1 /* $OpenBSD: subr_hibernate.c,v 1.147 2024/12/31 17:16:05 krw Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* Make sure the signature can fit in one block */ 39 CTASSERT((offsetof(union hibernate_info, sec_size) + sizeof(u_int32_t)) <= DEV_BSIZE); 40 41 /* 42 * Hibernate piglet layout information 43 * 44 * The piglet is a scratch area of memory allocated by the suspending kernel. 45 * Its phys and virt addrs are recorded in the signature block. The piglet is 46 * used to guarantee an unused area of memory that can be used by the resuming 47 * kernel for various things. The piglet is excluded during unpack operations. 48 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 49 * 50 * Offset from piglet_base Purpose 51 * ---------------------------------------------------------------------------- 52 * 0 Private page for suspend I/O write functions 53 * 1*PAGE_SIZE I/O page used during hibernate suspend 54 * 2*PAGE_SIZE I/O page used during hibernate suspend 55 * 3*PAGE_SIZE copy page used during hibernate suspend 56 * 4*PAGE_SIZE final chunk ordering list (24 pages) 57 * 28*PAGE_SIZE RLE utility page 58 * 29*PAGE_SIZE start of hiballoc area 59 * 30*PAGE_SIZE preserved entropy 60 * 110*PAGE_SIZE end of hiballoc area (80 pages) 61 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 62 * ... unused 63 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 64 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 65 * 4*HIBERNATE_CHUNK_SIZE end of piglet 66 */ 67 68 /* Temporary vaddr ranges used during hibernate */ 69 vaddr_t hibernate_temp_page; 70 vaddr_t hibernate_copy_page; 71 vaddr_t hibernate_rle_page; 72 73 /* Hibernate info as read from disk during resume */ 74 union hibernate_info disk_hib; 75 struct bdevsw *bdsw; 76 77 /* 78 * Global copy of the pig start address. This needs to be a global as we 79 * switch stacks after computing it - it can't be stored on the stack. 80 */ 81 paddr_t global_pig_start; 82 83 /* 84 * Global copies of the piglet start addresses (PA/VA). We store these 85 * as globals to avoid having to carry them around as parameters, as the 86 * piglet is allocated early and freed late - its lifecycle extends beyond 87 * that of the hibernate info union which is calculated on suspend/resume. 88 */ 89 vaddr_t global_piglet_va; 90 paddr_t global_piglet_pa; 91 92 /* #define HIB_DEBUG */ 93 #ifdef HIB_DEBUG 94 int hib_debug = 99; 95 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 96 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 97 #else 98 #define DPRINTF(x...) 99 #define DNPRINTF(n,x...) 100 #endif 101 102 #define ROUNDUP(_x, _y) ((((_x)+(_y)-1)/(_y))*(_y)) 103 104 #ifndef NO_PROPOLICE 105 extern long __guard_local; 106 #endif /* ! NO_PROPOLICE */ 107 108 /* Retguard phys address (need to skip this region during unpack) */ 109 paddr_t retguard_start_phys, retguard_end_phys; 110 extern char __retguard_start, __retguard_end; 111 112 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 113 int hibernate_calc_rle(paddr_t, paddr_t); 114 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 115 size_t *); 116 117 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 118 119 /* 120 * Hib alloc enforced alignment. 121 */ 122 #define HIB_ALIGN 8 /* bytes alignment */ 123 124 /* 125 * sizeof builtin operation, but with alignment constraint. 126 */ 127 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 128 129 struct hiballoc_entry { 130 size_t hibe_use; 131 size_t hibe_space; 132 RBT_ENTRY(hiballoc_entry) hibe_entry; 133 }; 134 135 #define IO_TYPE_IMG 1 136 #define IO_TYPE_CHK 2 137 #define IO_TYPE_SIG 3 138 139 int 140 hibernate_write(union hibernate_info *hib, daddr_t offset, vaddr_t addr, 141 size_t size, int io_type) 142 { 143 const uint64_t blks = btodb(size); 144 145 if (hib == NULL || offset < 0 || blks == 0) { 146 printf("%s: hib is NULL, offset < 0 or blks == 0\n", __func__); 147 return (EINVAL); 148 } 149 150 switch (io_type) { 151 case IO_TYPE_IMG: 152 if (offset + blks > hib->image_size) { 153 printf("%s: image write is out of bounds: " 154 "offset-image=%lld, offset-write=%lld, blks=%llu\n", 155 __func__, hib->image_offset, offset, blks); 156 return (EIO); 157 } 158 offset += hib->image_offset; 159 break; 160 case IO_TYPE_CHK: 161 if (offset + blks > btodb(HIBERNATE_CHUNK_TABLE_SIZE)) { 162 printf("%s: chunktable write is out of bounds: " 163 "offset-chunk=%lld, offset-write=%lld, blks=%llu\n", 164 __func__, hib->chunktable_offset, offset, blks); 165 return (EIO); 166 } 167 offset += hib->chunktable_offset; 168 break; 169 case IO_TYPE_SIG: 170 if (offset != hib->sig_offset || size != hib->sec_size) { 171 printf("%s: signature write is out of bounds: " 172 "offset-sig=%lld, offset-write=%lld, blks=%llu\n", 173 __func__, hib->sig_offset, offset, blks); 174 return (EIO); 175 } 176 break; 177 default: 178 printf("%s: unsupported io type %d\n", __func__, io_type); 179 return (EINVAL); 180 } 181 182 return (hib->io_func(hib->dev, offset, addr, size, HIB_W, 183 hib->io_page)); 184 } 185 186 /* 187 * Sort hibernate memory ranges by ascending PA 188 */ 189 void 190 hibernate_sort_ranges(union hibernate_info *hib_info) 191 { 192 int i, j; 193 struct hibernate_memory_range *ranges; 194 paddr_t base, end; 195 196 ranges = hib_info->ranges; 197 198 for (i = 1; i < hib_info->nranges; i++) { 199 j = i; 200 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 201 base = ranges[j].base; 202 end = ranges[j].end; 203 ranges[j].base = ranges[j - 1].base; 204 ranges[j].end = ranges[j - 1].end; 205 ranges[j - 1].base = base; 206 ranges[j - 1].end = end; 207 j--; 208 } 209 } 210 } 211 212 /* 213 * Compare hiballoc entries based on the address they manage. 214 * 215 * Since the address is fixed, relative to struct hiballoc_entry, 216 * we just compare the hiballoc_entry pointers. 217 */ 218 static __inline int 219 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 220 { 221 vaddr_t vl = (vaddr_t)l; 222 vaddr_t vr = (vaddr_t)r; 223 224 return vl < vr ? -1 : (vl > vr); 225 } 226 227 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 228 229 /* 230 * Given a hiballoc entry, return the address it manages. 231 */ 232 static __inline void * 233 hib_entry_to_addr(struct hiballoc_entry *entry) 234 { 235 caddr_t addr; 236 237 addr = (caddr_t)entry; 238 addr += HIB_SIZEOF(struct hiballoc_entry); 239 return addr; 240 } 241 242 /* 243 * Given an address, find the hiballoc that corresponds. 244 */ 245 static __inline struct hiballoc_entry* 246 hib_addr_to_entry(void *addr_param) 247 { 248 caddr_t addr; 249 250 addr = (caddr_t)addr_param; 251 addr -= HIB_SIZEOF(struct hiballoc_entry); 252 return (struct hiballoc_entry*)addr; 253 } 254 255 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 256 257 /* 258 * Allocate memory from the arena. 259 * 260 * Returns NULL if no memory is available. 261 */ 262 void * 263 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 264 { 265 struct hiballoc_entry *entry, *new_entry; 266 size_t find_sz; 267 268 /* 269 * Enforce alignment of HIB_ALIGN bytes. 270 * 271 * Note that, because the entry is put in front of the allocation, 272 * 0-byte allocations are guaranteed a unique address. 273 */ 274 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 275 276 /* 277 * Find an entry with hibe_space >= find_sz. 278 * 279 * If the root node is not large enough, we switch to tree traversal. 280 * Because all entries are made at the bottom of the free space, 281 * traversal from the end has a slightly better chance of yielding 282 * a sufficiently large space. 