1 /* $OpenBSD: subr_hibernate.c,v 1.19 2011/11/13 18:38:10 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 struct hibernate_zlib_state *hibernate_state; 36 37 /* Temporary vaddr ranges used during hibernate */ 38 vaddr_t hibernate_temp_page; 39 vaddr_t hibernate_copy_page; 40 vaddr_t hibernate_stack_page; 41 vaddr_t hibernate_fchunk_area; 42 vaddr_t hibernate_chunktable_area; 43 44 /* Hibernate info as read from disk during resume */ 45 union hibernate_info disk_hiber_info; 46 paddr_t global_pig_start; 47 48 /* 49 * Hib alloc enforced alignment. 50 */ 51 #define HIB_ALIGN 8 /* bytes alignment */ 52 53 /* 54 * sizeof builtin operation, but with alignment constraint. 55 */ 56 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 57 58 struct hiballoc_entry { 59 size_t hibe_use; 60 size_t hibe_space; 61 RB_ENTRY(hiballoc_entry) hibe_entry; 62 }; 63 64 /* 65 * Compare hiballoc entries based on the address they manage. 66 * 67 * Since the address is fixed, relative to struct hiballoc_entry, 68 * we just compare the hiballoc_entry pointers. 69 */ 70 static __inline int 71 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 72 { 73 return l < r ? -1 : (l > r); 74 } 75 76 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 77 78 /* 79 * Given a hiballoc entry, return the address it manages. 80 */ 81 static __inline void * 82 hib_entry_to_addr(struct hiballoc_entry *entry) 83 { 84 caddr_t addr; 85 86 addr = (caddr_t)entry; 87 addr += HIB_SIZEOF(struct hiballoc_entry); 88 return addr; 89 } 90 91 /* 92 * Given an address, find the hiballoc that corresponds. 93 */ 94 static __inline struct hiballoc_entry* 95 hib_addr_to_entry(void *addr_param) 96 { 97 caddr_t addr; 98 99 addr = (caddr_t)addr_param; 100 addr -= HIB_SIZEOF(struct hiballoc_entry); 101 return (struct hiballoc_entry*)addr; 102 } 103 104 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 105 106 /* 107 * Allocate memory from the arena. 108 * 109 * Returns NULL if no memory is available. 110 */ 111 void * 112 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 113 { 114 struct hiballoc_entry *entry, *new_entry; 115 size_t find_sz; 116 117 /* 118 * Enforce alignment of HIB_ALIGN bytes. 119 * 120 * Note that, because the entry is put in front of the allocation, 121 * 0-byte allocations are guaranteed a unique address. 122 */ 123 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 124 125 /* 126 * Find an entry with hibe_space >= find_sz. 127 * 128 * If the root node is not large enough, we switch to tree traversal. 129 * Because all entries are made at the bottom of the free space, 130 * traversal from the end has a slightly better chance of yielding 131 * a sufficiently large space. 132 */ 133 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 134 entry = RB_ROOT(&arena->hib_addrs); 135 if (entry != NULL && entry->hibe_space < find_sz) { 136 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 137 if (entry->hibe_space >= find_sz) 138 break; 139 } 140 } 141 142 /* 143 * Insufficient or too fragmented memory. 144 */ 145 if (entry == NULL) 146 return NULL; 147 148 /* 149 * Create new entry in allocated space. 150 */ 151 new_entry = (struct hiballoc_entry*)( 152 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 153 new_entry->hibe_space = entry->hibe_space - find_sz; 154 new_entry->hibe_use = alloc_sz; 155 156 /* 157 * Insert entry. 158 */ 159 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 160 panic("hib_alloc: insert failure"); 161 entry->hibe_space = 0; 162 163 /* Return address managed by entry. */ 164 return hib_entry_to_addr(new_entry); 165 } 166 167 /* 168 * Free a pointer previously allocated from this arena. 169 * 170 * If addr is NULL, this will be silently accepted. 171 */ 172 void 173 hib_free(struct hiballoc_arena *arena, void *addr) 174 { 175 struct hiballoc_entry *entry, *prev; 176 177 if (addr == NULL) 178 return; 179 180 /* 181 * Derive entry from addr and check it is really in this arena. 182 */ 183 entry = hib_addr_to_entry(addr); 184 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 185 panic("hib_free: freed item %p not in hib arena", addr); 186 187 /* 188 * Give the space in entry to its predecessor. 189 * 190 * If entry has no predecessor, change its used space into free space 191 * instead. 