseg = 1 445 }; 446 447 /* Ensure align is a power of 2 */ 448 KASSERT((align & (align - 1)) == 0); 449 450 /* 451 * Fixup arguments: align must be at least PAGE_SIZE, 452 * sz will be converted to pagecount, since that is what 453 * pmemrange uses internally. 454 */ 455 if (align < PAGE_SIZE) 456 align = PAGE_SIZE; 457 sz = round_page(sz); 458 459 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 460 if (*va == 0) 461 return ENOMEM; 462 463 pmap_extract(pmap_kernel(), *va, pa); 464 return 0; 465 } 466 467 /* 468 * Free a piglet area. 469 */ 470 void 471 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 472 { 473 /* 474 * Fix parameters. 475 */ 476 sz = round_page(sz); 477 478 /* 479 * Free the physical and virtual memory. 480 */ 481 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 482 } 483 484 /* 485 * Physmem RLE compression support. 486 * 487 * Given a physical page address, return the number of pages starting at the 488 * address that are free. Clamps to the number of pages in 489 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 490 */ 491 int 492 uvm_page_rle(paddr_t addr) 493 { 494 struct vm_page *pg, *pg_end; 495 struct vm_physseg *vmp; 496 int pseg_idx, off_idx; 497 498 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 499 if (pseg_idx == -1) 500 return 0; 501 502 vmp = &vm_physmem[pseg_idx]; 503 pg = &vmp->pgs[off_idx]; 504 if (!(pg->pg_flags & PQ_FREE)) 505 return 0; 506 507 /* 508 * Search for the first non-free page after pg. 509 * Note that the page may not be the first page in a free pmemrange, 510 * therefore pg->fpgsz cannot be used. 511 */ 512 for (pg_end = pg; pg_end <= vmp->lastpg && 513 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 514 ; 515 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 516 } 517 518 /* 519 * Fills out the hibernate_info union pointed to by hib 520 * with information about this machine (swap signature block 521 * offsets, number of memory ranges, kernel in use, etc) 522 */ 523 int 524 get_hibernate_info(union hibernate_info *hib, int suspend) 525 { 526 struct disklabel dl; 527 char err_string[128], *dl_ret; 528 529 #ifndef NO_PROPOLICE 530 /* Save propolice guard */ 531 hib->guard = __guard_local; 532 #endif /* ! NO_PROPOLICE */ 533 534 /* Determine I/O function to use */ 535 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 536 if (hib->io_func == NULL) 537 return (1); 538 539 /* Calculate hibernate device */ 540 hib->dev = swdevt[0].sw_dev; 541 542 /* Read disklabel (used to calculate signature and image offsets) */ 543 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 544 545 if (dl_ret) { 546 printf("Hibernate error reading disklabel: %s\n", dl_ret); 547 return (1); 548 } 549 550 /* Make sure we have a swap partition. */ 551 if (dl.d_partitions[1].p_fstype != FS_SWAP || 552 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 553 return (1); 554 555 /* Make sure the signature can fit in one block */ 556 if (sizeof(union hibernate_info) > DEV_BSIZE) 557 return (1); 558 559 /* Magic number */ 560 hib->magic = HIBERNATE_MAGIC; 561 562 /* Calculate signature block location */ 563 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 564 sizeof(union hibernate_info)/DEV_BSIZE; 565 566 /* Stash kernel version information */ 567 memset(&hib->kernel_version, 0, 128); 568 bcopy(version, &hib->kernel_version, 569 min(strlen(version), sizeof(hib->kernel_version)-1)); 570 571 if (suspend) { 572 hib->piglet_va = global_piglet_va; 573 hib->piglet_pa = global_piglet_pa; 574 hib->io_page = (void *)hib->piglet_va; 575 576 /* 577 * Initialization of the hibernate IO function for drivers 578 * that need to do prep work (such as allocating memory or 579 * setting up data structures that cannot safely be done 580 * during suspend without causing side effects). There is 581 * a matching HIB_DONE call performed after the write is 582 * completed. 583 */ 584 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 585 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 586 HIB_INIT, hib->io_page)) 587 goto fail; 588 589 } else { 590 /* 591 * Resuming kernels use a regular private page for the driver 592 * No need to free this I/O page as it will vanish as part of 593 * the resume. 594 */ 595 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 596 if (!hib->io_page) 597 goto fail; 598 } 599 600 601 if (get_hibernate_info_md(hib)) 602 goto fail; 603 604 return (0); 605 606 fail: 607 return (1); 608 } 609 610 /* 611 * Allocate nitems*size bytes from the hiballoc area presently in use 612 */ 613 void * 614 hibernate_zlib_alloc(void *unused, int nitems, int size) 615 { 616 struct hibernate_zlib_state *hibernate_state; 617 618 hibernate_state = 619 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 620 621 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 622 } 623 624 /* 625 * Free the memory pointed to by addr in the hiballoc area presently in 626 * use 627 */ 628 void 629 hibernate_zlib_free(void *unused, void *addr) 630 { 631 struct hibernate_zlib_state *hibernate_state; 632 633 hibernate_state = 634 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 635 636 hib_free(&hibernate_state->hiballoc_arena, addr); 637 } 638 639 /* 640 * Inflate next page of data from the image stream. 