283 */ 284 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 285 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 286 if (entry != NULL && entry->hibe_space < find_sz) { 287 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 288 if (entry->hibe_space >= find_sz) 289 break; 290 } 291 } 292 293 /* 294 * Insufficient or too fragmented memory. 295 */ 296 if (entry == NULL) 297 return NULL; 298 299 /* 300 * Create new entry in allocated space. 301 */ 302 new_entry = (struct hiballoc_entry*)( 303 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 304 new_entry->hibe_space = entry->hibe_space - find_sz; 305 new_entry->hibe_use = alloc_sz; 306 307 /* 308 * Insert entry. 309 */ 310 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 311 panic("hib_alloc: insert failure"); 312 entry->hibe_space = 0; 313 314 /* Return address managed by entry. */ 315 return hib_entry_to_addr(new_entry); 316 } 317 318 void 319 hib_getentropy(char **bufp, size_t *bufplen) 320 { 321 if (!bufp || !bufplen) 322 return; 323 324 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 325 *bufplen = PAGE_SIZE; 326 } 327 328 /* 329 * Free a pointer previously allocated from this arena. 330 * 331 * If addr is NULL, this will be silently accepted. 332 */ 333 void 334 hib_free(struct hiballoc_arena *arena, void *addr) 335 { 336 struct hiballoc_entry *entry, *prev; 337 338 if (addr == NULL) 339 return; 340 341 /* 342 * Derive entry from addr and check it is really in this arena. 343 */ 344 entry = hib_addr_to_entry(addr); 345 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 346 panic("hib_free: freed item %p not in hib arena", addr); 347 348 /* 349 * Give the space in entry to its predecessor. 350 * 351 * If entry has no predecessor, change its used space into free space 352 * instead. 353 */ 354 prev = RBT_PREV(hiballoc_addr, entry); 355 if (prev != NULL && 356 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 357 prev->hibe_use + prev->hibe_space) == entry) { 358 /* Merge entry. */ 359 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 360 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 361 entry->hibe_use + entry->hibe_space; 362 } else { 363 /* Flip used memory to free space. */ 364 entry->hibe_space += entry->hibe_use; 365 entry->hibe_use = 0; 366 } 367 } 368 369 /* 370 * Initialize hiballoc. 371 * 372 * The allocator will manage memory at ptr, which is len bytes. 373 */ 374 int 375 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 376 { 377 struct hiballoc_entry *entry; 378 caddr_t ptr; 379 size_t len; 380 381 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 382 383 /* 384 * Hib allocator enforces HIB_ALIGN alignment. 385 * Fixup ptr and len. 386 */ 387 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 388 len = p_len - ((size_t)ptr - (size_t)p_ptr); 389 len &= ~((size_t)HIB_ALIGN - 1); 390 391 /* 392 * Insufficient memory to be able to allocate and also do bookkeeping. 393 */ 394 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 395 return ENOMEM; 396 397 /* 398 * Create entry describing space. 399 */ 400 entry = (struct hiballoc_entry*)ptr; 401 entry->hibe_use = 0; 402 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 403 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 404 405 return 0; 406 } 407 408 /* 409 * Zero all free memory. 410 */ 411 void 412 uvm_pmr_zero_everything(void) 413 { 414 struct uvm_pmemrange *pmr; 415 struct vm_page *pg; 416 int i; 417 418 uvm_lock_fpageq(); 419 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 420 /* Zero single pages. */ 421 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 422 != NULL) { 423 uvm_pmr_remove(pmr, pg); 424 uvm_pagezero(pg); 425 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 426 uvmexp.zeropages++; 427 uvm_pmr_insert(pmr, pg, 0); 428 } 429 430 /* Zero multi page ranges. */ 431 while ((pg = RBT_ROOT(uvm_pmr_size, 432 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { 433 pg--; /* Size tree always has second page. */ 434 uvm_pmr_remove(pmr, pg); 435 for (i = 0; i < pg->fpgsz; i++) { 436 uvm_pagezero(&pg[i]); 437 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 438 uvmexp.zeropages++; 439 } 440 uvm_pmr_insert(pmr, pg, 0); 441 } 442 } 443 uvm_unlock_fpageq(); 444 } 445 446 /* 447 * Mark all memory as dirty. 448 * 449 * Used to inform the system that the clean memory isn't clean for some 450 * reason, for example because we just came back from hibernate. 451 */ 452 void 453 uvm_pmr_dirty_everything(void) 454 { 455 struct uvm_pmemrange *pmr; 456 struct vm_page *pg; 457 int i; 458 459 uvm_lock_fpageq(); 460 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 461 /* Dirty single pages. */ 462 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 463 != NULL) { 464 uvm_pmr_remove(pmr, pg); 465 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 466 uvm_pmr_insert(pmr, pg, 0); 467 } 468 469 /* Dirty multi page ranges. */ 470 while ((pg = RBT_ROOT(uvm_pmr_size, 471 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 472 pg--; /* Size tree always has second page. */ 473 uvm_pmr_remove(pmr, pg); 474 for (i = 0; i < pg->fpgsz; i++) 475 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 476 uvm_pmr_insert(pmr, pg, 0); 477 } 478 } 479 480 uvmexp.zeropages = 0; 481 uvm_unlock_fpageq(); 482 } 483 484 /* 485 * Allocate an area that can hold sz bytes and doesn't overlap with 486 * the piglet at piglet_pa. 487 */ 488 int 489 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 490 { 491 struct uvm_constraint_range pig_constraint; 492 struct kmem_pa_mode kp_pig = { 493 .kp_constraint = &pig_constraint, 494 .kp_maxseg = 1 495 }; 496 vaddr_t va; 497 498 sz = round_page(sz); 499 500 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 501 pig_constraint.ucr_high = -1; 502 503 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 504 if (va == 0) { 505 pig_constraint.ucr_low = 0; 506 pig_constraint.ucr_high = piglet_pa - 1; 507 508 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 509 if (va == 0) 510 return ENOMEM; 511 } 512 513 pmap_extract(pmap_kernel(), va, pa); 514 return 0; 515 } 516 517 /* 518 * Allocate a piglet area. 519 * 520 * This needs to be in DMA-safe memory. 521 * Piglets are aligned. 522 * 523 * sz and align in bytes. 524 */ 525 int 526 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 527 { 528 struct kmem_pa_mode kp_piglet = { 529 .kp_constraint = &dma_constraint, 530 .kp_align = align, 531 .kp_maxseg = 1 532 }; 533 534 /* Ensure align is a power of 2 */ 535 KASSERT((align & (align - 1)) == 0); 536 537 /* 538 * Fixup arguments: align must be at least PAGE_SIZE, 539 * sz will be converted to pagecount, since that is what 540 * pmemrange uses internally. 541 */ 542 if (align < PAGE_SIZE) 543 kp_piglet.kp_align = PAGE_SIZE; 544 545 sz = round_page(sz); 546 547 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 548 if (*va == 0) 549 return ENOMEM; 550 551 pmap_extract(pmap_kernel(), *va, pa); 552 return 0; 553 } 554 555 /* 556 * Free a piglet area. 557 */ 558 void 559 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 560 { 561 /* 562 * Fix parameters. 563 */ 564 sz = round_page(sz); 565 566 /* 567 * Free the physical and virtual memory. 568 */ 569 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 570 } 571 572 /* 573 * Physmem RLE compression support. 574 * 575 * Given a physical page address, return the number of pages starting at the 576 * address that are free. Clamps to the number of pages in 577 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 578 */ 579 int 580 uvm_page_rle(paddr_t addr) 581 { 582 struct vm_page *pg, *pg_end; 583 struct vm_physseg *vmp; 584 int pseg_idx, off_idx; 585 586 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 587 if (pseg_idx == -1) 588 return 0; 589 590 vmp = &vm_physmem[pseg_idx]; 591 pg = &vmp->pgs[off_idx]; 592 if (!