1 /* $OpenBSD: subr_hibernate.c,v 1.100 2014/09/19 20:02:25 kettenis Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 Private page for suspend I/O write functions 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE RLE utility page 54 * 29*PAGE_SIZE start of hiballoc area 55 * 109*PAGE_SIZE end of hiballoc area (80 pages) 56 * ... unused 57 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 58 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 59 * 4*HIBERNATE_CHUNK_SIZE end of piglet 60 */ 61 62 /* Temporary vaddr ranges used during hibernate */ 63 vaddr_t hibernate_temp_page; 64 vaddr_t hibernate_copy_page; 65 vaddr_t hibernate_rle_page; 66 67 /* Hibernate info as read from disk during resume */ 68 union hibernate_info disk_hib; 69 paddr_t global_pig_start; 70 vaddr_t global_piglet_va; 71 72 /* #define HIB_DEBUG */ 73 #ifdef HIB_DEBUG 74 int hib_debug = 99; 75 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 76 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 77 #else 78 #define DPRINTF(x...) 79 #define DNPRINTF(n,x...) 80 #endif 81 82 #ifndef NO_PROPOLICE 83 extern long __guard_local; 84 #endif /* ! NO_PROPOLICE */ 85 86 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 87 int hibernate_calc_rle(paddr_t, paddr_t); 88 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 89 size_t *); 90 91 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 92 93 /* 94 * Hib alloc enforced alignment. 95 */ 96 #define HIB_ALIGN 8 /* bytes alignment */ 97 98 /* 99 * sizeof builtin operation, but with alignment constraint. 100 */ 101 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 102 103 struct hiballoc_entry { 104 size_t hibe_use; 105 size_t hibe_space; 106 RB_ENTRY(hiballoc_entry) hibe_entry; 107 }; 108 109 /* 110 * Sort hibernate memory ranges by ascending PA 111 */ 112 void 113 hibernate_sort_ranges(union hibernate_info *hib_info) 114 { 115 int i, j; 116 struct hibernate_memory_range *ranges; 117 paddr_t base, end; 118 119 ranges = hib_info->ranges; 120 121 for (i = 1; i < hib_info->nranges; i++) { 122 j = i; 123 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 124 base = ranges[j].base; 125 end = ranges[j].end; 126 ranges[j].base = ranges[j - 1].base; 127 ranges[j].end = ranges[j - 1].end; 128 ranges[j - 1].base = base; 129 ranges[j - 1].end = end; 130 j--; 131 } 132 } 133 } 134 135 /* 136 * Compare hiballoc entries based on the address they manage. 137 * 138 * Since the address is fixed, relative to struct hiballoc_entry, 139 * we just compare the hiballoc_entry pointers. 140 */ 141 static __inline int 142 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 143 { 144 return l < r ? -1 : (l > r); 145 } 146 147 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 148 149 /* 150 * Given a hiballoc entry, return the address it manages. 151 */ 152 static __inline void * 153 hib_entry_to_addr(struct hiballoc_entry *entry) 154 { 155 caddr_t addr; 156 157 addr = (caddr_t)entry; 158 addr += HIB_SIZEOF(struct hiballoc_entry); 159 return addr; 160 } 161 162 /* 163 * Given an address, find the hiballoc that corresponds. 164 */ 165 static __inline struct hiballoc_entry* 166 hib_addr_to_entry(void *addr_param) 167 { 168 caddr_t addr; 169 170 addr = (caddr_t)addr_param; 171 addr -= HIB_SIZEOF(struct hiballoc_entry); 172 return (struct hiballoc_entry*)addr; 173 } 174 175 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 176 177 /* 178 * Allocate memory from the arena. 179 * 180 * Returns NULL if no memory is available. 181 */ 182 void * 183 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 184 { 185 struct hiballoc_entry *entry, *new_entry; 186 size_t find_sz; 187 188 /* 189 * Enforce alignment of HIB_ALIGN bytes. 190 * 191 * Note that, because the entry is put in front of the allocation, 192 * 0-byte allocations are guaranteed a unique address. 193 */ 194 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 195 196 /* 197 * Find an entry with hibe_space >= find_sz. 198 * 199 * If the root node is not large enough, we switch to tree traversal. 200 * Because all entries are made at the bottom of the free space, 201 * traversal from the end has a slightly better chance of yielding 202 * a sufficiently large space. 203 */ 204 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 205 entry = RB_ROOT(&arena->hib_addrs); 206 if (entry != NULL && entry->hibe_space < find_sz) { 207 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 208 if (entry->hibe_space >= find_sz) 209 break; 210 } 211 } 212 213 /* 214 * Insufficient or too fragmented memory. 215 */ 216 if (entry == NULL) 217 return NULL; 218 219 /* 220 * Create new entry in allocated space. 221 */ 222 new_entry = (struct hiballoc_entry*)( 223 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 224 new_entry->hibe_space = entry->hibe_space - find_sz; 225 new_entry->hibe_use = alloc_sz; 226 227 /* 228 * Insert entry. 229 */ 230 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 231 panic("hib_alloc: insert failure"); 232 entry->hibe_space = 0; 233 234 /* Return address managed by entry. */ 235 return hib_entry_to_addr(new_entry); 236 } 237 238 /* 239 * Free a pointer previously allocated from this arena. 240 * 241 * If addr is NULL, this will be silently accepted. 242 */ 243 void 244 hib_free(struct hiballoc_arena *arena, void *addr) 245 { 246 struct hiballoc_entry *entry, *prev; 247 248 if (addr == NULL) 249 return; 250 251 /* 252 * Derive entry from addr and check it is really in this arena. 253 */ 254 entry = hib_addr_to_entry(addr); 255 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 256 panic("hib_free: freed item %p not in hib arena", addr); 257 258 /* 259 * Give the space in entry to its predecessor. 260 * 261 * If entry has no predecessor, change its used space into free space 262 * instead. 263 */ 264 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 265 if (prev != NULL && 266 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 267 prev->hibe_use + prev->hibe_space) == entry) { 268 /* Merge entry. */ 269 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 270 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 271 entry->hibe_use + entry->hibe_space; 272 } else { 273 /* Flip used memory to free space. */ 274 entry->hibe_space += entry->hibe_use; 275 entry->hibe_use = 0; 276 } 277 } 278 279 /* 280 * Initialize hiballoc. 281 * 282 * The allocator will manage memmory at ptr, which is len bytes. 283 */ 284 int 285 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 286 { 287 struct hiballoc_entry *entry; 288 caddr_t ptr; 289 size_t len; 290 291 RB_INIT(&arena->hib_addrs); 292 293 /* 294 * Hib allocator enforces HIB_ALIGN alignment. 295 * Fixup ptr and len. 296 */ 297 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 298 len = p_len - ((size_t)ptr - (size_t)p_ptr); 299 len &= ~((size_t)HIB_ALIGN - 1); 300 301 /* 302 * Insufficient memory to be able to allocate and also do bookkeeping. 303 */ 304 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 305 return ENOMEM; 306 307 /* 308 * Create entry describing space. 309 */ 310 entry = (struct hiballoc_entry*)ptr; 311 entry->hibe_use = 0; 312 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 313 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 314 315 return 0; 316 } 317 318 /* 319 * Zero all free memory. 