641 * The rle parameter is modified on exit to contain the number of pages to 642 * skip in the output stream (or 0 if this page was inflated into). 643 * 644 * Returns 0 if the stream contains additional data, or 1 if the stream is 645 * finished. 646 */ 647 int 648 hibernate_inflate_page(int *rle) 649 { 650 struct hibernate_zlib_state *hibernate_state; 651 int i; 652 653 hibernate_state = 654 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 655 656 /* Set up the stream for RLE code inflate */ 657 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 658 hibernate_state->hib_stream.avail_out = sizeof(*rle); 659 660 /* Inflate RLE code */ 661 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 662 if (i != Z_OK && i != Z_STREAM_END) { 663 /* 664 * XXX - this will likely reboot/hang most machines 665 * since the console output buffer will be unmapped, 666 * but there's not much else we can do here. 667 */ 668 panic("rle inflate stream error"); 669 } 670 671 if (hibernate_state->hib_stream.avail_out != 0) { 672 /* 673 * XXX - this will likely reboot/hang most machines 674 * since the console output buffer will be unmapped, 675 * but there's not much else we can do here. 676 */ 677 panic("rle short inflate error"); 678 } 679 680 if (*rle < 0 || *rle > 1024) { 681 /* 682 * XXX - this will likely reboot/hang most machines 683 * since the console output buffer will be unmapped, 684 * but there's not much else we can do here. 685 */ 686 panic("invalid rle count"); 687 } 688 689 if (i == Z_STREAM_END) 690 return (1); 691 692 if (*rle != 0) 693 return (0); 694 695 /* Set up the stream for page inflate */ 696 hibernate_state->hib_stream.next_out = 697 (unsigned char *)HIBERNATE_INFLATE_PAGE; 698 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 699 700 /* Process next block of data */ 701 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 702 if (i != Z_OK && i != Z_STREAM_END) { 703 /* 704 * XXX - this will likely reboot/hang most machines 705 * since the console output buffer will be unmapped, 706 * but there's not much else we can do here. 707 */ 708 panic("inflate error"); 709 } 710 711 /* We should always have extracted a full page ... */ 712 if (hibernate_state->hib_stream.avail_out != 0) { 713 /* 714 * XXX - this will likely reboot/hang most machines 715 * since the console output buffer will be unmapped, 716 * but there's not much else we can do here. 717 */ 718 panic("incomplete page"); 719 } 720 721 return (i == Z_STREAM_END); 722 } 723 724 /* 725 * Inflate size bytes from src into dest, skipping any pages in 726 * [src..dest] that are special (see hibernate_inflate_skip) 727 * 728 * This function executes while using the resume-time stack 729 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 730 * will likely hang or reset the machine since the console output buffer 731 * will be unmapped. 732 */ 733 void 734 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 735 paddr_t src, size_t size) 736 { 737 int end_stream = 0, rle; 738 struct hibernate_zlib_state *hibernate_state; 739 740 hibernate_state = 741 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 742 743 hibernate_state->hib_stream.next_in = (unsigned char *)src; 744 hibernate_state->hib_stream.avail_in = size; 745 746 do { 747 /* 748 * Is this a special page? If yes, redirect the 749 * inflate output to a scratch page (eg, discard it) 750 */ 751 if (hibernate_inflate_skip(hib, dest)) { 752 hibernate_enter_resume_mapping( 753 HIBERNATE_INFLATE_PAGE, 754 HIBERNATE_INFLATE_PAGE, 0); 755 } else { 756 hibernate_enter_resume_mapping( 757 HIBERNATE_INFLATE_PAGE, dest, 0); 758 } 759 760 hibernate_flush(); 761 end_stream = hibernate_inflate_page(&rle); 762 763 if (rle == 0) 764 dest += PAGE_SIZE; 765 else 766 dest += (rle * PAGE_SIZE); 767 } while (!end_stream); 768 } 769 770 /* 771 * deflate from src into the I/O page, up to 'remaining' bytes 772 * 773 * Returns number of input bytes consumed, and may reset 774 * the 'remaining' parameter if not all the output space was consumed 775 * (this information is needed to know how much to write to disk 776 */ 777 size_t 778 hibernate_deflate(union hibernate_info *hib, paddr_t src, 779 size_t *remaining) 780 { 781 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 782 struct hibernate_zlib_state *hibernate_state; 783 784 hibernate_state = 785 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 786 787 /* Set up the stream for deflate */ 788 hibernate_state->hib_stream.next_in = (unsigned char *)src; 789 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 790 hibernate_state->hib_stream.next_out = 791 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 792 hibernate_state->hib_stream.avail_out = *remaining; 793 794 /* Process next block of data */ 795 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 796 panic("hibernate zlib deflate error"); 797 798 /* Update pointers and return number of bytes consumed */ 799 *remaining = hibernate_state->hib_stream.avail_out; 800 return (PAGE_SIZE - (src & PAGE_MASK)) - 801 hibernate_state->hib_stream.avail_in; 802 } 803 804 /* 805 * Write the hibernation information specified in hiber_info 806 * to the location in swap previously calculated (last block of 807 * swap), called the "signature block". 