(pg->pg_flags & PQ_FREE)) 593 return 0; 594 595 /* 596 * Search for the first non-free page after pg. 597 * Note that the page may not be the first page in a free pmemrange, 598 * therefore pg->fpgsz cannot be used. 599 */ 600 for (pg_end = pg; pg_end <= vmp->lastpg && 601 (pg_end->pg_flags & PQ_FREE) == PQ_FREE && 602 (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++) 603 ; 604 return pg_end - pg; 605 } 606 607 /* 608 * Fills out the hibernate_info union pointed to by hib 609 * with information about this machine (swap signature block 610 * offsets, number of memory ranges, kernel in use, etc) 611 */ 612 int 613 get_hibernate_info(union hibernate_info *hib, int suspend) 614 { 615 struct disklabel dl; 616 char err_string[128], *dl_ret; 617 int part; 618 SHA2_CTX ctx; 619 void *fn; 620 621 #ifndef NO_PROPOLICE 622 /* Save propolice guard */ 623 hib->guard = __guard_local; 624 #endif /* ! NO_PROPOLICE */ 625 626 /* Determine I/O function to use */ 627 hib->io_func = get_hibernate_io_function(swdevt[0]); 628 if (hib->io_func == NULL) 629 return (1); 630 631 /* Calculate hibernate device */ 632 hib->dev = swdevt[0]; 633 634 /* Read disklabel (used to calculate signature and image offsets) */ 635 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 636 637 if (dl_ret) { 638 printf("Hibernate error reading disklabel: %s\n", dl_ret); 639 return (1); 640 } 641 642 /* Make sure we have a swap partition. */ 643 part = DISKPART(hib->dev); 644 if (dl.d_npartitions <= part || 645 dl.d_secsize > sizeof(union hibernate_info) || 646 dl.d_partitions[part].p_fstype != FS_SWAP || 647 DL_GETPSIZE(&dl.d_partitions[part]) == 0) 648 return (1); 649 650 /* Magic number */ 651 hib->magic = HIBERNATE_MAGIC; 652 653 /* Calculate signature block location */ 654 hib->sec_size = dl.d_secsize; 655 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part]) - 1; 656 hib->sig_offset = DL_SECTOBLK(&dl, hib->sig_offset); 657 658 SHA256Init(&ctx); 659 SHA256Update(&ctx, version, strlen(version)); 660 fn = printf; 661 SHA256Update(&ctx, &fn, sizeof(fn)); 662 fn = malloc; 663 SHA256Update(&ctx, &fn, sizeof(fn)); 664 fn = km_alloc; 665 SHA256Update(&ctx, &fn, sizeof(fn)); 666 fn = strlen; 667 SHA256Update(&ctx, &fn, sizeof(fn)); 668 SHA256Final((u_int8_t *)&hib->kern_hash, &ctx); 669 670 if (suspend) { 671 /* Grab the previously-allocated piglet addresses */ 672 hib->piglet_va = global_piglet_va; 673 hib->piglet_pa = global_piglet_pa; 674 hib->io_page = (void *)hib->piglet_va; 675 676 /* 677 * Initialization of the hibernate IO function for drivers 678 * that need to do prep work (such as allocating memory or 679 * setting up data structures that cannot safely be done 680 * during suspend without causing side effects). There is 681 * a matching HIB_DONE call performed after the write is 682 * completed. 683 */ 684 if (hib->io_func(hib->dev, 685 DL_SECTOBLK(&dl, DL_GETPOFFSET(&dl.d_partitions[part])), 686 (vaddr_t)NULL, 687 DL_SECTOBLK(&dl, DL_GETPSIZE(&dl.d_partitions[part])), 688 HIB_INIT, hib->io_page)) 689 goto fail; 690 691 } else { 692 /* 693 * Resuming kernels use a regular private page for the driver 694 * No need to free this I/O page as it will vanish as part of 695 * the resume. 696 */ 697 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 698 if (!hib->io_page) 699 goto fail; 700 } 701 702 if (get_hibernate_info_md(hib)) 703 goto fail; 704 705 return (0); 706 707 fail: 708 return (1); 709 } 710 711 /* 712 * Allocate nitems*size bytes from the hiballoc area presently in use 713 */ 714 void * 715 hibernate_zlib_alloc(void *unused, int nitems, int size) 716 { 717 struct hibernate_zlib_state *hibernate_state; 718 719 hibernate_state = 720 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 721 722 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 723 } 724 725 /* 726 * Free the memory pointed to by addr in the hiballoc area presently in 727 * use 728 */ 729 void 730 hibernate_zlib_free(void *unused, void *addr) 731 { 732 struct hibernate_zlib_state *hibernate_state; 733 734 hibernate_state = 735 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 736 737 hib_free(&hibernate_state->hiballoc_arena, addr); 738 } 739 740 /* 741 * Inflate next page of data from the image stream. 742 * The rle parameter is modified on exit to contain the number of pages to 743 * skip in the output stream (or 0 if this page was inflated into). 744 * 745 * Returns 0 if the stream contains additional data, or 1 if the stream is 746 * finished. 747 */ 748 int 749 hibernate_inflate_page(int *rle) 750 { 751 struct hibernate_zlib_state *hibernate_state; 752 int i; 753 754 hibernate_state = 755 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 756 757 /* Set up the stream for RLE code inflate */ 758 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 759 hibernate_state->hib_stream.avail_out = sizeof(*rle); 760 761 /* Inflate RLE code */ 762 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 763 if (i != Z_OK && i != Z_STREAM_END) { 764 /* 765 * XXX - this will likely reboot/hang most machines 766 * since the console output buffer will be unmapped, 767 * but there's not much else we can do here. 768 */ 769 panic("rle inflate stream error"); 770 } 771 772 if (hibernate_state->hib_stream.avail_out != 0) { 773 /* 774 * XXX - this will likely reboot/hang most machines 775 * since the console output buffer will be unmapped, 776 * but there's not much else we can do here. 777 */ 778 panic("rle short inflate error"); 779 } 780 781 if (*rle < 0 || *rle > 1024) { 782 /* 783 * XXX - this will likely reboot/hang most machines 784 * since the console output buffer will be unmapped, 785 * but there's not much else we can do here. 786 */ 787 panic("invalid rle count"); 788 } 789 790 if (i == Z_STREAM_END) 791 return (1); 792 793 if (*rle != 0) 794 return (0); 795 796 /* Set up the stream for page inflate */ 797 hibernate_state->hib_stream.next_out = 798 (unsigned char *)HIBERNATE_INFLATE_PAGE; 799 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 800 801 /* Process next block of data */ 802 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 803 if (i != Z_OK && i != Z_STREAM_END) { 804 /* 805 * XXX - this will likely reboot/hang most machines 806 * since the console output buffer will be unmapped, 807 * but there's not much else we can do here. 808 */ 809 panic("inflate error"); 810 } 811 812 /* We should always have extracted a full page ... */ 813 if (hibernate_state->hib_stream.avail_out != 0) { 814 /* 815 * XXX - this will likely reboot/hang most machines 816 * since the console output buffer will be unmapped, 817 * but there's not much else we can do here. 818 */ 819 panic("incomplete page"); 820 } 821 822 return (i == Z_STREAM_END); 823 } 824 825 /* 826 * Inflate size bytes from src into dest, skipping any pages in 827 * [src..dest] that are special (see hibernate_inflate_skip) 828 * 829 * This function executes while using the resume-time stack 830 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 831 * will likely hang or reset the machine since the console output buffer 832 * will be unmapped. 