192 */ 193 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 194 if (prev != NULL && 195 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 196 prev->hibe_use + prev->hibe_space) == entry) { 197 /* Merge entry. */ 198 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 199 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 200 entry->hibe_use + entry->hibe_space; 201 } else { 202 /* Flip used memory to free space. */ 203 entry->hibe_space += entry->hibe_use; 204 entry->hibe_use = 0; 205 } 206 } 207 208 /* 209 * Initialize hiballoc. 210 * 211 * The allocator will manage memmory at ptr, which is len bytes. 212 */ 213 int 214 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 215 { 216 struct hiballoc_entry *entry; 217 caddr_t ptr; 218 size_t len; 219 220 RB_INIT(&arena->hib_addrs); 221 222 /* 223 * Hib allocator enforces HIB_ALIGN alignment. 224 * Fixup ptr and len. 225 */ 226 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 227 len = p_len - ((size_t)ptr - (size_t)p_ptr); 228 len &= ~((size_t)HIB_ALIGN - 1); 229 230 /* 231 * Insufficient memory to be able to allocate and also do bookkeeping. 232 */ 233 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 234 return ENOMEM; 235 236 /* 237 * Create entry describing space. 238 */ 239 entry = (struct hiballoc_entry*)ptr; 240 entry->hibe_use = 0; 241 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 242 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 243 244 return 0; 245 } 246 247 /* 248 * Zero all free memory. 249 */ 250 void 251 uvm_pmr_zero_everything(void) 252 { 253 struct uvm_pmemrange *pmr; 254 struct vm_page *pg; 255 int i; 256 257 uvm_lock_fpageq(); 258 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 259 /* Zero single pages. */ 260 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 261 != NULL) { 262 uvm_pmr_remove(pmr, pg); 263 uvm_pagezero(pg); 264 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 265 uvmexp.zeropages++; 266 uvm_pmr_insert(pmr, pg, 0); 267 } 268 269 /* Zero multi page ranges. */ 270 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 271 != NULL) { 272 pg--; /* Size tree always has second page. */ 273 uvm_pmr_remove(pmr, pg); 274 for (i = 0; i < pg->fpgsz; i++) { 275 uvm_pagezero(&pg[i]); 276 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 277 uvmexp.zeropages++; 278 } 279 uvm_pmr_insert(pmr, pg, 0); 280 } 281 } 282 uvm_unlock_fpageq(); 283 } 284 285 /* 286 * Mark all memory as dirty. 287 * 288 * Used to inform the system that the clean memory isn't clean for some 289 * reason, for example because we just came back from hibernate. 290 */ 291 void 292 uvm_pmr_dirty_everything(void) 293 { 294 struct uvm_pmemrange *pmr; 295 struct vm_page *pg; 296 int i; 297 298 uvm_lock_fpageq(); 299 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 300 /* Dirty single pages. */ 301 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 302 != NULL) { 303 uvm_pmr_remove(pmr, pg); 304 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 305 uvm_pmr_insert(pmr, pg, 0); 306 } 307 308 /* Dirty multi page ranges. */ 309 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 310 != NULL) { 311 pg--; /* Size tree always has second page. */ 312 uvm_pmr_remove(pmr, pg); 313 for (i = 0; i < pg->fpgsz; i++) 314 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 315 uvm_pmr_insert(pmr, pg, 0); 316 } 317 } 318 319 uvmexp.zeropages = 0; 320 uvm_unlock_fpageq(); 321 } 322 323 /* 324 * Allocate the highest address that can hold sz. 325 * 326 * sz in bytes. 327 */ 328 int 329 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 330 { 331 struct uvm_pmemrange *pmr; 332 struct vm_page *pig_pg, *pg; 333 334 /* 335 * Convert sz to pages, since that is what pmemrange uses internally. 336 */ 337 sz = atop(round_page(sz)); 338 339 uvm_lock_fpageq(); 340 341 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 342 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 343 if (pig_pg->fpgsz >= sz) { 344 goto found; 345 } 346 } 347 } 348 349 /* 350 * Allocation failure. 351 */ 352 uvm_unlock_pageq(); 353 return ENOMEM; 354 355 found: 356 /* Remove page from freelist. */ 357 uvm_pmr_remove_size(pmr, pig_pg); 358 pig_pg->fpgsz -= sz; 359 pg = pig_pg + pig_pg->fpgsz; 360 if (pig_pg->fpgsz == 0) 361 uvm_pmr_remove_addr(pmr, pig_pg); 362 else 363 uvm_pmr_insert_size(pmr, pig_pg); 364 365 uvmexp.free -= sz; 366 *addr = VM_PAGE_TO_PHYS(pg); 367 368 /* 369 * Update pg flags. 370 * 371 * Note that we trash the sz argument now. 372 */ 373 while (sz > 0) { 374 KASSERT(pg->pg_flags & PQ_FREE); 375 376 atomic_clearbits_int(&pg->pg_flags, 377 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 378 379 if (pg->pg_flags & PG_ZERO) 380 uvmexp.zeropages -= sz; 381 atomic_clearbits_int(&pg->pg_flags, 382 PG_ZERO|PQ_FREE); 383 384 pg->uobject = NULL; 385 pg->uanon = NULL; 386 pg->pg_version++; 387 388 /* 389 * Next. 390 */ 391 pg++; 392 sz--; 393 } 394 395 /* Return. */ 396 uvm_unlock_fpageq(); 397 return 0; 398 } 399 400 /* 401 * Allocate a piglet area. 402 * 403 * This is as low as possible. 