808 */ 809 int 810 hibernate_write_signature(union hibernate_info *hib) 811 { 812 /* Write hibernate info to disk */ 813 return (hib->io_func(hib->dev, hib->sig_offset, 814 (vaddr_t)hib, DEV_BSIZE, HIB_W, 815 hib->io_page)); 816 } 817 818 /* 819 * Write the memory chunk table to the area in swap immediately 820 * preceding the signature block. The chunk table is stored 821 * in the piglet when this function is called. Returns errno. 822 */ 823 int 824 hibernate_write_chunktable(union hibernate_info *hib) 825 { 826 vaddr_t hibernate_chunk_table_start; 827 size_t hibernate_chunk_table_size; 828 int i, err; 829 830 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 831 832 hibernate_chunk_table_start = hib->piglet_va + 833 HIBERNATE_CHUNK_SIZE; 834 835 /* Write chunk table */ 836 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 837 if ((err = hib->io_func(hib->dev, 838 hib->chunktable_offset + (i/DEV_BSIZE), 839 (vaddr_t)(hibernate_chunk_table_start + i), 840 MAXPHYS, HIB_W, hib->io_page))) { 841 DPRINTF("chunktable write error: %d\n", err); 842 return (err); 843 } 844 } 845 846 return (0); 847 } 848 849 /* 850 * Write an empty hiber_info to the swap signature block, which is 851 * guaranteed to not match any valid hib. 852 */ 853 int 854 hibernate_clear_signature(void) 855 { 856 union hibernate_info blank_hiber_info; 857 union hibernate_info hib; 858 859 /* Zero out a blank hiber_info */ 860 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 861 862 /* Get the signature block location */ 863 if (get_hibernate_info(&hib, 0)) 864 return (1); 865 866 /* Write (zeroed) hibernate info to disk */ 867 DPRINTF("clearing hibernate signature block location: %lld\n", 868 hib.sig_offset); 869 if (hibernate_block_io(&hib, 870 hib.sig_offset, 871 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 872 printf("Warning: could not clear hibernate signature\n"); 873 874 return (0); 875 } 876 877 /* 878 * Compare two hibernate_infos to determine if they are the same (eg, 879 * we should be performing a hibernate resume on this machine. 880 * Not all fields are checked - just enough to verify that the machine 881 * has the same memory configuration and kernel as the one that 882 * wrote the signature previously. 883 */ 884 int 885 hibernate_compare_signature(union hibernate_info *mine, 886 union hibernate_info *disk) 887 { 888 u_int i; 889 890 if (mine->nranges != disk->nranges) { 891 DPRINTF("hibernate memory range count mismatch\n"); 892 return (1); 893 } 894 895 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 896 DPRINTF("hibernate kernel version mismatch\n"); 897 return (1); 898 } 899 900 for (i = 0; i < mine->nranges; i++) { 901 if ((mine->ranges[i].base != disk->ranges[i].base) || 902 (mine->ranges[i].end != disk->ranges[i].end) ) { 903 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 904 i, 905 (void *)mine->ranges[i].base, 906 (void *)mine->ranges[i].end, 907 (void *)disk->ranges[i].base, 908 (void *)disk->ranges[i].end); 909 return (1); 910 } 911 } 912 913 return (0); 914 } 915 916 /* 917 * Transfers xfer_size bytes between the hibernate device specified in 918 * hib_info at offset blkctr and the vaddr specified at dest. 919 * 920 * Separate offsets and pages are used to handle misaligned reads (reads 921 * that span a page boundary). 922 * 923 * blkctr specifies a relative offset (relative to the start of swap), 924 * not an absolute disk offset 925 * 926 */ 927 int 928 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 929 size_t xfer_size, vaddr_t dest, int iswrite) 930 { 931 struct buf *bp; 932 struct bdevsw *bdsw; 933 int error; 934 935 bp = geteblk(xfer_size); 936 bdsw = &bdevsw[major(hib->dev)]; 937 938 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 939 if (error) { 940 printf("hibernate_block_io open failed\n"); 941 return (1); 942 } 943 944 if (iswrite) 945 bcopy((caddr_t)dest, bp->b_data, xfer_size); 946 947 bp->b_bcount = xfer_size; 948 bp->b_blkno = blkctr; 949 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 950 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 951 bp->b_dev = hib->dev; 952 (*bdsw->d_strategy)(bp); 953 954 error = biowait(bp); 955 if (error) { 956 printf("hib block_io biowait error %d blk %lld size %zu\n", 957 error, (long long)blkctr, xfer_size); 958 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 959 curproc); 960 if (error) 961 printf("hibernate_block_io error close failed\n"); 962 return (1); 963 } 964 965 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 966 if (error) { 967 printf("hibernate_block_io close failed\n"); 968 return (1); 969 } 970 971 if (!iswrite) 972 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 973 974 bp->b_flags |= B_INVAL; 975 brelse(bp); 976 977 return (0); 978 } 979 980 /* 981 * Reads the signature block from swap, checks against the current machine's 982 * information. If the information matches, perform a resume by reading the 983 * saved image into the pig area, and unpacking. 