833 */ 834 void 835 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 836 paddr_t src, size_t size) 837 { 838 int end_stream = 0, rle, skip; 839 struct hibernate_zlib_state *hibernate_state; 840 841 hibernate_state = 842 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 843 844 hibernate_state->hib_stream.next_in = (unsigned char *)src; 845 hibernate_state->hib_stream.avail_in = size; 846 847 do { 848 /* 849 * Is this a special page? If yes, redirect the 850 * inflate output to a scratch page (eg, discard it) 851 */ 852 skip = hibernate_inflate_skip(hib, dest); 853 if (skip == HIB_SKIP) { 854 hibernate_enter_resume_mapping( 855 HIBERNATE_INFLATE_PAGE, 856 HIBERNATE_INFLATE_PAGE, 0); 857 } else if (skip == HIB_MOVE) { 858 /* 859 * Special case : retguard region. This gets moved 860 * temporarily into the piglet region and copied into 861 * place immediately before resume 862 */ 863 hibernate_enter_resume_mapping( 864 HIBERNATE_INFLATE_PAGE, 865 hib->piglet_pa + (110 * PAGE_SIZE) + 866 hib->retguard_ofs, 0); 867 hib->retguard_ofs += PAGE_SIZE; 868 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 869 /* 870 * XXX - this will likely reboot/hang most 871 * machines since the console output 872 * buffer will be unmapped, but there's 873 * not much else we can do here. 874 */ 875 panic("retguard move error, out of space"); 876 } 877 } else { 878 hibernate_enter_resume_mapping( 879 HIBERNATE_INFLATE_PAGE, dest, 0); 880 } 881 882 hibernate_flush(); 883 end_stream = hibernate_inflate_page(&rle); 884 885 if (rle == 0) 886 dest += PAGE_SIZE; 887 else 888 dest += (rle * PAGE_SIZE); 889 } while (!end_stream); 890 } 891 892 /* 893 * deflate from src into the I/O page, up to 'remaining' bytes 894 * 895 * Returns number of input bytes consumed, and may reset 896 * the 'remaining' parameter if not all the output space was consumed 897 * (this information is needed to know how much to write to disk) 898 */ 899 size_t 900 hibernate_deflate(union hibernate_info *hib, paddr_t src, 901 size_t *remaining) 902 { 903 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 904 struct hibernate_zlib_state *hibernate_state; 905 906 hibernate_state = 907 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 908 909 /* Set up the stream for deflate */ 910 hibernate_state->hib_stream.next_in = (unsigned char *)src; 911 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 912 hibernate_state->hib_stream.next_out = 913 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 914 hibernate_state->hib_stream.avail_out = *remaining; 915 916 /* Process next block of data */ 917 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 918 panic("hibernate zlib deflate error"); 919 920 /* Update pointers and return number of bytes consumed */ 921 *remaining = hibernate_state->hib_stream.avail_out; 922 return (PAGE_SIZE - (src & PAGE_MASK)) - 923 hibernate_state->hib_stream.avail_in; 924 } 925 926 /* 927 * Write the hibernation information specified in hiber_info 928 * to the location in swap previously calculated (last block of 929 * swap), called the "signature block". 930 */ 931 int 932 hibernate_write_signature(union hibernate_info *hib) 933 { 934 memset(&disk_hib, 0, hib->sec_size); 935 memcpy(&disk_hib, hib, DEV_BSIZE); 936 937 /* Write hibernate info to disk */ 938 return (hibernate_write(hib, hib->sig_offset, 939 (vaddr_t)&disk_hib, hib->sec_size, IO_TYPE_SIG)); 940 } 941 942 /* 943 * Write the memory chunk table to the area in swap immediately 944 * preceding the signature block. The chunk table is stored 945 * in the piglet when this function is called. Returns errno. 946 */ 947 int 948 hibernate_write_chunktable(union hibernate_info *hib) 949 { 950 vaddr_t hibernate_chunk_table_start; 951 size_t hibernate_chunk_table_size; 952 int i, err; 953 954 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 955 956 hibernate_chunk_table_start = hib->piglet_va + 957 HIBERNATE_CHUNK_SIZE; 958 959 /* Write chunk table */ 960 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 961 if ((err = hibernate_write(hib, btodb(i), 962 (vaddr_t)(hibernate_chunk_table_start + i), 963 MAXPHYS, IO_TYPE_CHK))) { 964 DPRINTF("chunktable write error: %d\n", err); 965 return (err); 966 } 967 } 968 969 return (0); 970 } 971 972 /* 973 * Write an empty hiber_info to the swap signature block, which is 974 * guaranteed to not match any valid hib. 975 */ 976 int 977 hibernate_clear_signature(union hibernate_info *hib) 978 { 979 uint8_t buf[DEV_BSIZE]; 980 981 /* Zero out a blank hiber_info */ 982 memcpy(&buf, &disk_hib, sizeof(buf)); 983 memset(&disk_hib, 0, hib->sec_size); 984 985 /* Write (zeroed) hibernate info to disk */ 986 DPRINTF("clearing hibernate signature block location: %lld\n", 987 hib->sig_offset); 988 if (hibernate_block_io(hib, 989 hib->sig_offset, 990 hib->sec_size, (vaddr_t)&disk_hib, 1)) 991 printf("Warning: could not clear hibernate signature\n"); 992 993 memcpy(&disk_hib, buf, sizeof(buf)); 994 return (0); 995 } 996 997 /* 998 * Compare two hibernate_infos to determine if they are the same (eg, 999 * we should be performing a hibernate resume on this machine. 1000 * Not all fields are checked - just enough to verify that the machine 1001 * has the same memory configuration and kernel as the one that 1002 * wrote the signature previously. 1003 */ 1004 int 1005 hibernate_compare_signature(union hibernate_info *mine, 1006 union hibernate_info *disk) 1007 { 1008 u_int i; 1009 1010 if (mine->nranges != disk->nranges) { 1011 printf("unhibernate failed: memory layout changed\n"); 1012 return (1); 1013 } 1014 1015 if (bcmp(mine->kern_hash, disk->kern_hash, SHA256_DIGEST_LENGTH) != 0) { 1016 printf("unhibernate failed: original kernel changed\n"); 1017 return (1); 1018 } 1019 1020 for (i = 0; i < mine->nranges; i++) { 1021 if ((mine->ranges[i].base != disk->ranges[i].base) || 1022 (mine->ranges[i].end != disk->ranges[i].end) ) { 1023 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1024 i, 1025 (void *)mine->ranges[i].base, 1026 (void *)mine->ranges[i].end, 1027 (void *)disk->ranges[i].base, 1028 (void *)disk->ranges[i].end); 1029 printf("unhibernate failed: memory size changed\n"); 1030 return (1); 1031 } 1032 } 1033 1034 return (0); 1035 } 1036 1037 /* 1038 * Transfers xfer_size bytes between the hibernate device specified in 1039 * hib_info at offset blkctr and the vaddr specified at dest. 1040 * 1041 * Separate offsets and pages are used to handle misaligned reads (reads 1042 * that span a page boundary). 1043 * 1044 * blkctr specifies a relative offset (relative to the start of swap), 1045 * not an absolute disk offset 1046 * 1047 */ 1048 int 1049 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1050 size_t xfer_size, vaddr_t dest, int iswrite) 1051 { 1052 struct buf *bp; 1053 int error; 1054 1055 bp = geteblk(xfer_size); 1056 if (iswrite) 1057 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1058 1059 bp->b_bcount = xfer_size; 1060 bp->b_blkno = blkctr; 1061 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1062 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1063 bp->b_dev = hib->dev; 1064 (*bdsw->d_strategy)(bp); 1065 1066 error = biowait(bp); 1067 if (error) { 1068 printf("hib block_io biowait error %d blk %lld size %zu\n", 1069 error, (long long)blkctr, xfer_size); 1070 } else if (!iswrite) 1071 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1072 1073 bp->b_flags |= B_INVAL; 1074 brelse(bp); 1075 1076 return (error != 0); 1077 } 1078 1079 /* 1080 * Preserve one page worth of random data, generated from the resuming 1081 * kernel's arc4random. After resume, this preserved entropy can be used 1082 * to further improve the un-hibernated machine's entropy pool. This 1083 * random data is stored in the piglet, which is preserved across the 1084 * unpack operation, and is restored later in the resume process (see 1085 * hib_getentropy) 1086 */ 1087 void 1088 hibernate_preserve_entropy(union hibernate_info *hib) 1089 { 1090 void *entropy; 1091 1092 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1093 1094 if (!entropy) 1095 return; 1096 1097 pmap_activate(curproc); 1098 pmap_kenter_pa((vaddr_t)entropy, 