404 * Piglets are aligned. 405 * 406 * sz and align in bytes. 407 * 408 * The call will sleep for the pagedaemon to attempt to free memory. 409 * The pagedaemon may decide its not possible to free enough memory, causing 410 * the allocation to fail. 411 */ 412 int 413 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 414 { 415 paddr_t pg_addr, piglet_addr; 416 struct uvm_pmemrange *pmr; 417 struct vm_page *pig_pg, *pg; 418 struct pglist pageq; 419 int pdaemon_woken; 420 vaddr_t piglet_va; 421 422 KASSERT((align & (align - 1)) == 0); 423 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 424 425 /* 426 * Fixup arguments: align must be at least PAGE_SIZE, 427 * sz will be converted to pagecount, since that is what 428 * pmemrange uses internally. 429 */ 430 if (align < PAGE_SIZE) 431 align = PAGE_SIZE; 432 sz = round_page(sz); 433 434 uvm_lock_fpageq(); 435 436 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 437 pmr_use) { 438 retry: 439 /* 440 * Search for a range with enough space. 441 * Use the address tree, to ensure the range is as low as 442 * possible. 443 */ 444 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 445 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 446 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 447 448 if (atop(pg_addr) + pig_pg->fpgsz >= 449 atop(piglet_addr) + atop(sz)) 450 goto found; 451 } 452 } 453 454 /* 455 * Try to coerse the pagedaemon into freeing memory 456 * for the piglet. 457 * 458 * pdaemon_woken is set to prevent the code from 459 * falling into an endless loop. 460 */ 461 if (!pdaemon_woken) { 462 pdaemon_woken = 1; 463 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 464 sz, UVM_PLA_FAILOK) == 0) 465 goto retry; 466 } 467 468 /* Return failure. */ 469 uvm_unlock_fpageq(); 470 return ENOMEM; 471 472 found: 473 /* 474 * Extract piglet from pigpen. 475 */ 476 TAILQ_INIT(&pageq); 477 uvm_pmr_extract_range(pmr, pig_pg, 478 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 479 480 *pa = piglet_addr; 481 uvmexp.free -= atop(sz); 482 483 /* 484 * Update pg flags. 485 * 486 * Note that we trash the sz argument now. 487 */ 488 TAILQ_FOREACH(pg, &pageq, pageq) { 489 KASSERT(pg->pg_flags & PQ_FREE); 490 491 atomic_clearbits_int(&pg->pg_flags, 492 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 493 494 if (pg->pg_flags & PG_ZERO) 495 uvmexp.zeropages--; 496 atomic_clearbits_int(&pg->pg_flags, 497 PG_ZERO|PQ_FREE); 498 499 pg->uobject = NULL; 500 pg->uanon = NULL; 501 pg->pg_version++; 502 } 503 504 uvm_unlock_fpageq(); 505 506 /* 507 * Now allocate a va. 508 * Use direct mappings for the pages. 509 */ 510 511 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 512 if (!piglet_va) { 513 uvm_pglistfree(&pageq); 514 return ENOMEM; 515 } 516 517 /* 518 * Map piglet to va. 519 */ 520 TAILQ_FOREACH(pg, &pageq, pageq) { 521 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 522 piglet_va += PAGE_SIZE; 523 } 524 pmap_update(pmap_kernel()); 525 526 return 0; 527 } 528 529 /* 530 * Free a piglet area. 531 */ 532 void 533 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 534 { 535 paddr_t pa; 536 struct vm_page *pg; 537 538 /* 539 * Fix parameters. 540 */ 541 sz = round_page(sz); 542 543 /* 544 * Find the first page in piglet. 545 * Since piglets are contiguous, the first pg is all we need. 546 */ 547 if (!pmap_extract(pmap_kernel(), va, &pa)) 548 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 549 pg = PHYS_TO_VM_PAGE(pa); 550 if (pg == NULL) 551 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 552 553 /* 554 * Unmap. 555 */ 556 pmap_kremove(va, sz); 557 pmap_update(pmap_kernel()); 558 559 /* 560 * Free the physical and virtual memory. 561 */ 562 uvm_pmr_freepages(pg, atop(sz)); 563 km_free((void *)va, sz, &kv_any, &kp_none); 564 } 565 566 /* 567 * Physmem RLE compression support. 568 * 569 * Given a physical page address, it will return the number of pages 570 * starting at the address, that are free. 571 * Returns 0 if the page at addr is not free. 572 */ 573 psize_t 574 uvm_page_rle(paddr_t addr) 575 { 576 struct vm_page *pg, *pg_end; 577 struct vm_physseg *vmp; 578 int pseg_idx, off_idx; 579 580 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 581 if (pseg_idx == -1) 582 return 0; 583 584 vmp = &vm_physmem[pseg_idx]; 585 pg = &vmp->pgs[off_idx]; 586 if (!