984 */ 985 void 986 hibernate_resume(void) 987 { 988 union hibernate_info hib; 989 int s; 990 991 /* Get current running machine's hibernate info */ 992 memset(&hib, 0, sizeof(hib)); 993 if (get_hibernate_info(&hib, 0)) { 994 DPRINTF("couldn't retrieve machine's hibernate info\n"); 995 return; 996 } 997 998 /* Read hibernate info from disk */ 999 s = splbio(); 1000 1001 DPRINTF("reading hibernate signature block location: %lld\n", 1002 hib.sig_offset); 1003 1004 if (hibernate_block_io(&hib, 1005 hib.sig_offset, 1006 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1007 DPRINTF("error in hibernate read"); 1008 splx(s); 1009 return; 1010 } 1011 1012 /* Check magic number */ 1013 if (disk_hib.magic != HIBERNATE_MAGIC) { 1014 DPRINTF("wrong magic number in hibernate signature: %x\n", 1015 disk_hib.magic); 1016 splx(s); 1017 return; 1018 } 1019 1020 /* 1021 * We (possibly) found a hibernate signature. Clear signature first, 1022 * to prevent accidental resume or endless resume cycles later. 1023 */ 1024 if (hibernate_clear_signature()) { 1025 DPRINTF("error clearing hibernate signature block\n"); 1026 splx(s); 1027 return; 1028 } 1029 1030 /* 1031 * If on-disk and in-memory hibernate signatures match, 1032 * this means we should do a resume from hibernate. 1033 */ 1034 if (hibernate_compare_signature(&hib, &disk_hib)) { 1035 DPRINTF("mismatched hibernate signature block\n"); 1036 splx(s); 1037 return; 1038 } 1039 1040 #ifdef MULTIPROCESSOR 1041 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1042 DPRINTF("hibernate: quiescing APs\n"); 1043 hibernate_quiesce_cpus(); 1044 #endif /* MULTIPROCESSOR */ 1045 1046 /* Read the image from disk into the image (pig) area */ 1047 if (hibernate_read_image(&disk_hib)) 1048 goto fail; 1049 1050 DPRINTF("hibernate: quiescing devices\n"); 1051 if (config_suspend_all(DVACT_QUIESCE) != 0) 1052 goto fail; 1053 1054 (void) splhigh(); 1055 hibernate_disable_intr_machdep(); 1056 cold = 1; 1057 1058 DPRINTF("hibernate: suspending devices\n"); 1059 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1060 cold = 0; 1061 hibernate_enable_intr_machdep(); 1062 goto fail; 1063 } 1064 1065 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1066 VM_PROT_ALL); 1067 pmap_activate(curproc); 1068 1069 printf("Unpacking image...\n"); 1070 1071 /* Switch stacks */ 1072 DPRINTF("hibernate: switching stacks\n"); 1073 hibernate_switch_stack_machdep(); 1074 1075 #ifndef NO_PROPOLICE 1076 /* Start using suspended kernel's propolice guard */ 1077 __guard_local = disk_hib.guard; 1078 #endif /* ! NO_PROPOLICE */ 1079 1080 /* Unpack and resume */ 1081 hibernate_unpack_image(&disk_hib); 1082 1083 fail: 1084 splx(s); 1085 printf("\nUnable to resume hibernated image\n"); 1086 } 1087 1088 /* 1089 * Unpack image from pig area to original location by looping through the 1090 * list of output chunks in the order they should be restored (fchunks). 1091 * 1092 * Note that due to the stack smash protector and the fact that we have 1093 * switched stacks, it is not permitted to return from this function. 1094 */ 1095 void 1096 hibernate_unpack_image(union hibernate_info *hib) 1097 { 1098 struct hibernate_disk_chunk *chunks; 1099 union hibernate_info local_hib; 1100 paddr_t image_cur = global_pig_start; 1101 short i, *fchunks; 1102 char *pva; 1103 struct hibernate_zlib_state *hibernate_state; 1104 1105 hibernate_state = 1106 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1107 1108 /* Piglet will be identity mapped (VA == PA) */ 1109 pva = (char *)hib->piglet_pa; 1110 1111 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1112 1113 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1114 1115 /* Can't use hiber_info that's passed in after this point */ 1116 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1117 1118 /* VA == PA */ 1119 local_hib.piglet_va = local_hib.piglet_pa; 1120 1121 /* 1122 * Point of no return. Once we pass this point, only kernel code can 1123 * be accessed. No global variables or other kernel data structures 1124 * are guaranteed to be coherent after unpack starts. 1125 * 1126 * The image is now in high memory (pig area), we unpack from the pig 1127 * to the correct location in memory. We'll eventually end up copying 1128 * on top of ourself, but we are assured the kernel code here is the 1129 * same between the hibernated and resuming kernel, and we are running 1130 * on our own stack, so the overwrite is ok. 1131 */ 1132 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1133 hibernate_activate_resume_pt_machdep(); 1134 1135 for (i = 0; i < local_hib.chunk_ctr; i++) { 1136 /* Reset zlib for inflate */ 1137 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1138 panic("hibernate failed to reset zlib for inflate"); 1139 1140 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1141 image_cur); 1142 1143 image_cur += chunks[fchunks[i]].compressed_size; 1144 1145 } 1146 1147 /* 1148 * Resume the loaded kernel by jumping to the MD resume vector. 