320 */ 321 void 322 uvm_pmr_zero_everything(void) 323 { 324 struct uvm_pmemrange *pmr; 325 struct vm_page *pg; 326 int i; 327 328 uvm_lock_fpageq(); 329 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 330 /* Zero single pages. */ 331 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 332 != NULL) { 333 uvm_pmr_remove(pmr, pg); 334 uvm_pagezero(pg); 335 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 336 uvmexp.zeropages++; 337 uvm_pmr_insert(pmr, pg, 0); 338 } 339 340 /* Zero multi page ranges. */ 341 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 342 != NULL) { 343 pg--; /* Size tree always has second page. */ 344 uvm_pmr_remove(pmr, pg); 345 for (i = 0; i < pg->fpgsz; i++) { 346 uvm_pagezero(&pg[i]); 347 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 348 uvmexp.zeropages++; 349 } 350 uvm_pmr_insert(pmr, pg, 0); 351 } 352 } 353 uvm_unlock_fpageq(); 354 } 355 356 /* 357 * Mark all memory as dirty. 358 * 359 * Used to inform the system that the clean memory isn't clean for some 360 * reason, for example because we just came back from hibernate. 361 */ 362 void 363 uvm_pmr_dirty_everything(void) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pg; 367 int i; 368 369 uvm_lock_fpageq(); 370 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 371 /* Dirty single pages. */ 372 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 373 != NULL) { 374 uvm_pmr_remove(pmr, pg); 375 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 376 uvm_pmr_insert(pmr, pg, 0); 377 } 378 379 /* Dirty multi page ranges. */ 380 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 381 != NULL) { 382 pg--; /* Size tree always has second page. */ 383 uvm_pmr_remove(pmr, pg); 384 for (i = 0; i < pg->fpgsz; i++) 385 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 386 uvm_pmr_insert(pmr, pg, 0); 387 } 388 } 389 390 uvmexp.zeropages = 0; 391 uvm_unlock_fpageq(); 392 } 393 394 /* 395 * Allocate the highest address that can hold sz. 396 * 397 * sz in bytes. 398 */ 399 int 400 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 401 { 402 struct uvm_pmemrange *pmr; 403 struct vm_page *pig_pg, *pg; 404 405 /* 406 * Convert sz to pages, since that is what pmemrange uses internally. 407 */ 408 sz = atop(round_page(sz)); 409 410 uvm_lock_fpageq(); 411 412 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 413 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 414 if (pig_pg->fpgsz >= sz) { 415 goto found; 416 } 417 } 418 } 419 420 /* 421 * Allocation failure. 422 */ 423 uvm_unlock_fpageq(); 424 return ENOMEM; 425 426 found: 427 /* Remove page from freelist. */ 428 uvm_pmr_remove_size(pmr, pig_pg); 429 pig_pg->fpgsz -= sz; 430 pg = pig_pg + pig_pg->fpgsz; 431 if (pig_pg->fpgsz == 0) 432 uvm_pmr_remove_addr(pmr, pig_pg); 433 else 434 uvm_pmr_insert_size(pmr, pig_pg); 435 436 uvmexp.free -= sz; 437 *addr = VM_PAGE_TO_PHYS(pg); 438 439 /* 440 * Update pg flags. 441 * 442 * Note that we trash the sz argument now. 443 */ 444 while (sz > 0) { 445 KASSERT(pg->pg_flags & PQ_FREE); 446 447 atomic_clearbits_int(&pg->pg_flags, PG_PMAPMASK); 448 449 if (pg->pg_flags & PG_ZERO) 450 uvmexp.zeropages -= sz; 451 atomic_clearbits_int(&pg->pg_flags, 452 PG_ZERO|PQ_FREE); 453 454 pg->uobject = NULL; 455 pg->uanon = NULL; 456 pg->pg_version++; 457 458 /* 459 * Next. 460 */ 461 pg++; 462 sz--; 463 } 464 465 /* Return. */ 466 uvm_unlock_fpageq(); 467 return 0; 468 } 469 470 /* 471 * Allocate a piglet area. 472 * 473 * This is as low as possible. 474 * Piglets are aligned. 475 * 476 * sz and align in bytes. 477 * 478 * The call will sleep for the pagedaemon to attempt to free memory. 479 * The pagedaemon may decide its not possible to free enough memory, causing 480 * the allocation to fail. 481 */ 482 int 483 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 484 { 485 paddr_t pg_addr, piglet_addr; 486 struct uvm_pmemrange *pmr; 487 struct vm_page *pig_pg, *pg; 488 struct pglist pageq; 489 int pdaemon_woken; 490 vaddr_t piglet_va; 491 492 /* Ensure align is a power of 2 */ 493 KASSERT((align & (align - 1)) == 0); 494 495 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 496 497 /* 498 * Fixup arguments: align must be at least PAGE_SIZE, 499 * sz will be converted to pagecount, since that is what 500 * pmemrange uses internally. 501 */ 502 if (align < PAGE_SIZE) 503 align = PAGE_SIZE; 504 sz = round_page(sz); 505 506 uvm_lock_fpageq(); 507 508 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 509 pmr_use) { 510 retry: 511 /* 512 * Search for a range with enough space. 513 * Use the address tree, to ensure the range is as low as 514 * possible. 515 */ 516 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 517 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 518 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 519 520 if (atop(pg_addr) + pig_pg->fpgsz >= 521 atop(piglet_addr) + atop(sz)) 522 goto found; 523 } 524 } 525 526 /* 527 * Try to coerce the pagedaemon into freeing memory 528 * for the piglet. 529 * 530 * pdaemon_woken is set to prevent the code from 531 * falling into an endless loop. 532 */ 533 if (!pdaemon_woken) { 534 pdaemon_woken = 1; 535 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 536 sz, UVM_PLA_FAILOK) == 0) 537 goto retry; 538 } 539 540 /* Return failure. */ 541 uvm_unlock_fpageq(); 542 return ENOMEM; 543 544 found: 545 /* 546 * Extract piglet from pigpen. 547 */ 548 TAILQ_INIT(&pageq); 549 uvm_pmr_extract_range(pmr, pig_pg, 550 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 551 552 *pa = piglet_addr; 553 uvmexp.free -= atop(sz); 554 555 /* 556 * Update pg flags. 557 * 558 * Note that we trash the sz argument now. 559 */ 560 TAILQ_FOREACH(pg, &pageq, pageq) { 561 KASSERT(pg->pg_flags & PQ_FREE); 562 563 atomic_clearbits_int(&pg->pg_flags, PG_PMAPMASK); 564 565 if (pg->pg_flags & PG_ZERO) 566 uvmexp.zeropages--; 567 atomic_clearbits_int(&pg->pg_flags, 568 PG_ZERO|PQ_FREE); 569 570 pg->uobject = NULL; 571 pg->uanon = NULL; 572 pg->pg_version++; 573 } 574 575 uvm_unlock_fpageq(); 576 577 /* 578 * Now allocate a va. 579 * Use direct mappings for the pages. 580 */ 581 582 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 583 if (!piglet_va) { 584 uvm_pglistfree(&pageq); 585 return ENOMEM; 586 } 587 588 /* 589 * Map piglet to va. 590 */ 591 TAILQ_FOREACH(pg, &pageq, pageq) { 592 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 593 piglet_va += PAGE_SIZE; 594 } 595 pmap_update(pmap_kernel()); 596 597 return 0; 598 } 599 600 /* 601 * Free a piglet area. 602 */ 603 void 604 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 605 { 606 paddr_t pa; 607 struct vm_page *pg; 608 609 /* 610 * Fix parameters. 611 */ 612 sz = round_page(sz); 613 614 /* 615 * Find the first page in piglet. 616 * Since piglets are contiguous, the first pg is all we need. 617 */ 618 if (!pmap_extract(pmap_kernel(), va, &pa)) 619 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 620 pg = PHYS_TO_VM_PAGE(pa); 621 if (pg == NULL) 622 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 623 624 /* 625 * Unmap. 626 */ 627 pmap_kremove(va, sz); 628 pmap_update(pmap_kernel()); 629 630 /* 631 * Free the physical and virtual memory. 632 */ 633 uvm_pmr_freepages(pg, atop(sz)); 634 km_free((void *)va, sz, &kv_any, &kp_none); 635 } 636 637 /* 638 * Physmem RLE compression support. 