1099 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1100 PROT_READ | PROT_WRITE); 1101 1102 arc4random_buf((void *)entropy, PAGE_SIZE); 1103 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1104 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1105 } 1106 1107 #ifndef NO_PROPOLICE 1108 vaddr_t 1109 hibernate_unprotect_ssp(void) 1110 { 1111 struct kmem_dyn_mode kd_avoidalias; 1112 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1113 paddr_t pa; 1114 1115 pmap_extract(pmap_kernel(), va, &pa); 1116 1117 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1118 kd_avoidalias.kd_prefer = pa; 1119 kd_avoidalias.kd_waitok = 1; 1120 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1121 if (!va) 1122 panic("hibernate_unprotect_ssp"); 1123 1124 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1125 pmap_update(pmap_kernel()); 1126 1127 return va; 1128 } 1129 1130 void 1131 hibernate_reprotect_ssp(vaddr_t va) 1132 { 1133 pmap_kremove(va, PAGE_SIZE); 1134 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1135 } 1136 #endif /* NO_PROPOLICE */ 1137 1138 /* 1139 * Reads the signature block from swap, checks against the current machine's 1140 * information. If the information matches, perform a resume by reading the 1141 * saved image into the pig area, and unpacking. 1142 * 1143 * Must be called with interrupts enabled. 1144 */ 1145 void 1146 hibernate_resume(void) 1147 { 1148 uint8_t buf[DEV_BSIZE]; 1149 union hibernate_info *hib = (union hibernate_info *)&buf; 1150 int s; 1151 #ifndef NO_PROPOLICE 1152 vsize_t off = (vaddr_t)&__guard_local - 1153 trunc_page((vaddr_t)&__guard_local); 1154 vaddr_t guard_va; 1155 #endif 1156 1157 /* Get current running machine's hibernate info */ 1158 memset(buf, 0, sizeof(buf)); 1159 if (get_hibernate_info(hib, 0)) { 1160 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1161 return; 1162 } 1163 1164 /* Read hibernate info from disk */ 1165 s = splbio(); 1166 1167 bdsw = &bdevsw[major(hib->dev)]; 1168 if ((*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc)) { 1169 printf("hibernate_resume device open failed\n"); 1170 splx(s); 1171 return; 1172 } 1173 1174 DPRINTF("reading hibernate signature block location: %lld\n", 1175 hib->sig_offset); 1176 1177 if (hibernate_block_io(hib, 1178 hib->sig_offset, 1179 hib->sec_size, (vaddr_t)&disk_hib, 0)) { 1180 DPRINTF("error in hibernate read\n"); 1181 goto fail; 1182 } 1183 1184 /* Check magic number */ 1185 if (disk_hib.magic != HIBERNATE_MAGIC) { 1186 DPRINTF("wrong magic number in hibernate signature: %x\n", 1187 disk_hib.magic); 1188 goto fail; 1189 } 1190 1191 /* 1192 * We (possibly) found a hibernate signature. Clear signature first, 1193 * to prevent accidental resume or endless resume cycles later. 1194 */ 1195 if (hibernate_clear_signature(hib)) { 1196 DPRINTF("error clearing hibernate signature block\n"); 1197 goto fail; 1198 } 1199 1200 /* 1201 * If on-disk and in-memory hibernate signatures match, 1202 * this means we should do a resume from hibernate. 1203 */ 1204 if (hibernate_compare_signature(hib, &disk_hib)) { 1205 DPRINTF("mismatched hibernate signature block\n"); 1206 goto fail; 1207 } 1208 disk_hib.dev = hib->dev; 1209 1210 #ifdef MULTIPROCESSOR 1211 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1212 DPRINTF("hibernate: quiescing APs\n"); 1213 hibernate_quiesce_cpus(); 1214 #endif /* MULTIPROCESSOR */ 1215 1216 /* Read the image from disk into the image (pig) area */ 1217 if (hibernate_read_image(&disk_hib)) 1218 goto fail; 1219 if ((*bdsw->d_close)(hib->dev, 0, S_IFCHR, curproc)) 1220 printf("hibernate_resume device close failed\n"); 1221 bdsw = NULL; 1222 1223 DPRINTF("hibernate: quiescing devices\n"); 1224 if (config_suspend_all(DVACT_QUIESCE) != 0) 1225 goto fail; 1226 1227 #ifndef NO_PROPOLICE 1228 guard_va = hibernate_unprotect_ssp(); 1229 #endif /* NO_PROPOLICE */ 1230 1231 (void) splhigh(); 1232 hibernate_disable_intr_machdep(); 1233 cold = 2; 1234 1235 DPRINTF("hibernate: suspending devices\n"); 1236 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1237 cold = 0; 1238 hibernate_enable_intr_machdep(); 1239 #ifndef NO_PROPOLICE 1240 hibernate_reprotect_ssp(guard_va); 1241 #endif /* ! NO_PROPOLICE */ 1242 goto fail; 1243 } 1244 1245 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1246 &retguard_start_phys); 1247 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1248 &retguard_end_phys); 1249 1250 hibernate_preserve_entropy(&disk_hib); 1251 1252 printf("Unpacking image...\n"); 1253 1254 /* Switch stacks */ 1255 DPRINTF("hibernate: switching stacks\n"); 1256 hibernate_switch_stack_machdep(); 1257 1258 #ifndef NO_PROPOLICE 1259 /* Start using suspended kernel's propolice guard */ 1260 *(long *)(guard_va + off) = disk_hib.guard; 1261 hibernate_reprotect_ssp(guard_va); 1262 #endif /* ! NO_PROPOLICE */ 1263 1264 /* Unpack and resume */ 1265 hibernate_unpack_image(&disk_hib); 1266 1267 fail: 1268 if (!bdsw) 1269 printf("\nUnable to resume hibernated image\n"); 1270 else if ((*bdsw->d_close)(hib->dev, 0, S_IFCHR, curproc)) 1271 printf("hibernate_resume device close failed\n"); 1272 splx(s); 1273 } 1274 1275 /* 1276 * Unpack image from pig area to original location by looping through the 1277 * list of output chunks in the order they should be restored (fchunks). 1278 * 1279 * Note that due to the stack smash protector and the fact that we have 1280 * switched stacks, it is not permitted to return from this function. 1281 */ 1282 void 1283 hibernate_unpack_image(union hibernate_info *hib) 1284 { 1285 uint8_t buf[DEV_BSIZE]; 1286 struct hibernate_disk_chunk *chunks; 1287 union hibernate_info *local_hib = (union hibernate_info *)&buf; 1288 paddr_t image_cur = global_pig_start; 1289 short i, *fchunks; 1290 char *pva; 1291 1292 /* Piglet will be identity mapped (VA == PA) */ 1293 pva = (char *)hib->piglet_pa; 1294 1295 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1296 1297 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1298 1299 /* Can't use hiber_info that's passed in after this point */ 1300 memcpy(buf, hib, sizeof(buf)); 1301 local_hib->retguard_ofs = 0; 1302 1303 /* VA == PA */ 1304 local_hib->piglet_va = local_hib->piglet_pa; 1305 1306 /* 1307 * Point of no return. Once we pass this point, only kernel code can 1308 * be accessed. No global variables or other kernel data structures 1309 * are guaranteed to be coherent after unpack starts. 1310 * 1311 * The image is now in high memory (pig area), we unpack from the pig 1312 * to the correct location in memory. We'll eventually end up copying 1313 * on top of ourself, but we are assured the kernel code here is the 1314 * same between the hibernated and resuming kernel, and we are running 1315 * on our own stack, so the overwrite is ok. 1316 */ 1317 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1318 hibernate_activate_resume_pt_machdep(); 1319 1320 for (i = 0; i < local_hib->chunk_ctr; i++) { 1321 /* Reset zlib for inflate */ 1322 if (hibernate_zlib_reset(local_hib, 0) != Z_OK) 1323 panic("hibernate failed to reset zlib for inflate"); 1324 1325 hibernate_process_chunk(local_hib, &chunks[fchunks[i]], 1326 image_cur); 1327 1328 image_cur += chunks[fchunks[i]].compressed_size; 1329 } 1330 1331 /* 1332 * Resume the loaded kernel by jumping to the MD resume vector. 1333 * We won't be returning from this call. We pass the location of 1334 * the retguard save area so the MD code can replace it before 1335 * resuming. See the piglet layout at the top of this file for 1336 * more information on the layout of the piglet area. 1337 * 1338 * We use 'global_piglet_va' here since by the time we are at 1339 * this point, we have already unpacked the image, and we want 1340 * the suspended kernel's view of what the piglet was, before 1341 * suspend occurred (since we will need to use that in the retguard 1342 * copy code in hibernate_resume_machdep.) 