1149 * We won't be returning from this call. 1150 */ 1151 hibernate_resume_machdep(); 1152 } 1153 1154 /* 1155 * Bounce a compressed image chunk to the piglet, entering mappings for the 1156 * copied pages as needed 1157 */ 1158 void 1159 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1160 { 1161 size_t ct, ofs; 1162 paddr_t src = img_cur; 1163 vaddr_t dest = piglet; 1164 1165 /* Copy first partial page */ 1166 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1167 ofs = (src & PAGE_MASK); 1168 1169 if (ct < PAGE_SIZE) { 1170 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1171 (src - ofs), 0); 1172 hibernate_flush(); 1173 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1174 src += ct; 1175 dest += ct; 1176 } 1177 1178 /* Copy remaining pages */ 1179 while (src < size + img_cur) { 1180 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1181 hibernate_flush(); 1182 ct = PAGE_SIZE; 1183 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1184 hibernate_flush(); 1185 src += ct; 1186 dest += ct; 1187 } 1188 } 1189 1190 /* 1191 * Process a chunk by bouncing it to the piglet, followed by unpacking 1192 */ 1193 void 1194 hibernate_process_chunk(union hibernate_info *hib, 1195 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1196 { 1197 char *pva = (char *)hib->piglet_va; 1198 1199 hibernate_copy_chunk_to_piglet(img_cur, 1200 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1201 hibernate_inflate_region(hib, chunk->base, 1202 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1203 chunk->compressed_size); 1204 } 1205 1206 /* 1207 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1208 * inaddr and range_end. 1209 */ 1210 int 1211 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1212 { 1213 int rle; 1214 1215 rle = uvm_page_rle(inaddr); 1216 KASSERT(rle >= 0 && rle <= MAX_RLE); 1217 1218 /* Clamp RLE to range end */ 1219 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1220 rle = (range_end - inaddr) / PAGE_SIZE; 1221 1222 return (rle); 1223 } 1224 1225 /* 1226 * Write the RLE byte for page at 'inaddr' to the output stream. 1227 * Returns the number of pages to be skipped at 'inaddr'. 1228 */ 1229 int 1230 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1231 paddr_t range_end, daddr_t *blkctr, 1232 size_t *out_remaining) 1233 { 1234 int rle, err, *rleloc; 1235 struct hibernate_zlib_state *hibernate_state; 1236 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1237 1238 hibernate_state = 1239 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1240 1241 rle = hibernate_calc_rle(inaddr, range_end); 1242 1243 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1244 *rleloc = rle; 1245 1246 /* Deflate the RLE byte into the stream */ 1247 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1248 1249 /* Did we fill the output page? If so, flush to disk */ 1250 if (*out_remaining == 0) { 1251 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1252 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1253 hib->io_page))) { 1254 DPRINTF("hib write error %d\n", err); 1255 return (err); 1256 } 1257 1258 *blkctr += PAGE_SIZE / DEV_BSIZE; 1259 *out_remaining = PAGE_SIZE; 1260 1261 /* If we didn't deflate the entire RLE byte, finish it now */ 1262 if (hibernate_state->hib_stream.avail_in != 0) 1263 hibernate_deflate(hib, 1264 (vaddr_t)hibernate_state->hib_stream.next_in, 1265 out_remaining); 1266 } 1267 1268 return (rle); 1269 } 1270 1271 /* 1272 * Write a compressed version of this machine's memory to disk, at the 1273 * precalculated swap offset: 1274 * 1275 * end of swap - signature block size - chunk table size - memory size 1276 * 1277 * The function begins by looping through each phys mem range, cutting each 1278 * one into MD sized chunks. These chunks are then compressed individually 1279 * and written out to disk, in phys mem order. Some chunks might compress 1280 * more than others, and for this reason, each chunk's size is recorded 1281 * in the chunk table, which is written to disk after the image has 1282 * properly been compressed and written (in hibernate_write_chunktable). 1283 * 1284 * When this function is called, the machine is nearly suspended - most 1285 * devices are quiesced/suspended, interrupts are off, and cold has 1286 * been set. This means that there can be no side effects once the 1287 * write has started, and the write function itself can also have no 1288 * side effects. This also means no printfs are permitted (since printf 1289 * has side effects.) 1290 * 1291 * Return values : 1292 * 1293 * 0 - success 1294 * EIO - I/O error occurred writing the chunks 1295 * EINVAL - Failed to write a complete range 1296 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1297 */ 1298 int 1299 hibernate_write_chunks(union hibernate_info *hib) 1300 { 1301 paddr_t range_base, range_end, inaddr, temp_inaddr; 1302 size_t nblocks, out_remaining, used; 1303 struct hibernate_disk_chunk *chunks; 1304 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1305 daddr_t blkctr = 0; 1306 int i, rle, err; 1307 struct hibernate_zlib_state *hibernate_state; 1308 1309 hibernate_state = 1310 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1311 1312 hib->chunk_ctr = 0; 1313 1314 /* 1315 * Map the utility VAs to the piglet. See the piglet map at the 1316 * top of this file for piglet layout information. 1317 */ 1318 hibernate_copy_page = global_piglet_va + 3 * PAGE_SIZE; 1319 hibernate_rle_page = global_piglet_va + 28 * PAGE_SIZE; 1320 1321 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1322 HIBERNATE_CHUNK_SIZE); 1323 1324 /* Calculate the chunk regions */ 1325 for (i = 0; i < hib->nranges; i++) { 1326 range_base = hib->ranges[i].base; 1327 range_end = hib->ranges[i].end; 1328 1329 inaddr = range_base; 1330 1331 while (inaddr < range_end) { 1332 chunks[hib->chunk_ctr].base = inaddr; 1333 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1334 chunks[hib->chunk_ctr].end = inaddr + 1335 HIBERNATE_CHUNK_SIZE; 1336 else 1337 chunks[hib->chunk_ctr].end = range_end; 1338 1339 inaddr += HIBERNATE_CHUNK_SIZE; 1340 hib->chunk_ctr ++; 1341 } 1342 } 1343 1344 uvm_pmr_dirty_everything(); 1345 uvm_pmr_zero_everything(); 1346 1347 /* Compress and write the chunks in the chunktable */ 1348 for (i = 0; i < hib->chunk_ctr; i++) { 1349 range_base = chunks[i].base; 1350 range_end = chunks[i].end; 1351 1352 chunks[i].offset = blkctr + hib->image_offset; 1353 1354 /* Reset zlib for deflate */ 1355 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1356 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1357 return (ENOMEM); 1358 } 1359 1360 inaddr = range_base; 1361 1362 /* 1363 * For each range, loop through its phys mem region 1364 * and write out the chunks (the last chunk might be 1365 * smaller than the chunk size). 