639 * 640 * Given a physical page address, return the number of pages starting at the 641 * address that are free. Clamps to the number of pages in 642 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 643 */ 644 int 645 uvm_page_rle(paddr_t addr) 646 { 647 struct vm_page *pg, *pg_end; 648 struct vm_physseg *vmp; 649 int pseg_idx, off_idx; 650 651 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 652 if (pseg_idx == -1) 653 return 0; 654 655 vmp = &vm_physmem[pseg_idx]; 656 pg = &vmp->pgs[off_idx]; 657 if (!(pg->pg_flags & PQ_FREE)) 658 return 0; 659 660 /* 661 * Search for the first non-free page after pg. 662 * Note that the page may not be the first page in a free pmemrange, 663 * therefore pg->fpgsz cannot be used. 664 */ 665 for (pg_end = pg; pg_end <= vmp->lastpg && 666 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 667 ; 668 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 669 } 670 671 /* 672 * Fills out the hibernate_info union pointed to by hib 673 * with information about this machine (swap signature block 674 * offsets, number of memory ranges, kernel in use, etc) 675 */ 676 int 677 get_hibernate_info(union hibernate_info *hib, int suspend) 678 { 679 int chunktable_size; 680 struct disklabel dl; 681 char err_string[128], *dl_ret; 682 683 #ifndef NO_PROPOLICE 684 /* Save propolice guard */ 685 hib->guard = __guard_local; 686 #endif /* ! NO_PROPOLICE */ 687 688 /* Determine I/O function to use */ 689 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 690 if (hib->io_func == NULL) 691 return (1); 692 693 /* Calculate hibernate device */ 694 hib->dev = swdevt[0].sw_dev; 695 696 /* Read disklabel (used to calculate signature and image offsets) */ 697 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 698 699 if (dl_ret) { 700 printf("Hibernate error reading disklabel: %s\n", dl_ret); 701 return (1); 702 } 703 704 /* Make sure we have a swap partition. */ 705 if (dl.d_partitions[1].p_fstype != FS_SWAP || 706 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 707 return (1); 708 709 /* Make sure the signature can fit in one block */ 710 if (sizeof(union hibernate_info) > DEV_BSIZE) 711 return (1); 712 713 /* Magic number */ 714 hib->magic = HIBERNATE_MAGIC; 715 716 /* Calculate signature block location */ 717 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 718 sizeof(union hibernate_info)/DEV_BSIZE; 719 720 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 721 722 /* Stash kernel version information */ 723 memset(&hib->kernel_version, 0, 128); 724 bcopy(version, &hib->kernel_version, 725 min(strlen(version), sizeof(hib->kernel_version)-1)); 726 727 if (suspend) { 728 /* Allocate piglet region */ 729 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 730 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE * 4, 731 HIBERNATE_CHUNK_SIZE)) { 732 printf("Hibernate failed to allocate the piglet\n"); 733 return (1); 734 } 735 hib->io_page = (void *)hib->piglet_va; 736 737 /* 738 * Initialization of the hibernate IO function for drivers 739 * that need to do prep work (such as allocating memory or 740 * setting up data structures that cannot safely be done 741 * during suspend without causing side effects). There is 742 * a matching HIB_DONE call performed after the write is 743 * completed. 744 */ 745 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 746 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 747 HIB_INIT, hib->io_page)) 748 goto fail; 749 750 } else { 751 /* 752 * Resuming kernels use a regular private page for the driver 753 * No need to free this I/O page as it will vanish as part of 754 * the resume. 755 */ 756 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 757 if (!hib->io_page) 758 goto fail; 759 } 760 761 762 if (get_hibernate_info_md(hib)) 763 goto fail; 764 765 return (0); 766 fail: 767 if (suspend) 768 uvm_pmr_free_piglet(hib->piglet_va, 769 HIBERNATE_CHUNK_SIZE * 4); 770 771 return (1); 772 } 773 774 /* 775 * Allocate nitems*size bytes from the hiballoc area presently in use 776 */ 777 void * 778 hibernate_zlib_alloc(void *unused, int nitems, int size) 779 { 780 struct hibernate_zlib_state *hibernate_state; 781 782 hibernate_state = 783 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 784 785 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 786 } 787 788 /* 789 * Free the memory pointed to by addr in the hiballoc area presently in 790 * use 791 */ 792 void 793 hibernate_zlib_free(void *unused, void *addr) 794 { 795 struct hibernate_zlib_state *hibernate_state; 796 797 hibernate_state = 798 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 799 800 hib_free(&hibernate_state->hiballoc_arena, addr); 801 } 802 803 /* 804 * Inflate next page of data from the image stream. 805 * The rle parameter is modified on exit to contain the number of pages to 806 * skip in the output stream (or 0 if this page was inflated into). 807 * 808 * Returns 0 if the stream contains additional data, or 1 if the stream is 809 * finished. 810 */ 811 int 812 hibernate_inflate_page(int *rle) 813 { 814 struct hibernate_zlib_state *hibernate_state; 815 int i; 816 817 hibernate_state = 818 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 819 820 /* Set up the stream for RLE code inflate */ 821 hibernate_state->hib_stream.next_out = (char *)rle; 822 hibernate_state->hib_stream.avail_out = sizeof(*rle); 823 824 /* Inflate RLE code */ 825 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 826 if (i != Z_OK && i != Z_STREAM_END) { 827 /* 828 * XXX - this will likely reboot/hang most machines 829 * since the console output buffer will be unmapped, 830 * but there's not much else we can do here. 831 */ 832 panic("rle inflate stream error"); 833 } 834 835 if (hibernate_state->hib_stream.avail_out != 0) { 836 /* 837 * XXX - this will likely reboot/hang most machines 838 * since the console output buffer will be unmapped, 839 * but there's not much else we can do here. 840 */ 841 panic("rle short inflate error"); 842 } 843 844 if (*rle < 0 || *rle > 1024) { 845 /* 846 * XXX - this will likely reboot/hang most machines 847 * since the console output buffer will be unmapped, 848 * but there's not much else we can do here. 849 */ 850 panic("invalid rle count"); 851 } 852 853 if (i == Z_STREAM_END) 854 return (1); 855 856 if (*rle != 0) 857 return (0); 858 859 /* Set up the stream for page inflate */ 860 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 861 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 862 863 /* Process next block of data */ 864 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 865 if (i != Z_OK && i != Z_STREAM_END) { 866 /* 867 * XXX - this will likely reboot/hang most machines 868 * since the console output buffer will be unmapped, 869 * but there's not much else we can do here. 870 */ 871 panic("inflate error"); 872 } 873 874 /* We should always have extracted a full page ... */ 875 if (hibernate_state->hib_stream.avail_out != 0) { 876 /* 877 * XXX - this will likely reboot/hang most machines 878 * since the console output buffer will be unmapped, 879 * but there's not much else we can do here. 880 */ 881 panic("incomplete page"); 882 } 883 884 return (i == Z_STREAM_END); 885 } 886 887 /* 888 * Inflate size bytes from src into dest, skipping any pages in 889 * [src..dest] that are special (see hibernate_inflate_skip) 890 * 891 * This function executes while using the resume-time stack 892 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 893 * will likely hang or reset the machine since the console output buffer 894 * will be unmapped. 