1343 */ 1344 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1345 } 1346 1347 /* 1348 * Bounce a compressed image chunk to the piglet, entering mappings for the 1349 * copied pages as needed 1350 */ 1351 void 1352 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1353 { 1354 size_t ct, ofs; 1355 paddr_t src = img_cur; 1356 vaddr_t dest = piglet; 1357 1358 /* Copy first partial page */ 1359 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1360 ofs = (src & PAGE_MASK); 1361 1362 if (ct < PAGE_SIZE) { 1363 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1364 (src - ofs), 0); 1365 hibernate_flush(); 1366 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1367 src += ct; 1368 dest += ct; 1369 } 1370 1371 /* Copy remaining pages */ 1372 while (src < size + img_cur) { 1373 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1374 hibernate_flush(); 1375 ct = PAGE_SIZE; 1376 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1377 hibernate_flush(); 1378 src += ct; 1379 dest += ct; 1380 } 1381 } 1382 1383 /* 1384 * Process a chunk by bouncing it to the piglet, followed by unpacking 1385 */ 1386 void 1387 hibernate_process_chunk(union hibernate_info *hib, 1388 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1389 { 1390 char *pva = (char *)hib->piglet_va; 1391 1392 hibernate_copy_chunk_to_piglet(img_cur, 1393 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1394 hibernate_inflate_region(hib, chunk->base, 1395 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1396 chunk->compressed_size); 1397 } 1398 1399 /* 1400 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1401 * inaddr and range_end. 1402 */ 1403 int 1404 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1405 { 1406 int rle; 1407 1408 rle = uvm_page_rle(inaddr); 1409 KASSERT(rle >= 0 && rle <= MAX_RLE); 1410 1411 /* Clamp RLE to range end */ 1412 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1413 rle = (range_end - inaddr) / PAGE_SIZE; 1414 1415 return (rle); 1416 } 1417 1418 /* 1419 * Write the RLE byte for page at 'inaddr' to the output stream. 1420 * Returns the number of pages to be skipped at 'inaddr'. 1421 */ 1422 int 1423 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1424 paddr_t range_end, daddr_t *blkctr, 1425 size_t *out_remaining) 1426 { 1427 int rle, err, *rleloc; 1428 struct hibernate_zlib_state *hibernate_state; 1429 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1430 1431 hibernate_state = 1432 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1433 1434 rle = hibernate_calc_rle(inaddr, range_end); 1435 1436 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1437 *rleloc = rle; 1438 1439 /* Deflate the RLE byte into the stream */ 1440 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1441 1442 /* Did we fill the output page? If so, flush to disk */ 1443 if (*out_remaining == 0) { 1444 if ((err = hibernate_write(hib, *blkctr, 1445 (vaddr_t)hibernate_io_page, PAGE_SIZE, IO_TYPE_IMG))) { 1446 DPRINTF("hib write error %d\n", err); 1447 return -1; 1448 } 1449 1450 *blkctr += btodb(PAGE_SIZE); 1451 *out_remaining = PAGE_SIZE; 1452 1453 /* If we didn't deflate the entire RLE byte, finish it now */ 1454 if (hibernate_state->hib_stream.avail_in != 0) 1455 hibernate_deflate(hib, 1456 (vaddr_t)hibernate_state->hib_stream.next_in, 1457 out_remaining); 1458 } 1459 1460 return (rle); 1461 } 1462 1463 /* 1464 * Write a compressed version of this machine's memory to disk, at the 1465 * precalculated swap offset: 1466 * 1467 * end of swap - signature block size - chunk table size - memory size 1468 * 1469 * The function begins by looping through each phys mem range, cutting each 1470 * one into MD sized chunks. These chunks are then compressed individually 1471 * and written out to disk, in phys mem order. Some chunks might compress 1472 * more than others, and for this reason, each chunk's size is recorded 1473 * in the chunk table, which is written to disk after the image has 1474 * properly been compressed and written (in hibernate_write_chunktable). 1475 * 1476 * When this function is called, the machine is nearly suspended - most 1477 * devices are quiesced/suspended, interrupts are off, and cold has 1478 * been set. This means that there can be no side effects once the 1479 * write has started, and the write function itself can also have no 1480 * side effects. This also means no printfs are permitted (since printf 1481 * has side effects.) 1482 * 1483 * Return values : 1484 * 1485 * 0 - success 1486 * EIO - I/O error occurred writing the chunks 1487 * EINVAL - Failed to write a complete range 1488 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1489 */ 1490 int 1491 hibernate_write_chunks(union hibernate_info *hib) 1492 { 1493 paddr_t range_base, range_end, inaddr, temp_inaddr; 1494 size_t out_remaining, used; 1495 struct hibernate_disk_chunk *chunks; 1496 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1497 daddr_t blkctr = 0; 1498 int i, rle, err; 1499 struct hibernate_zlib_state *hibernate_state; 1500 1501 hibernate_state = 1502 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1503 1504 hib->chunk_ctr = 0; 1505 1506 /* 1507 * Map the utility VAs to the piglet. See the piglet map at the 1508 * top of this file for piglet layout information. 1509 */ 1510 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1511 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1512 1513 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1514 HIBERNATE_CHUNK_SIZE); 1515 1516 /* Calculate the chunk regions */ 1517 for (i = 0; i < hib->nranges; i++) { 1518 range_base = hib->ranges[i].base; 1519 range_end = hib->ranges[i].end; 1520 1521 inaddr = range_base; 1522 1523 while (inaddr < range_end) { 1524 chunks[hib->chunk_ctr].base = inaddr; 1525 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1526 chunks[hib->chunk_ctr].end = inaddr + 1527 HIBERNATE_CHUNK_SIZE; 1528 else 1529 chunks[hib->chunk_ctr].end = range_end; 1530 1531 inaddr += HIBERNATE_CHUNK_SIZE; 1532 hib->chunk_ctr ++; 1533 } 1534 } 1535 1536 uvm_pmr_dirty_everything(); 1537 uvm_pmr_zero_everything(); 1538 1539 /* Compress and write the chunks in the chunktable */ 1540 for (i = 0; i < hib->chunk_ctr; i++) { 1541 range_base = chunks[i].base; 1542 range_end = chunks[i].end; 1543 1544 chunks[i].offset = blkctr; 1545 1546 /* Reset zlib for deflate */ 1547 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1548 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1549 return (ENOMEM); 1550 } 1551 1552 inaddr = range_base; 1553 1554 /* 1555 * For each range, loop through its phys mem region 1556 * and write out the chunks (the last chunk might be 1557 * smaller than the chunk size). 1558 */ 1559 while (inaddr < range_end) { 1560 out_remaining = PAGE_SIZE; 1561 while (out_remaining > 0 && inaddr < range_end) { 1562 /* 1563 * Adjust for regions that are not evenly 1564 * divisible by PAGE_SIZE or overflowed 1565 * pages from the previous iteration. 