1366 */ 1367 while (inaddr < range_end) { 1368 out_remaining = PAGE_SIZE; 1369 while (out_remaining > 0 && inaddr < range_end) { 1370 /* 1371 * Adjust for regions that are not evenly 1372 * divisible by PAGE_SIZE or overflowed 1373 * pages from the previous iteration. 1374 */ 1375 temp_inaddr = (inaddr & PAGE_MASK) + 1376 hibernate_copy_page; 1377 1378 /* Deflate from temp_inaddr to IO page */ 1379 if (inaddr != range_end) { 1380 if (inaddr % PAGE_SIZE == 0) { 1381 rle = hibernate_write_rle(hib, 1382 inaddr, 1383 range_end, 1384 &blkctr, 1385 &out_remaining); 1386 } 1387 1388 if (rle == 0) { 1389 pmap_kenter_pa(hibernate_temp_page, 1390 inaddr & PMAP_PA_MASK, 1391 VM_PROT_ALL); 1392 1393 pmap_activate(curproc); 1394 1395 bcopy((caddr_t)hibernate_temp_page, 1396 (caddr_t)hibernate_copy_page, 1397 PAGE_SIZE); 1398 inaddr += hibernate_deflate(hib, 1399 temp_inaddr, 1400 &out_remaining); 1401 } else { 1402 inaddr += rle * PAGE_SIZE; 1403 if (inaddr > range_end) 1404 inaddr = range_end; 1405 } 1406 1407 } 1408 1409 if (out_remaining == 0) { 1410 /* Filled up the page */ 1411 nblocks = PAGE_SIZE / DEV_BSIZE; 1412 1413 if ((err = hib->io_func(hib->dev, 1414 blkctr + hib->image_offset, 1415 (vaddr_t)hibernate_io_page, 1416 PAGE_SIZE, HIB_W, hib->io_page))) { 1417 DPRINTF("hib write error %d\n", 1418 err); 1419 return (err); 1420 } 1421 1422 blkctr += nblocks; 1423 } 1424 } 1425 } 1426 1427 if (inaddr != range_end) { 1428 DPRINTF("deflate range ended prematurely\n"); 1429 return (EINVAL); 1430 } 1431 1432 /* 1433 * End of range. Round up to next secsize bytes 1434 * after finishing compress 1435 */ 1436 if (out_remaining == 0) 1437 out_remaining = PAGE_SIZE; 1438 1439 /* Finish compress */ 1440 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1441 hibernate_state->hib_stream.avail_in = 0; 1442 hibernate_state->hib_stream.next_out = 1443 (unsigned char *)hibernate_io_page + 1444 (PAGE_SIZE - out_remaining); 1445 1446 /* We have an extra output page available for finalize */ 1447 hibernate_state->hib_stream.avail_out = 1448 out_remaining + PAGE_SIZE; 1449 1450 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1451 Z_STREAM_END) { 1452 DPRINTF("deflate error in output stream: %d\n", err); 1453 return (err); 1454 } 1455 1456 out_remaining = hibernate_state->hib_stream.avail_out; 1457 1458 used = 2 * PAGE_SIZE - out_remaining; 1459 nblocks = used / DEV_BSIZE; 1460 1461 /* Round up to next block if needed */ 1462 if (used % DEV_BSIZE != 0) 1463 nblocks ++; 1464 1465 /* Write final block(s) for this chunk */ 1466 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1467 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1468 HIB_W, hib->io_page))) { 1469 DPRINTF("hib final write error %d\n", err); 1470 return (err); 1471 } 1472 1473 blkctr += nblocks; 1474 1475 chunks[i].compressed_size = (blkctr + hib->image_offset - 1476 chunks[i].offset) * DEV_BSIZE; 1477 } 1478 1479 hib->chunktable_offset = hib->image_offset + blkctr; 1480 return (0); 1481 } 1482 1483 /* 1484 * Reset the zlib stream state and allocate a new hiballoc area for either 1485 * inflate or deflate. This function is called once for each hibernate chunk. 1486 * Calling hiballoc_init multiple times is acceptable since the memory it is 1487 * provided is unmanaged memory (stolen). We use the memory provided to us 1488 * by the piglet allocated via the supplied hib. 1489 */ 1490 int 1491 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1492 { 1493 vaddr_t hibernate_zlib_start; 1494 size_t hibernate_zlib_size; 1495 char *pva = (char *)hib->piglet_va; 1496 struct hibernate_zlib_state *hibernate_state; 1497 1498 hibernate_state = 1499 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1500 1501 if (!deflate) 1502 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1503 1504 /* 1505 * See piglet layout information at the start of this file for 1506 * information on the zlib page assignments. 1507 */ 1508 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1509 hibernate_zlib_size = 80 * PAGE_SIZE; 1510 1511 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1512 memset(hibernate_state, 0, PAGE_SIZE); 1513 1514 /* Set up stream structure */ 1515 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1516 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1517 1518 /* Initialize the hiballoc arena for zlib allocs/frees */ 1519 hiballoc_init(&hibernate_state->hiballoc_arena, 1520 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1521 1522 if (deflate) { 1523 return deflateInit(&hibernate_state->hib_stream, 1524 Z_BEST_SPEED); 1525 } else 1526 return inflateInit(&hibernate_state->hib_stream); 1527 } 1528 1529 /* 1530 * Reads the hibernated memory image from disk, whose location and 1531 * size are recorded in hib. Begin by reading the persisted 1532 * chunk table, which records the original chunk placement location 1533 * and compressed size for each. Next, allocate a pig region of 1534 * sufficient size to hold the compressed image. Next, read the 1535 * chunks into the pig area (calling hibernate_read_chunks to do this), 1536 * and finally, if all of the above succeeds, clear the hibernate signature. 