895 */ 896 void 897 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 898 paddr_t src, size_t size) 899 { 900 int end_stream = 0, rle; 901 struct hibernate_zlib_state *hibernate_state; 902 903 hibernate_state = 904 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 905 906 hibernate_state->hib_stream.next_in = (char *)src; 907 hibernate_state->hib_stream.avail_in = size; 908 909 do { 910 /* 911 * Is this a special page? If yes, redirect the 912 * inflate output to a scratch page (eg, discard it) 913 */ 914 if (hibernate_inflate_skip(hib, dest)) { 915 hibernate_enter_resume_mapping( 916 HIBERNATE_INFLATE_PAGE, 917 HIBERNATE_INFLATE_PAGE, 0); 918 } else { 919 hibernate_enter_resume_mapping( 920 HIBERNATE_INFLATE_PAGE, dest, 0); 921 } 922 923 hibernate_flush(); 924 end_stream = hibernate_inflate_page(&rle); 925 926 if (rle == 0) 927 dest += PAGE_SIZE; 928 else 929 dest += (rle * PAGE_SIZE); 930 } while (!end_stream); 931 } 932 933 /* 934 * deflate from src into the I/O page, up to 'remaining' bytes 935 * 936 * Returns number of input bytes consumed, and may reset 937 * the 'remaining' parameter if not all the output space was consumed 938 * (this information is needed to know how much to write to disk 939 */ 940 size_t 941 hibernate_deflate(union hibernate_info *hib, paddr_t src, 942 size_t *remaining) 943 { 944 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 945 struct hibernate_zlib_state *hibernate_state; 946 947 hibernate_state = 948 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 949 950 /* Set up the stream for deflate */ 951 hibernate_state->hib_stream.next_in = (caddr_t)src; 952 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 953 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 954 (PAGE_SIZE - *remaining); 955 hibernate_state->hib_stream.avail_out = *remaining; 956 957 /* Process next block of data */ 958 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 959 panic("hibernate zlib deflate error"); 960 961 /* Update pointers and return number of bytes consumed */ 962 *remaining = hibernate_state->hib_stream.avail_out; 963 return (PAGE_SIZE - (src & PAGE_MASK)) - 964 hibernate_state->hib_stream.avail_in; 965 } 966 967 /* 968 * Write the hibernation information specified in hiber_info 969 * to the location in swap previously calculated (last block of 970 * swap), called the "signature block". 971 */ 972 int 973 hibernate_write_signature(union hibernate_info *hib) 974 { 975 /* Write hibernate info to disk */ 976 return (hib->io_func(hib->dev, hib->sig_offset, 977 (vaddr_t)hib, DEV_BSIZE, HIB_W, 978 hib->io_page)); 979 } 980 981 /* 982 * Write the memory chunk table to the area in swap immediately 983 * preceding the signature block. The chunk table is stored 984 * in the piglet when this function is called. Returns errno. 985 */ 986 int 987 hibernate_write_chunktable(union hibernate_info *hib) 988 { 989 struct hibernate_disk_chunk *chunks; 990 vaddr_t hibernate_chunk_table_start; 991 size_t hibernate_chunk_table_size; 992 int i, err; 993 994 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 995 996 hibernate_chunk_table_start = hib->piglet_va + 997 HIBERNATE_CHUNK_SIZE; 998 999 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1000 HIBERNATE_CHUNK_SIZE); 1001 1002 /* Write chunk table */ 1003 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 1004 if ((err = hib->io_func(hib->dev, 1005 hib->chunktable_offset + (i/DEV_BSIZE), 1006 (vaddr_t)(hibernate_chunk_table_start + i), 1007 MAXPHYS, HIB_W, hib->io_page))) { 1008 DPRINTF("chunktable write error: %d\n", err); 1009 return (err); 1010 } 1011 } 1012 1013 return (0); 1014 } 1015 1016 /* 1017 * Write an empty hiber_info to the swap signature block, which is 1018 * guaranteed to not match any valid hib. 1019 */ 1020 int 1021 hibernate_clear_signature(void) 1022 { 1023 union hibernate_info blank_hiber_info; 1024 union hibernate_info hib; 1025 1026 /* Zero out a blank hiber_info */ 1027 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 1028 1029 /* Get the signature block location */ 1030 if (get_hibernate_info(&hib, 0)) 1031 return (1); 1032 1033 /* Write (zeroed) hibernate info to disk */ 1034 DPRINTF("clearing hibernate signature block location: %lld\n", 1035 hib.sig_offset); 1036 if (hibernate_block_io(&hib, 1037 hib.sig_offset, 1038 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 1039 printf("Warning: could not clear hibernate signature\n"); 1040 1041 return (0); 1042 } 1043 1044 /* 1045 * Check chunk range overlap when calculating whether or not to copy a 1046 * compressed chunk to the piglet area before decompressing. 1047 * 1048 * returns zero if the ranges do not overlap, non-zero otherwise. 1049 */ 1050 int 1051 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1052 { 1053 /* case A : end of r1 overlaps start of r2 */ 1054 if (r1s < r2s && r1e > r2s) 1055 return (1); 1056 1057 /* case B : r1 entirely inside r2 */ 1058 if (r1s >= r2s && r1e <= r2e) 1059 return (1); 1060 1061 /* case C : r2 entirely inside r1 */ 1062 if (r2s >= r1s && r2e <= r1e) 1063 return (1); 1064 1065 /* case D : end of r2 overlaps start of r1 */ 1066 if (r2s < r1s && r2e > r1s) 1067 return (1); 1068 1069 return (0); 1070 } 1071 1072 /* 1073 * Compare two hibernate_infos to determine if they are the same (eg, 1074 * we should be performing a hibernate resume on this machine. 1075 * Not all fields are checked - just enough to verify that the machine 1076 * has the same memory configuration and kernel as the one that 1077 * wrote the signature previously. 1078 */ 1079 int 1080 hibernate_compare_signature(union hibernate_info *mine, 1081 union hibernate_info *disk) 1082 { 1083 u_int i; 1084 1085 if (mine->nranges != disk->nranges) { 1086 DPRINTF("hibernate memory range count mismatch\n"); 1087 return (1); 1088 } 1089 1090 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1091 DPRINTF("hibernate kernel version mismatch\n"); 1092 return (1); 1093 } 1094 1095 for (i = 0; i < mine->nranges; i++) { 1096 if ((mine->ranges[i].base != disk->ranges[i].base) || 1097 (mine->ranges[i].end != disk->ranges[i].end) ) { 1098 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1099 i, 1100 (void *)mine->ranges[i].base, 1101 (void *)mine->ranges[i].end, 1102 (void *)disk->ranges[i].base, 1103 (void *)disk->ranges[i].end); 1104 return (1); 1105 } 1106 } 1107 1108 return (0); 1109 } 1110 1111 /* 1112 * Transfers xfer_size bytes between the hibernate device specified in 1113 * hib_info at offset blkctr and the vaddr specified at dest. 1114 * 1115 * Separate offsets and pages are used to handle misaligned reads (reads 1116 * that span a page boundary). 