1566 */ 1567 temp_inaddr = (inaddr & PAGE_MASK) + 1568 hibernate_copy_page; 1569 1570 /* Deflate from temp_inaddr to IO page */ 1571 if (inaddr != range_end) { 1572 rle = 0; 1573 if (inaddr % PAGE_SIZE == 0) { 1574 rle = hibernate_write_rle(hib, 1575 inaddr, 1576 range_end, 1577 &blkctr, 1578 &out_remaining); 1579 } 1580 1581 switch (rle) { 1582 case -1: 1583 return EIO; 1584 case 0: 1585 pmap_kenter_pa(hibernate_temp_page, 1586 inaddr & PMAP_PA_MASK, 1587 PROT_READ); 1588 1589 bcopy((caddr_t)hibernate_temp_page, 1590 (caddr_t)hibernate_copy_page, 1591 PAGE_SIZE); 1592 inaddr += hibernate_deflate(hib, 1593 temp_inaddr, 1594 &out_remaining); 1595 break; 1596 default: 1597 inaddr += rle * PAGE_SIZE; 1598 if (inaddr > range_end) 1599 inaddr = range_end; 1600 break; 1601 } 1602 1603 } 1604 1605 if (out_remaining == 0) { 1606 /* Filled up the page */ 1607 if ((err = hibernate_write(hib, blkctr, 1608 (vaddr_t)hibernate_io_page, 1609 PAGE_SIZE, IO_TYPE_IMG))) { 1610 DPRINTF("hib write error %d\n", 1611 err); 1612 return (err); 1613 } 1614 blkctr += btodb(PAGE_SIZE); 1615 } 1616 } 1617 } 1618 1619 if (inaddr != range_end) { 1620 DPRINTF("deflate range ended prematurely\n"); 1621 return (EINVAL); 1622 } 1623 1624 /* 1625 * End of range. Round up to next secsize bytes 1626 * after finishing compress 1627 */ 1628 if (out_remaining == 0) 1629 out_remaining = PAGE_SIZE; 1630 1631 /* Finish compress */ 1632 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1633 hibernate_state->hib_stream.avail_in = 0; 1634 hibernate_state->hib_stream.next_out = 1635 (unsigned char *)hibernate_io_page + 1636 (PAGE_SIZE - out_remaining); 1637 1638 /* We have an extra output page available for finalize */ 1639 hibernate_state->hib_stream.avail_out = 1640 out_remaining + PAGE_SIZE; 1641 1642 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1643 Z_STREAM_END) { 1644 DPRINTF("deflate error in output stream: %d\n", err); 1645 return (err); 1646 } 1647 1648 out_remaining = hibernate_state->hib_stream.avail_out; 1649 1650 /* Round up to next sector if needed */ 1651 used = ROUNDUP(2 * PAGE_SIZE - out_remaining, hib->sec_size); 1652 1653 /* Write final block(s) for this chunk */ 1654 if ((err = hibernate_write(hib, blkctr, 1655 (vaddr_t)hibernate_io_page, used, IO_TYPE_IMG))) { 1656 DPRINTF("hib final write error %d\n", err); 1657 return (err); 1658 } 1659 1660 blkctr += btodb(used); 1661 1662 chunks[i].compressed_size = dbtob(blkctr - chunks[i].offset); 1663 } 1664 1665 return (0); 1666 } 1667 1668 /* 1669 * Reset the zlib stream state and allocate a new hiballoc area for either 1670 * inflate or deflate. This function is called once for each hibernate chunk. 1671 * Calling hiballoc_init multiple times is acceptable since the memory it is 1672 * provided is unmanaged memory (stolen). We use the memory provided to us 1673 * by the piglet allocated via the supplied hib. 1674 */ 1675 int 1676 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1677 { 1678 vaddr_t hibernate_zlib_start; 1679 size_t hibernate_zlib_size; 1680 char *pva = (char *)hib->piglet_va; 1681 struct hibernate_zlib_state *hibernate_state; 1682 1683 hibernate_state = 1684 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1685 1686 if (!deflate) 1687 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1688 1689 /* 1690 * See piglet layout information at the start of this file for 1691 * information on the zlib page assignments. 1692 */ 1693 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1694 hibernate_zlib_size = 80 * PAGE_SIZE; 1695 1696 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1697 memset(hibernate_state, 0, PAGE_SIZE); 1698 1699 /* Set up stream structure */ 1700 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1701 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1702 1703 /* Initialize the hiballoc arena for zlib allocs/frees */ 1704 if (hiballoc_init(&hibernate_state->hiballoc_arena, 1705 (caddr_t)hibernate_zlib_start, hibernate_zlib_size)) 1706 return 1; 1707 1708 if (deflate) { 1709 return deflateInit(&hibernate_state->hib_stream, 1710 Z_BEST_SPEED); 1711 } else 1712 return inflateInit(&hibernate_state->hib_stream); 1713 } 1714 1715 /* 1716 * Reads the hibernated memory image from disk, whose location and 1717 * size are recorded in hib. Begin by reading the persisted 1718 * chunk table, which records the original chunk placement location 1719 * and compressed size for each. Next, allocate a pig region of 1720 * sufficient size to hold the compressed image. Next, read the 1721 * chunks into the pig area (calling hibernate_read_chunks to do this), 1722 * and finally, if all of the above succeeds, clear the hibernate signature. 1723 * The function will then return to hibernate_resume, which will proceed 1724 * to unpack the pig image to the correct place in memory. 1725 */ 1726 int 1727 hibernate_read_image(union hibernate_info *hib) 1728 { 1729 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1730 paddr_t image_start, image_end, pig_start, pig_end; 1731 struct hibernate_disk_chunk *chunks; 1732 daddr_t blkctr; 1733 vaddr_t chunktable = (vaddr_t)NULL; 1734 paddr_t piglet_chunktable = hib->piglet_pa + 1735 HIBERNATE_CHUNK_SIZE; 1736 int i, status; 1737 1738 status = 0; 1739 pmap_activate(curproc); 1740 1741 /* Calculate total chunk table size in disk blocks */ 1742 chunktable_size = btodb(HIBERNATE_CHUNK_TABLE_SIZE); 1743 1744 blkctr = hib->chunktable_offset; 1745 1746 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1747 &kp_none, &kd_nowait); 1748 1749 if (!chunktable) 1750 return (1); 1751 1752 /* Map chunktable pages */ 1753 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1754 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1755 PROT_READ | PROT_WRITE); 1756 pmap_update(pmap_kernel()); 1757 1758 /* Read the chunktable from disk into the piglet chunktable */ 1759 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1760 i += MAXPHYS, blkctr += btodb(MAXPHYS)) { 1761 if (hibernate_block_io(hib, blkctr, MAXPHYS, 1762 chunktable + i, 0)) { 1763 status = 1; 1764 goto unmap; 1765 } 1766 } 1767 1768 blkctr = hib->image_offset; 1769 compressed_size = 0; 1770 1771 chunks = (struct hibernate_disk_chunk *)chunktable; 1772 1773 for (i = 0; i < hib->chunk_ctr; i++) 1774 compressed_size += chunks[i].compressed_size; 1775 1776 disk_size = compressed_size; 1777 1778 printf("unhibernating @ block %lld length %luMB\n", 1779 hib->image_offset, compressed_size / (1024 * 1024)); 1780 1781 /* Allocate the pig area */ 1782 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1783 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1784 status = 1; 1785 goto unmap; 1786 } 1787 1788 pig_end = pig_start + pig_sz; 1789 1790 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1791 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1792 image_start = image_end - disk_size; 1793 1794 if (hibernate_read_chunks(hib, image_start, image_end, disk_size, 1795 chunks)) { 1796 status = 1; 1797 goto unmap; 1798 } 1799 1800 /* Prepare the resume time pmap/page table */ 1801 hibernate_populate_resume_pt(hib, image_start, image_end); 1802 1803 unmap: 1804 /* Unmap chunktable pages */ 1805 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1806 pmap_update(pmap_kernel()); 1807 1808 return (status); 1809 } 1810 1811 /* 1812 * Read the hibernated memory chunks from disk (chunk information at this 1813 * point is stored in the piglet) into the pig area specified by 1814 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1815 * only chunk with overlap possibilities. 