1537 * The function will then return to hibernate_resume, which will proceed 1538 * to unpack the pig image to the correct place in memory. 1539 */ 1540 int 1541 hibernate_read_image(union hibernate_info *hib) 1542 { 1543 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1544 paddr_t image_start, image_end, pig_start, pig_end; 1545 struct hibernate_disk_chunk *chunks; 1546 daddr_t blkctr; 1547 vaddr_t chunktable = (vaddr_t)NULL; 1548 paddr_t piglet_chunktable = hib->piglet_pa + 1549 HIBERNATE_CHUNK_SIZE; 1550 int i, status; 1551 1552 status = 0; 1553 pmap_activate(curproc); 1554 1555 /* Calculate total chunk table size in disk blocks */ 1556 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1557 1558 blkctr = hib->chunktable_offset; 1559 1560 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1561 &kp_none, &kd_nowait); 1562 1563 if (!chunktable) 1564 return (1); 1565 1566 /* Map chunktable pages */ 1567 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1568 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1569 VM_PROT_ALL); 1570 pmap_update(pmap_kernel()); 1571 1572 /* Read the chunktable from disk into the piglet chunktable */ 1573 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1574 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1575 hibernate_block_io(hib, blkctr, MAXPHYS, 1576 chunktable + i, 0); 1577 1578 blkctr = hib->image_offset; 1579 compressed_size = 0; 1580 1581 chunks = (struct hibernate_disk_chunk *)chunktable; 1582 1583 for (i = 0; i < hib->chunk_ctr; i++) 1584 compressed_size += chunks[i].compressed_size; 1585 1586 disk_size = compressed_size; 1587 1588 printf("unhibernating @ block %lld length %lu bytes\n", 1589 hib->sig_offset - chunktable_size, 1590 compressed_size); 1591 1592 /* Allocate the pig area */ 1593 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1594 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1595 status = 1; 1596 goto unmap; 1597 } 1598 1599 pig_end = pig_start + pig_sz; 1600 1601 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1602 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1603 image_start = image_end - disk_size; 1604 1605 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1606 chunks); 1607 1608 /* Prepare the resume time pmap/page table */ 1609 hibernate_populate_resume_pt(hib, image_start, image_end); 1610 1611 unmap: 1612 /* Unmap chunktable pages */ 1613 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1614 pmap_update(pmap_kernel()); 1615 1616 return (status); 1617 } 1618 1619 /* 1620 * Read the hibernated memory chunks from disk (chunk information at this 1621 * point is stored in the piglet) into the pig area specified by 1622 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1623 * only chunk with overlap possibilities. 1624 */ 1625 int 1626 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1627 paddr_t pig_end, size_t image_compr_size, 1628 struct hibernate_disk_chunk *chunks) 1629 { 1630 paddr_t img_cur, piglet_base; 1631 daddr_t blkctr; 1632 size_t processed, compressed_size, read_size; 1633 int nchunks, nfchunks, num_io_pages; 1634 vaddr_t tempva, hibernate_fchunk_area; 1635 short *fchunks, i, j; 1636 1637 tempva = (vaddr_t)NULL; 1638 hibernate_fchunk_area = (vaddr_t)NULL; 1639 nfchunks = 0; 1640 piglet_base = hib->piglet_pa; 1641 global_pig_start = pig_start; 1642 1643 pmap_activate(curproc); 1644 1645 /* 1646 * These mappings go into the resuming kernel's page table, and are 1647 * used only during image read. They dissappear from existence 1648 * when the suspended kernel is unpacked on top of us. 1649 */ 1650 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1651 &kd_nowait); 1652 if (!tempva) 1653 return (1); 1654 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1655 &kp_none, &kd_nowait); 1656 if (!hibernate_fchunk_area) 1657 return (1); 1658 1659 /* Final output chunk ordering VA */ 1660 fchunks = (short *)hibernate_fchunk_area; 1661 1662 /* Map the chunk ordering region */ 1663 for(i = 0; i < 24 ; i++) 1664 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1665 piglet_base + ((4 + i) * PAGE_SIZE), VM_PROT_ALL); 1666 pmap_update(pmap_kernel()); 1667 1668 nchunks = hib->chunk_ctr; 1669 1670 /* Initially start all chunks as unplaced */ 1671 for (i = 0; i < nchunks; i++) 1672 chunks[i].flags = 0; 1673 1674 /* 1675 * Search the list for chunks that are outside the pig area. These 1676 * can be placed first in the final output list. 1677 */ 1678 for (i = 0; i < nchunks; i++) { 1679 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1680 fchunks[nfchunks] = i; 1681 nfchunks++; 1682 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1683 } 1684 } 1685 1686 /* 1687 * Walk the ordering, place the chunks in ascending memory order. 