1117 * 1118 * blkctr specifies a relative offset (relative to the start of swap), 1119 * not an absolute disk offset 1120 * 1121 */ 1122 int 1123 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1124 size_t xfer_size, vaddr_t dest, int iswrite) 1125 { 1126 struct buf *bp; 1127 struct bdevsw *bdsw; 1128 int error; 1129 1130 bp = geteblk(xfer_size); 1131 bdsw = &bdevsw[major(hib->dev)]; 1132 1133 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1134 if (error) { 1135 printf("hibernate_block_io open failed\n"); 1136 return (1); 1137 } 1138 1139 if (iswrite) 1140 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1141 1142 bp->b_bcount = xfer_size; 1143 bp->b_blkno = blkctr; 1144 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1145 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1146 bp->b_dev = hib->dev; 1147 (*bdsw->d_strategy)(bp); 1148 1149 error = biowait(bp); 1150 if (error) { 1151 printf("hib block_io biowait error %d blk %lld size %zu\n", 1152 error, (long long)blkctr, xfer_size); 1153 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1154 curproc); 1155 if (error) 1156 printf("hibernate_block_io error close failed\n"); 1157 return (1); 1158 } 1159 1160 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1161 if (error) { 1162 printf("hibernate_block_io close failed\n"); 1163 return (1); 1164 } 1165 1166 if (!iswrite) 1167 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1168 1169 bp->b_flags |= B_INVAL; 1170 brelse(bp); 1171 1172 return (0); 1173 } 1174 1175 /* 1176 * Reads the signature block from swap, checks against the current machine's 1177 * information. If the information matches, perform a resume by reading the 1178 * saved image into the pig area, and unpacking. 1179 */ 1180 void 1181 hibernate_resume(void) 1182 { 1183 union hibernate_info hib; 1184 int s; 1185 1186 /* Get current running machine's hibernate info */ 1187 memset(&hib, 0, sizeof(hib)); 1188 if (get_hibernate_info(&hib, 0)) { 1189 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1190 return; 1191 } 1192 1193 /* Read hibernate info from disk */ 1194 s = splbio(); 1195 1196 DPRINTF("reading hibernate signature block location: %lld\n", 1197 hib.sig_offset); 1198 1199 if (hibernate_block_io(&hib, 1200 hib.sig_offset, 1201 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1202 DPRINTF("error in hibernate read"); 1203 splx(s); 1204 return; 1205 } 1206 1207 /* Check magic number */ 1208 if (disk_hib.magic != HIBERNATE_MAGIC) { 1209 DPRINTF("wrong magic number in hibernate signature: %x\n", 1210 disk_hib.magic); 1211 splx(s); 1212 return; 1213 } 1214 1215 /* 1216 * We (possibly) found a hibernate signature. Clear signature first, 1217 * to prevent accidental resume or endless resume cycles later. 1218 */ 1219 if (hibernate_clear_signature()) { 1220 DPRINTF("error clearing hibernate signature block\n"); 1221 splx(s); 1222 return; 1223 } 1224 1225 /* 1226 * If on-disk and in-memory hibernate signatures match, 1227 * this means we should do a resume from hibernate. 1228 */ 1229 if (hibernate_compare_signature(&hib, &disk_hib)) { 1230 DPRINTF("mismatched hibernate signature block\n"); 1231 splx(s); 1232 return; 1233 } 1234 1235 #ifdef MULTIPROCESSOR 1236 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1237 DPRINTF("hibernate: quiescing APs\n"); 1238 hibernate_quiesce_cpus(); 1239 #endif /* MULTIPROCESSOR */ 1240 1241 /* Read the image from disk into the image (pig) area */ 1242 if (hibernate_read_image(&disk_hib)) 1243 goto fail; 1244 1245 DPRINTF("hibernate: quiescing devices\n"); 1246 if (config_suspend_all(DVACT_QUIESCE) != 0) 1247 goto fail; 1248 1249 (void) splhigh(); 1250 hibernate_disable_intr_machdep(); 1251 cold = 1; 1252 1253 DPRINTF("hibernate: suspending devices\n"); 1254 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1255 cold = 0; 1256 hibernate_enable_intr_machdep(); 1257 goto fail; 1258 } 1259 1260 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1261 VM_PROT_ALL); 1262 pmap_activate(curproc); 1263 1264 printf("Unpacking image...\n"); 1265 1266 /* Switch stacks */ 1267 DPRINTF("hibernate: switching stacks\n"); 1268 hibernate_switch_stack_machdep(); 1269 1270 #ifndef NO_PROPOLICE 1271 /* Start using suspended kernel's propolice guard */ 1272 __guard_local = disk_hib.guard; 1273 #endif /* ! NO_PROPOLICE */ 1274 1275 /* Unpack and resume */ 1276 hibernate_unpack_image(&disk_hib); 1277 1278 fail: 1279 splx(s); 1280 printf("\nUnable to resume hibernated image\n"); 1281 } 1282 1283 /* 1284 * Unpack image from pig area to original location by looping through the 1285 * list of output chunks in the order they should be restored (fchunks). 1286 * 1287 * Note that due to the stack smash protector and the fact that we have 1288 * switched stacks, it is not permitted to return from this function. 1289 */ 1290 void 1291 hibernate_unpack_image(union hibernate_info *hib) 1292 { 1293 struct hibernate_disk_chunk *chunks; 1294 union hibernate_info local_hib; 1295 paddr_t image_cur = global_pig_start; 1296 short i, *fchunks; 1297 char *pva; 1298 struct hibernate_zlib_state *hibernate_state; 1299 1300 hibernate_state = 1301 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1302 1303 /* Piglet will be identity mapped (VA == PA) */ 1304 pva = (char *)hib->piglet_pa; 1305 1306 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1307 1308 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1309 1310 /* Can't use hiber_info that's passed in after this point */ 1311 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1312 1313 /* VA == PA */ 1314 local_hib.piglet_va = local_hib.piglet_pa; 1315 1316 /* 1317 * Point of no return. Once we pass this point, only kernel code can 1318 * be accessed. No global variables or other kernel data structures 1319 * are guaranteed to be coherent after unpack starts. 1320 * 1321 * The image is now in high memory (pig area), we unpack from the pig 1322 * to the correct location in memory. We'll eventually end up copying 1323 * on top of ourself, but we are assured the kernel code here is the 1324 * same between the hibernated and resuming kernel, and we are running 1325 * on our own stack, so the overwrite is ok. 1326 */ 1327 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1328 hibernate_activate_resume_pt_machdep(); 1329 1330 for (i = 0; i < local_hib.chunk_ctr; i++) { 1331 /* Reset zlib for inflate */ 1332 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1333 panic("hibernate failed to reset zlib for inflate"); 1334 1335 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1336 image_cur); 1337 1338 image_cur += chunks[fchunks[i]].compressed_size; 1339 1340 } 1341 1342 /* 1343 * Resume the loaded kernel by jumping to the MD resume vector. 