1816 */ 1817 int 1818 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1819 paddr_t pig_end, size_t image_compr_size, 1820 struct hibernate_disk_chunk *chunks) 1821 { 1822 paddr_t img_cur, piglet_base; 1823 daddr_t blkctr; 1824 size_t processed, compressed_size, read_size; 1825 int err, nchunks, nfchunks, num_io_pages; 1826 vaddr_t tempva, hibernate_fchunk_area; 1827 short *fchunks, i, j; 1828 1829 tempva = (vaddr_t)NULL; 1830 hibernate_fchunk_area = (vaddr_t)NULL; 1831 nfchunks = 0; 1832 piglet_base = hib->piglet_pa; 1833 global_pig_start = pig_start; 1834 1835 /* 1836 * These mappings go into the resuming kernel's page table, and are 1837 * used only during image read. They disappear from existence 1838 * when the suspended kernel is unpacked on top of us. 1839 */ 1840 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1841 &kd_nowait); 1842 if (!tempva) 1843 return (1); 1844 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1845 &kp_none, &kd_nowait); 1846 if (!hibernate_fchunk_area) 1847 return (1); 1848 1849 /* Final output chunk ordering VA */ 1850 fchunks = (short *)hibernate_fchunk_area; 1851 1852 /* Map the chunk ordering region */ 1853 for(i = 0; i < 24 ; i++) 1854 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1855 piglet_base + ((4 + i) * PAGE_SIZE), 1856 PROT_READ | PROT_WRITE); 1857 pmap_update(pmap_kernel()); 1858 1859 nchunks = hib->chunk_ctr; 1860 1861 /* Initially start all chunks as unplaced */ 1862 for (i = 0; i < nchunks; i++) 1863 chunks[i].flags = 0; 1864 1865 /* 1866 * Search the list for chunks that are outside the pig area. These 1867 * can be placed first in the final output list. 1868 */ 1869 for (i = 0; i < nchunks; i++) { 1870 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1871 fchunks[nfchunks] = i; 1872 nfchunks++; 1873 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1874 } 1875 } 1876 1877 /* 1878 * Walk the ordering, place the chunks in ascending memory order. 1879 */ 1880 for (i = 0; i < nchunks; i++) { 1881 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1882 fchunks[nfchunks] = i; 1883 nfchunks++; 1884 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1885 } 1886 } 1887 1888 img_cur = pig_start; 1889 1890 for (i = 0, err = 0; i < nfchunks && err == 0; i++) { 1891 blkctr = chunks[fchunks[i]].offset + hib->image_offset; 1892 processed = 0; 1893 compressed_size = chunks[fchunks[i]].compressed_size; 1894 1895 while (processed < compressed_size && err == 0) { 1896 if (compressed_size - processed >= MAXPHYS) 1897 read_size = MAXPHYS; 1898 else 1899 read_size = compressed_size - processed; 1900 1901 /* 1902 * We're reading read_size bytes, offset from the 1903 * start of a page by img_cur % PAGE_SIZE, so the 1904 * end will be read_size + (img_cur % PAGE_SIZE) 1905 * from the start of the first page. Round that 1906 * up to the next page size. 1907 */ 1908 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1909 + PAGE_SIZE - 1) / PAGE_SIZE; 1910 1911 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1912 1913 /* Map pages for this read */ 1914 for (j = 0; j < num_io_pages; j ++) 1915 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1916 img_cur + j * PAGE_SIZE, 1917 PROT_READ | PROT_WRITE); 1918 1919 pmap_update(pmap_kernel()); 1920 1921 err = hibernate_block_io(hib, blkctr, read_size, 1922 tempva + (img_cur & PAGE_MASK), 0); 1923 1924 blkctr += btodb(read_size); 1925 1926 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1927 pmap_update(pmap_kernel()); 1928 1929 processed += read_size; 1930 img_cur += read_size; 1931 } 1932 } 1933 1934 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1935 pmap_update(pmap_kernel()); 1936 1937 return (i != nfchunks); 1938 } 1939 1940 /* 1941 * Hibernating a machine comprises the following operations: 1942 * 1. Calculating this machine's hibernate_info information 1943 * 2. Allocating a piglet and saving the piglet's physaddr 1944 * 3. Calculating the memory chunks 1945 * 4. Writing the compressed chunks to disk 1946 * 5. Writing the chunk table 1947 * 6. Writing the signature block (hibernate_info) 1948 * 1949 * On most architectures, the function calling hibernate_suspend would 1950 * then power off the machine using some MD-specific implementation. 1951 */ 1952 int 1953 hibernate_suspend(void) 1954 { 1955 uint8_t buf[DEV_BSIZE]; 1956 union hibernate_info *hib = (union hibernate_info *)&buf; 1957 u_long start, end; 1958 1959 /* 1960 * Calculate memory ranges, swap offsets, etc. 1961 * This also allocates a piglet whose physaddr is stored in 1962 * hib->piglet_pa and vaddr stored in hib->piglet_va 1963 */ 1964 if (get_hibernate_info(hib, 1)) { 1965 DPRINTF("failed to obtain hibernate info\n"); 1966 return (1); 1967 } 1968 1969 /* Find a page-addressed region in swap [start,end] */ 1970 if (uvm_hibswap(hib->dev, &start, &end)) { 1971 printf("hibernate: cannot find any swap\n"); 1972 return (1); 1973 } 1974 1975 if (end - start + 1 < 1000) { 1976 printf("hibernate: insufficient swap (%lu is too small)\n", 1977 end - start + 1); 1978 return (1); 1979 } 1980 1981 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1982 &retguard_start_phys); 1983 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1984 &retguard_end_phys); 1985 1986 /* Calculate block offsets in swap */ 1987 hib->image_offset = ctod(start); 1988 hib->image_size = ctod(end - start + 1) - 1989 btodb(HIBERNATE_CHUNK_TABLE_SIZE); 1990 hib->chunktable_offset = hib->image_offset + hib->image_size; 1991 1992 DPRINTF("hibernate @ block %lld chunks-length %lu blocks, " 1993 "chunktable-length %d blocks\n", hib->image_offset, hib->image_size, 1994 btodb(HIBERNATE_CHUNK_TABLE_SIZE)); 1995 1996 pmap_activate(curproc); 1997 DPRINTF("hibernate: writing chunks\n"); 1998 if (hibernate_write_chunks(hib)) { 1999 DPRINTF("hibernate_write_chunks failed\n"); 2000 return (1); 2001 } 2002 2003 DPRINTF("hibernate: writing chunktable\n"); 2004 if (hibernate_write_chunktable(hib)) { 2005 DPRINTF("hibernate_write_chunktable failed\n"); 2006 return (1); 2007 } 2008 2009 DPRINTF("hibernate: writing signature\n"); 2010 if (hibernate_write_signature(hib)) { 2011 DPRINTF("hibernate_write_signature failed\n"); 2012 return (1); 2013 } 2014 2015 /* Allow the disk to settle */ 2016 delay(500000); 2017 2018 /* 2019 * Give the device-specific I/O function a notification that we're 2020 * done, and that it can clean up or shutdown as needed. 2021 */ 2022 if (hib->io_func(hib->dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib->io_page)) 2023 return (1); 2024 else 2025 return (0); 2026 } 2027 2028 int 2029 hibernate_alloc(void) 2030 { 2031 KASSERT(global_piglet_va == 0); 2032 KASSERT(hibernate_temp_page == 0); 2033 2034 pmap_activate(curproc); 2035 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 2036 PROT_READ | PROT_WRITE); 2037 2038 /* Allocate a piglet, store its addresses in the supplied globals */ 2039 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 2040 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 2041 goto unmap; 2042 2043 /* 2044 * Allocate VA for the temp page. 2045 * 2046 * This will become part of the suspended kernel and will 2047 * be freed in hibernate_free, upon resume (or hibernate 2048 * failure) 2049 */ 2050 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 2051 &kp_none, &kd_nowait); 2052 if (!hibernate_temp_page) { 2053 uvm_pmr_free_piglet(global_piglet_va, 4 * HIBERNATE_CHUNK_SIZE); 2054 global_piglet_va = 0; 2055 goto unmap; 2056 } 2057 return (0); 2058 unmap: 2059 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2060 pmap_update(pmap_kernel()); 2061 return (ENOMEM); 2062 } 2063 2064 /* 2065 * Free items allocated by hibernate_alloc() 2066 */ 2067 void 2068 hibernate_free(void) 2069 { 2070 pmap_activate(curproc); 2071 2072 if (global_piglet_va) 2073 uvm_pmr_free_piglet(global_piglet_va, 2074 4 * HIBERNATE_CHUNK_SIZE); 2075 2076 if (hibernate_temp_page) { 2077 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2078 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2079 &kv_any, &kp_none); 2080 } 2081 2082 global_piglet_va = 0; 2083 hibernate_temp_page = 0; 2084 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2085 pmap_update(pmap_kernel()); 2086 } 2087