1688 */ 1689 for (i = 0; i < nchunks; i++) { 1690 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1691 fchunks[nfchunks] = i; 1692 nfchunks++; 1693 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1694 } 1695 } 1696 1697 img_cur = pig_start; 1698 1699 for (i = 0; i < nfchunks; i++) { 1700 blkctr = chunks[fchunks[i]].offset; 1701 processed = 0; 1702 compressed_size = chunks[fchunks[i]].compressed_size; 1703 1704 while (processed < compressed_size) { 1705 if (compressed_size - processed >= MAXPHYS) 1706 read_size = MAXPHYS; 1707 else 1708 read_size = compressed_size - processed; 1709 1710 /* 1711 * We're reading read_size bytes, offset from the 1712 * start of a page by img_cur % PAGE_SIZE, so the 1713 * end will be read_size + (img_cur % PAGE_SIZE) 1714 * from the start of the first page. Round that 1715 * up to the next page size. 1716 */ 1717 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1718 + PAGE_SIZE - 1) / PAGE_SIZE; 1719 1720 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1721 1722 /* Map pages for this read */ 1723 for (j = 0; j < num_io_pages; j ++) 1724 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1725 img_cur + j * PAGE_SIZE, VM_PROT_ALL); 1726 1727 pmap_update(pmap_kernel()); 1728 1729 hibernate_block_io(hib, blkctr, read_size, 1730 tempva + (img_cur & PAGE_MASK), 0); 1731 1732 blkctr += (read_size / DEV_BSIZE); 1733 1734 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1735 pmap_update(pmap_kernel()); 1736 1737 processed += read_size; 1738 img_cur += read_size; 1739 } 1740 } 1741 1742 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1743 pmap_update(pmap_kernel()); 1744 1745 return (0); 1746 } 1747 1748 /* 1749 * Hibernating a machine comprises the following operations: 1750 * 1. Calculating this machine's hibernate_info information 1751 * 2. Allocating a piglet and saving the piglet's physaddr 1752 * 3. Calculating the memory chunks 1753 * 4. Writing the compressed chunks to disk 1754 * 5. Writing the chunk table 1755 * 6. Writing the signature block (hibernate_info) 1756 * 1757 * On most architectures, the function calling hibernate_suspend would 1758 * then power off the machine using some MD-specific implementation. 1759 */ 1760 int 1761 hibernate_suspend(void) 1762 { 1763 union hibernate_info hib; 1764 u_long start, end; 1765 1766 /* 1767 * Calculate memory ranges, swap offsets, etc. 1768 * This also allocates a piglet whose physaddr is stored in 1769 * hib->piglet_pa and vaddr stored in hib->piglet_va 1770 */ 1771 if (get_hibernate_info(&hib, 1)) { 1772 DPRINTF("failed to obtain hibernate info\n"); 1773 return (1); 1774 } 1775 1776 /* Find a page-addressed region in swap [start,end] */ 1777 if (uvm_hibswap(hib.dev, &start, &end)) { 1778 printf("hibernate: cannot find any swap\n"); 1779 return (1); 1780 } 1781 1782 if (end - start < 1000) { 1783 printf("hibernate: insufficient swap (%lu is too small)\n", 1784 end - start); 1785 return (1); 1786 } 1787 1788 /* Calculate block offsets in swap */ 1789 hib.image_offset = ctod(start); 1790 1791 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1792 hib.image_offset, ctod(end) - ctod(start)); 1793 1794 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1795 VM_PROT_ALL); 1796 pmap_activate(curproc); 1797 1798 DPRINTF("hibernate: writing chunks\n"); 1799 if (hibernate_write_chunks(&hib)) { 1800 DPRINTF("hibernate_write_chunks failed\n"); 1801 return (1); 1802 } 1803 1804 DPRINTF("hibernate: writing chunktable\n"); 1805 if (hibernate_write_chunktable(&hib)) { 1806 DPRINTF("hibernate_write_chunktable failed\n"); 1807 return (1); 1808 } 1809 1810 DPRINTF("hibernate: writing signature\n"); 1811 if (hibernate_write_signature(&hib)) { 1812 DPRINTF("hibernate_write_signature failed\n"); 1813 return (1); 1814 } 1815 1816 /* Allow the disk to settle */ 1817 delay(500000); 1818 1819 /* 1820 * Give the device-specific I/O function a notification that we're 1821 * done, and that it can clean up or shutdown as needed. 1822 */ 1823 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1824 1825 return (0); 1826 } 1827 1828 int 1829 hibernate_alloc(void) 1830 { 1831 KASSERT(global_piglet_va == 0); 1832 KASSERT(hibernate_temp_page == 0); 1833 1834 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1835 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1836 return (ENOMEM); 1837 1838 /* 1839 * Allocate VA for the temp page. 1840 * 1841 * This will become part of the suspended kernel and will 1842 * be freed in hibernate_free, upon resume. 1843 */ 1844 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1845 &kp_none, &kd_nowait); 1846 if (!hibernate_temp_page) { 1847 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1848 return (ENOMEM); 1849 } 1850 1851 return (0); 1852 } 1853 1854 /* 1855 * Free items allocated by hibernate_alloc() 1856 */ 1857 void 1858 hibernate_free(void) 1859 { 1860 if (global_piglet_va) 1861 uvm_pmr_free_piglet(global_piglet_va, 1862 4 * HIBERNATE_CHUNK_SIZE); 1863 1864 if (hibernate_temp_page) 1865 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1866 1867 pmap_update(pmap_kernel()); 1868 1869 if (hibernate_temp_page) 1870 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1871 &kv_any, &kp_none); 1872 1873 global_piglet_va = 0; 1874 hibernate_temp_page = 0; 1875 } 1876