1344 * We won't be returning from this call. 1345 */ 1346 hibernate_resume_machdep(); 1347 } 1348 1349 /* 1350 * Bounce a compressed image chunk to the piglet, entering mappings for the 1351 * copied pages as needed 1352 */ 1353 void 1354 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1355 { 1356 size_t ct, ofs; 1357 paddr_t src = img_cur; 1358 vaddr_t dest = piglet; 1359 1360 /* Copy first partial page */ 1361 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1362 ofs = (src & PAGE_MASK); 1363 1364 if (ct < PAGE_SIZE) { 1365 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1366 (src - ofs), 0); 1367 hibernate_flush(); 1368 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1369 src += ct; 1370 dest += ct; 1371 } 1372 1373 /* Copy remaining pages */ 1374 while (src < size + img_cur) { 1375 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1376 hibernate_flush(); 1377 ct = PAGE_SIZE; 1378 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1379 hibernate_flush(); 1380 src += ct; 1381 dest += ct; 1382 } 1383 } 1384 1385 /* 1386 * Process a chunk by bouncing it to the piglet, followed by unpacking 1387 */ 1388 void 1389 hibernate_process_chunk(union hibernate_info *hib, 1390 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1391 { 1392 char *pva = (char *)hib->piglet_va; 1393 1394 hibernate_copy_chunk_to_piglet(img_cur, 1395 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1396 hibernate_inflate_region(hib, chunk->base, 1397 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1398 chunk->compressed_size); 1399 } 1400 1401 /* 1402 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1403 * inaddr and range_end. 1404 */ 1405 int 1406 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1407 { 1408 int rle; 1409 1410 rle = uvm_page_rle(inaddr); 1411 KASSERT(rle >= 0 && rle <= MAX_RLE); 1412 1413 /* Clamp RLE to range end */ 1414 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1415 rle = (range_end - inaddr) / PAGE_SIZE; 1416 1417 return (rle); 1418 } 1419 1420 /* 1421 * Write the RLE byte for page at 'inaddr' to the output stream. 1422 * Returns the number of pages to be skipped at 'inaddr'. 1423 */ 1424 int 1425 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1426 paddr_t range_end, daddr_t *blkctr, 1427 size_t *out_remaining) 1428 { 1429 int rle, err, *rleloc; 1430 struct hibernate_zlib_state *hibernate_state; 1431 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1432 1433 hibernate_state = 1434 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1435 1436 rle = hibernate_calc_rle(inaddr, range_end); 1437 1438 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1439 *rleloc = rle; 1440 1441 /* Deflate the RLE byte into the stream */ 1442 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1443 1444 /* Did we fill the output page? If so, flush to disk */ 1445 if (*out_remaining == 0) { 1446 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1447 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1448 hib->io_page))) { 1449 DPRINTF("hib write error %d\n", err); 1450 return (err); 1451 } 1452 1453 *blkctr += PAGE_SIZE / DEV_BSIZE; 1454 *out_remaining = PAGE_SIZE; 1455 1456 /* If we didn't deflate the entire RLE byte, finish it now */ 1457 if (hibernate_state->hib_stream.avail_in != 0) 1458 hibernate_deflate(hib, 1459 (vaddr_t)hibernate_state->hib_stream.next_in, 1460 out_remaining); 1461 } 1462 1463 return (rle); 1464 } 1465 1466 /* 1467 * Write a compressed version of this machine's memory to disk, at the 1468 * precalculated swap offset: 1469 * 1470 * end of swap - signature block size - chunk table size - memory size 1471 * 1472 * The function begins by looping through each phys mem range, cutting each 1473 * one into MD sized chunks. These chunks are then compressed individually 1474 * and written out to disk, in phys mem order. Some chunks might compress 1475 * more than others, and for this reason, each chunk's size is recorded 1476 * in the chunk table, which is written to disk after the image has 1477 * properly been compressed and written (in hibernate_write_chunktable). 1478 * 1479 * When this function is called, the machine is nearly suspended - most 1480 * devices are quiesced/suspended, interrupts are off, and cold has 1481 * been set. This means that there can be no side effects once the 1482 * write has started, and the write function itself can also have no 1483 * side effects. This also means no printfs are permitted (since printf 1484 * has side effects.) 1485 * 1486 * Return values : 1487 * 1488 * 0 - success 1489 * EIO - I/O error occurred writing the chunks 1490 * EINVAL - Failed to write a complete range 1491 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1492 */ 1493 int 1494 hibernate_write_chunks(union hibernate_info *hib) 1495 { 1496 paddr_t range_base, range_end, inaddr, temp_inaddr; 1497 size_t nblocks, out_remaining, used; 1498 struct hibernate_disk_chunk *chunks; 1499 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1500 daddr_t blkctr = 0; 1501 int i, rle, err; 1502 struct hibernate_zlib_state *hibernate_state; 1503 1504 hibernate_state = 1505 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1506 1507 hib->chunk_ctr = 0; 1508 1509 /* 1510 * Allocate VA for the temp and copy page. 1511 * 1512 * These will become part of the suspended kernel and will 1513 * be freed in hibernate_free, upon resume. 1514 */ 1515 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1516 &kp_none, &kd_nowait); 1517 if (!hibernate_temp_page) { 1518 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1519 return (ENOMEM); 1520 } 1521 1522 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1523 &kp_none, &kd_nowait); 1524 if (!hibernate_copy_page) { 1525 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1526 return (ENOMEM); 1527 } 1528 1529 hibernate_rle_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1530 &kp_none, &kd_nowait); 1531 if (!hibernate_rle_page) { 1532 DPRINTF("out of memory allocating hibernate_rle_page\n"); 1533 return (ENOMEM); 1534 } 1535 1536 /* 1537 * Map the utility VAs to the piglet. See the piglet map at the 1538 * top of this file for piglet layout information. 1539 */ 1540 pmap_kenter_pa(hibernate_copy_page, 1541 (hib->piglet_pa + 3 * PAGE_SIZE), VM_PROT_ALL); 1542 pmap_kenter_pa(hibernate_rle_page, 1543 (hib->piglet_pa + 28 * PAGE_SIZE), VM_PROT_ALL); 1544 1545 pmap_activate(curproc); 1546 1547 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1548 HIBERNATE_CHUNK_SIZE); 1549 1550 /* Calculate the chunk regions */ 1551 for (i = 0; i < hib->nranges; i++) { 1552 range_base = hib->ranges[i].base; 1553 range_end = hib->ranges[i].end; 1554 1555 inaddr = range_base; 1556 1557 while (inaddr < range_end) { 1558 chunks[hib->chunk_ctr].base = inaddr; 1559 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1560 chunks[hib->chunk_ctr].end = inaddr + 1561 HIBERNATE_CHUNK_SIZE; 1562 else 1563 chunks[hib->chunk_ctr].end = range_end; 1564 1565 inaddr += HIBERNATE_CHUNK_SIZE; 1566 hib->chunk_ctr ++; 1567 } 1568 } 1569 1570 uvm_pmr_dirty_everything(); 1571 uvm_pmr_zero_everything(); 1572 1573 /* Compress and write the chunks in the chunktable */ 1574 for (i = 0; i < hib->chunk_ctr; i++) { 1575 range_base = chunks[i].base; 1576 range_end = chunks[i].end; 1577 1578 chunks[i].offset = blkctr + hib->image_offset; 1579 1580 /* Reset zlib for deflate */ 1581 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1582 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1583 return (ENOMEM); 1584 } 1585 1586 inaddr = range_base; 1587 1588 /* 1589 * For each range, loop through its phys mem region 1590 * and write out the chunks (the last chunk might be 1591 * smaller than the chunk size). 1592 */ 1593 while (inaddr < range_end) { 1594 out_remaining = PAGE_SIZE; 1595 while (out_remaining > 0 && inaddr < range_end) { 1596 /* 1597 * Adjust for regions that are not evenly 1598 * divisible by PAGE_SIZE or overflowed 1599 * pages from the previous iteration. 1600 */ 1601 temp_inaddr = (inaddr & PAGE_MASK) + 1602 hibernate_copy_page; 1603 1604 /* Deflate from temp_inaddr to IO page */ 1605 if (inaddr != range_end) { 1606 if (inaddr % PAGE_SIZE == 0) { 1607 rle = hibernate_write_rle(hib, 1608 inaddr, 1609 range_end, 1610 &blkctr, 1611 &out_remaining); 1612 } 1613 1614 if (rle == 0) { 1615 pmap_kenter_pa(hibernate_temp_page, 1616 inaddr & PMAP_PA_MASK, 1617 VM_PROT_ALL); 1618 1619 pmap_activate(curproc); 1620 1621 bcopy((caddr_t)hibernate_temp_page, 1622 (caddr_t)hibernate_copy_page, 1623 PAGE_SIZE); 1624 inaddr += hibernate_deflate(hib, 1625 temp_inaddr, 1626 &out_remaining); 1627 } else { 1628 inaddr += rle * PAGE_SIZE; 1629 if (inaddr > range_end) 1630 inaddr = range_end; 1631 } 1632 1633 } 1634 1635 if (out_remaining == 0) { 1636 /* Filled up the page */ 1637 nblocks = PAGE_SIZE / DEV_BSIZE; 1638 1639 if ((err = hib->io_func(hib->dev, 1640 blkctr + hib->image_offset, 1641 (vaddr_t)hibernate_io_page, 1642 PAGE_SIZE, HIB_W, hib->io_page))) { 1643 DPRINTF("hib write error %d\n", 1644 err); 1645 return (err); 1646 } 1647 1648 blkctr += nblocks; 1649 } 1650 } 1651 } 1652 1653 if (inaddr != range_end) { 1654 DPRINTF("deflate range ended prematurely\n"); 1655 return (EINVAL); 1656 } 1657 1658 /* 1659 * End of range. Round up to next secsize bytes 1660 * after finishing compress 1661 */ 1662 if (out_remaining == 0) 1663 out_remaining = PAGE_SIZE; 1664 1665 /* Finish compress */ 1666 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1667 hibernate_state->hib_stream.avail_in = 0; 1668 hibernate_state->hib_stream.next_out = 1669 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1670 1671 /* We have an extra output page available for finalize */ 1672 hibernate_state->hib_stream.avail_out = 1673 out_remaining + PAGE_SIZE; 1674 1675 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1676 Z_STREAM_END) { 1677 DPRINTF("deflate error in output stream: %d\n", err); 1678 return (err); 1679 } 1680 1681 out_remaining = hibernate_state->hib_stream.avail_out; 1682 1683 used = 2 * PAGE_SIZE - out_remaining; 1684 nblocks = used / DEV_BSIZE; 1685 1686 /* Round up to next block if needed */ 1687 if (used % DEV_BSIZE != 0) 1688 nblocks ++; 1689 1690 /* Write final block(s) for this chunk */ 1691 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1692 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1693 HIB_W, hib->io_page))) { 1694 DPRINTF("hib final write error %d\n", err); 1695 return (err); 1696 } 1697 1698 blkctr += nblocks; 1699 1700 chunks[i].compressed_size = (blkctr + hib->image_offset - 1701 chunks[i].offset) * DEV_BSIZE; 1702 } 1703 1704 hib->chunktable_offset = hib->image_offset + blkctr; 1705 return (0); 1706 } 1707 1708 /* 1709 * Reset the zlib stream state and allocate a new hiballoc area for either 1710 * inflate or deflate. This function is called once for each hibernate chunk. 1711 * Calling hiballoc_init multiple times is acceptable since the memory it is 1712 * provided is unmanaged memory (stolen). We use the memory provided to us 1713 * by the piglet allocated via the supplied hib. 1714 */ 1715 int 1716 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1717 { 1718 vaddr_t hibernate_zlib_start; 1719 size_t hibernate_zlib_size; 1720 char *pva = (char *)hib->piglet_va; 1721 struct hibernate_zlib_state *hibernate_state; 1722 1723 hibernate_state = 1724 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1725 1726 if (!deflate) 1727 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1728 1729 /* 1730 * See piglet layout information at the start of this file for 1731 * information on the zlib page assignments. 1732 */ 1733 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1734 hibernate_zlib_size = 80 * PAGE_SIZE; 1735 1736 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1737 memset(hibernate_state, 0, PAGE_SIZE); 1738 1739 /* Set up stream structure */ 1740 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1741 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1742 1743 /* Initialize the hiballoc arena for zlib allocs/frees */ 1744 hiballoc_init(&hibernate_state->hiballoc_arena, 1745 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1746 1747 if (deflate) { 1748 return deflateInit(&hibernate_state->hib_stream, 1749 Z_BEST_SPEED); 1750 } else 1751 return inflateInit(&hibernate_state->hib_stream); 1752 } 1753 1754 /* 1755 * Reads the hibernated memory image from disk, whose location and 1756 * size are recorded in hib. Begin by reading the persisted 1757 * chunk table, which records the original chunk placement location 1758 * and compressed size for each. Next, allocate a pig region of 1759 * sufficient size to hold the compressed image. Next, read the 1760 * chunks into the pig area (calling hibernate_read_chunks to do this), 1761 * and finally, if all of the above succeeds, clear the hibernate signature. 1762 * The function will then return to hibernate_resume, which will proceed 1763 * to unpack the pig image to the correct place in memory. 1764 */ 1765 int 1766 hibernate_read_image(union hibernate_info *hib) 1767 { 1768 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1769 paddr_t image_start, image_end, pig_start, pig_end; 1770 struct hibernate_disk_chunk *chunks; 1771 daddr_t blkctr; 1772 vaddr_t chunktable = (vaddr_t)NULL; 1773 paddr_t piglet_chunktable = hib->piglet_pa + 1774 HIBERNATE_CHUNK_SIZE; 1775 int i, status; 1776 1777 status = 0; 1778 pmap_activate(curproc); 1779 1780 /* Calculate total chunk table size in disk blocks */ 1781 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1782 1783 blkctr = hib->chunktable_offset; 1784 1785 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1786 &kp_none, &kd_nowait); 1787 1788 if (!chunktable) 1789 return (1); 1790 1791 /* Map chunktable pages */ 1792 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1793 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1794 VM_PROT_ALL); 1795 pmap_update(pmap_kernel()); 1796 1797 /* Read the chunktable from disk into the piglet chunktable */ 1798 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1799 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1800 hibernate_block_io(hib, blkctr, MAXPHYS, 1801 chunktable + i, 0); 1802 1803 blkctr = hib->image_offset; 1804 compressed_size = 0; 1805 1806 chunks = (struct hibernate_disk_chunk *)chunktable; 1807 1808 for (i = 0; i < hib->chunk_ctr; i++) 1809 compressed_size += chunks[i].compressed_size; 1810 1811 disk_size = compressed_size; 1812 1813 printf("unhibernating @ block %lld length %lu bytes\n", 1814 hib->sig_offset - chunktable_size, 1815 compressed_size); 1816 1817 /* Allocate the pig area */ 1818 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1819 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) { 1820 status = 1; 1821 goto unmap; 1822 } 1823 1824 pig_end = pig_start + pig_sz; 1825 1826 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1827 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1828 image_start = image_end - disk_size; 1829 1830 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1831 chunks); 1832 1833 /* Prepare the resume time pmap/page table */ 1834 hibernate_populate_resume_pt(hib, image_start, image_end); 1835 1836 unmap: 1837 /* Unmap chunktable pages */ 1838 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1839 pmap_update(pmap_kernel()); 1840 1841 return (status); 1842 } 1843 1844 /* 1845 * Read the hibernated memory chunks from disk (chunk information at this 1846 * point is stored in the piglet) into the pig area specified by 1847 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1848 * only chunk with overlap possibilities. 1849 */ 1850 int 1851 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1852 paddr_t pig_end, size_t image_compr_size, 1853 struct hibernate_disk_chunk *chunks) 1854 { 1855 paddr_t img_cur, piglet_base; 1856 daddr_t blkctr; 1857 size_t processed, compressed_size, read_size; 1858 int nchunks, nfchunks, num_io_pages; 1859 vaddr_t tempva, hibernate_fchunk_area; 1860 short *fchunks, i, j; 1861 1862 tempva = (vaddr_t)NULL; 1863 hibernate_fchunk_area = (vaddr_t)NULL; 1864 nfchunks = 0; 1865 piglet_base = hib->piglet_pa; 1866 global_pig_start = pig_start; 1867 1868 pmap_activate(curproc); 1869 1870 /* 1871 * These mappings go into the resuming kernel's page table, and are 1872 * used only during image read. They dissappear from existence 1873 * when the suspended kernel is unpacked on top of us. 1874 */ 1875 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1876 &kd_nowait); 1877 if (!tempva) 1878 return (1); 1879 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1880 &kp_none, &kd_nowait); 1881 if (!hibernate_fchunk_area) 1882 return (1); 1883 1884 /* Final output chunk ordering VA */ 1885 fchunks = (short *)hibernate_fchunk_area; 1886 1887 /* Map the chunk ordering region */ 1888 for(i = 0; i < 24 ; i++) 1889 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1890 piglet_base + ((4 + i) * PAGE_SIZE), VM_PROT_ALL); 1891 pmap_update(pmap_kernel()); 1892 1893 nchunks = hib->chunk_ctr; 1894 1895 /* Initially start all chunks as unplaced */ 1896 for (i = 0; i < nchunks; i++) 1897 chunks[i].flags = 0; 1898 1899 /* 1900 * Search the list for chunks that are outside the pig area. These 1901 * can be placed first in the final output list. 1902 */ 1903 for (i = 0; i < nchunks; i++) { 1904 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1905 fchunks[nfchunks] = i; 1906 nfchunks++; 1907 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1908 } 1909 } 1910 1911 /* 1912 * Walk the ordering, place the chunks in ascending memory order. 1913 */ 1914 for (i = 0; i < nchunks; i++) { 1915 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1916 fchunks[nfchunks] = i; 1917 nfchunks++; 1918 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1919 } 1920 } 1921 1922 img_cur = pig_start; 1923 1924 for (i = 0; i < nfchunks; i++) { 1925 blkctr = chunks[fchunks[i]].offset; 1926 processed = 0; 1927 compressed_size = chunks[fchunks[i]].compressed_size; 1928 1929 while (processed < compressed_size) { 1930 if (compressed_size - processed >= MAXPHYS) 1931 read_size = MAXPHYS; 1932 else 1933 read_size = compressed_size - processed; 1934 1935 /* 1936 * We're reading read_size bytes, offset from the 1937 * start of a page by img_cur % PAGE_SIZE, so the 1938 * end will be read_size + (img_cur % PAGE_SIZE) 1939 * from the start of the first page. Round that 1940 * up to the next page size. 1941 */ 1942 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1943 + PAGE_SIZE - 1) / PAGE_SIZE; 1944 1945 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1946 1947 /* Map pages for this read */ 1948 for (j = 0; j < num_io_pages; j ++) 1949 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1950 img_cur + j * PAGE_SIZE, VM_PROT_ALL); 1951 1952 pmap_update(pmap_kernel()); 1953 1954 hibernate_block_io(hib, blkctr, read_size, 1955 tempva + (img_cur & PAGE_MASK), 0); 1956 1957 blkctr += (read_size / DEV_BSIZE); 1958 1959 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1960 pmap_update(pmap_kernel()); 1961 1962 processed += read_size; 1963 img_cur += read_size; 1964 } 1965 } 1966 1967 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1968 pmap_update(pmap_kernel()); 1969 1970 return (0); 1971 } 1972 1973 /* 1974 * Hibernating a machine comprises the following operations: 1975 * 1. Calculating this machine's hibernate_info information 1976 * 2. Allocating a piglet and saving the piglet's physaddr 1977 * 3. Calculating the memory chunks 1978 * 4. Writing the compressed chunks to disk 1979 * 5. Writing the chunk table 1980 * 6. Writing the signature block (hibernate_info) 1981 * 1982 * On most architectures, the function calling hibernate_suspend would 1983 * then power off the machine using some MD-specific implementation. 1984 */ 1985 int 1986 hibernate_suspend(void) 1987 { 1988 union hibernate_info hib; 1989 u_long start, end; 1990 1991 /* 1992 * Calculate memory ranges, swap offsets, etc. 1993 * This also allocates a piglet whose physaddr is stored in 1994 * hib->piglet_pa and vaddr stored in hib->piglet_va 1995 */ 1996 if (get_hibernate_info(&hib, 1)) { 1997 DPRINTF("failed to obtain hibernate info\n"); 1998 return (1); 1999 } 2000 2001 /* Find a page-addressed region in swap [start,end] */ 2002 if (uvm_hibswap(hib.dev, &start, &end)) { 2003 printf("hibernate: cannot find any swap\n"); 2004 return (1); 2005 } 2006 2007 if (end - start < 1000) { 2008 printf("hibernate: insufficient swap (%lu is too small)\n", 2009 end - start); 2010 return (1); 2011 } 2012 2013 /* Calculate block offsets in swap */ 2014 hib.image_offset = ctod(start); 2015 2016 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 2017 hib.image_offset, ctod(end) - ctod(start)); 2018 2019 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 2020 VM_PROT_ALL); 2021 pmap_activate(curproc); 2022 2023 /* Stash the piglet VA so we can free it in the resuming kernel */ 2024 global_piglet_va = hib.piglet_va; 2025 2026 DPRINTF("hibernate: writing chunks\n"); 2027 if (hibernate_write_chunks(&hib)) { 2028 DPRINTF("hibernate_write_chunks failed\n"); 2029 return (1); 2030 } 2031 2032 DPRINTF("hibernate: writing chunktable\n"); 2033 if (hibernate_write_chunktable(&hib)) { 2034 DPRINTF("hibernate_write_chunktable failed\n"); 2035 return (1); 2036 } 2037 2038 DPRINTF("hibernate: writing signature\n"); 2039 if (hibernate_write_signature(&hib)) { 2040 DPRINTF("hibernate_write_signature failed\n"); 2041 return (1); 2042 } 2043 2044 /* Allow the disk to settle */ 2045 delay(500000); 2046 2047 /* 2048 * Give the device-specific I/O function a notification that we're 2049 * done, and that it can clean up or shutdown as needed. 2050 */ 2051 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 2052 2053 return (0); 2054 } 2055 2056 /* 2057 * Free items allocated by hibernate_suspend() 2058 */ 2059 void 2060 hibernate_free(void) 2061 { 2062 if (global_piglet_va) 2063 uvm_pmr_free_piglet(global_piglet_va, 2064 4 * HIBERNATE_CHUNK_SIZE); 2065 2066 if (hibernate_copy_page) 2067 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 2068 if (hibernate_temp_page) 2069 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2070 if (hibernate_rle_page) 2071 pmap_kremove(hibernate_rle_page, PAGE_SIZE); 2072 2073 pmap_update(pmap_kernel()); 2074 2075 if (hibernate_copy_page) 2076 km_free((void *)hibernate_copy_page, PAGE_SIZE, 2077 &kv_any, &kp_none); 2078 if (hibernate_temp_page) 2079 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2080 &kv_any, &kp_none); 2081 if (hibernate_rle_page) 2082 km_free((void *)hibernate_rle_page, PAGE_SIZE, 2083 &kv_any, &kp_none); 2084 2085 global_piglet_va = 0; 2086 hibernate_copy_page = 0; 2087 hibernate_temp_page = 0; 2088 hibernate_rle_page = 0; 2089 } 2090