(pg->pg_flags & PQ_FREE)) 587 return 0; 588 589 /* 590 * Search for the first non-free page after pg. 591 * Note that the page may not be the first page in a free pmemrange, 592 * therefore pg->fpgsz cannot be used. 593 */ 594 for (pg_end = pg; pg_end <= vmp->lastpg && 595 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++); 596 return pg_end - pg; 597 } 598 599 /* 600 * Fills out the hibernate_info union pointed to by hiber_info 601 * with information about this machine (swap signature block 602 * offsets, number of memory ranges, kernel in use, etc) 603 */ 604 int 605 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 606 { 607 int chunktable_size; 608 struct disklabel dl; 609 char err_string[128], *dl_ret; 610 611 /* Determine I/O function to use */ 612 hiber_info->io_func = get_hibernate_io_function(); 613 if (hiber_info->io_func == NULL) 614 return (1); 615 616 /* Calculate hibernate device */ 617 hiber_info->device = swdevt[0].sw_dev; 618 619 /* Read disklabel (used to calculate signature and image offsets) */ 620 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 621 622 if (dl_ret) { 623 printf("Hibernate error reading disklabel: %s\n", dl_ret); 624 return (1); 625 } 626 627 hiber_info->secsize = dl.d_secsize; 628 629 /* Make sure the signature can fit in one block */ 630 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 631 632 /* Calculate swap offset from start of disk */ 633 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 634 635 /* Calculate signature block location */ 636 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 637 dl.d_partitions[1].p_size - 638 sizeof(union hibernate_info)/hiber_info->secsize; 639 640 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 641 642 /* Stash kernel version information */ 643 bzero(&hiber_info->kernel_version, 128); 644 bcopy(version, &hiber_info->kernel_version, 645 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 646 647 if (suspend) { 648 /* Allocate piglet region */ 649 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 650 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 651 HIBERNATE_CHUNK_SIZE)) { 652 printf("Hibernate failed to allocate the piglet\n"); 653 return (1); 654 } 655 } 656 657 if (get_hibernate_info_md(hiber_info)) 658 return (1); 659 660 /* Calculate memory image location */ 661 hiber_info->image_offset = dl.d_partitions[1].p_offset + 662 dl.d_partitions[1].p_size - 663 (hiber_info->image_size / hiber_info->secsize) - 664 sizeof(union hibernate_info)/hiber_info->secsize - 665 chunktable_size; 666 667 return (0); 668 } 669 670 /* 671 * Allocate nitems*size bytes from the hiballoc area presently in use 672 */ 673 void 674 *hibernate_zlib_alloc(void *unused, int nitems, int size) 675 { 676 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 677 } 678 679 /* 680 * Free the memory pointed to by addr in the hiballoc area presently in 681 * use 682 */ 683 void 684 hibernate_zlib_free(void *unused, void *addr) 685 { 686 hib_free(&hibernate_state->hiballoc_arena, addr); 687 } 688 689 /* 690 * Inflate size bytes from src into dest, skipping any pages in 691 * [src..dest] that are special (see hibernate_inflate_skip) 692 * 693 * For each page of output data, we map HIBERNATE_TEMP_PAGE 694 * to the current output page, and tell inflate() to inflate 695 * its data there, resulting in the inflated data being placed 696 * at the proper paddr. 697 * 698 * This function executes while using the resume-time stack 699 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 700 * will likely hang or reset the machine. 701 */ 702 void 703 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest, 704 paddr_t src, size_t size) 705 { 706 int i; 707 708 hibernate_state->hib_stream.avail_in = size; 709 hibernate_state->hib_stream.next_in = (char *)src; 710 711 do { 712 /* Flush cache and TLB */ 713 hibernate_flush(); 714 715 /* 716 * Is this a special page? If yes, redirect the 717 * inflate output to a scratch page (eg, discard it) 718 */ 719 if (hibernate_inflate_skip(hiber_info, dest)) 720 hibernate_enter_resume_mapping( 721 HIBERNATE_INFLATE_PAGE, 722 HIBERNATE_INFLATE_PAGE, 0); 723 else 724 hibernate_enter_resume_mapping( 725 HIBERNATE_INFLATE_PAGE, dest, 0); 726 727 /* Set up the stream for inflate */ 728 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 729 hibernate_state->hib_stream.next_out = 730 (char *)HIBERNATE_INFLATE_PAGE; 731 732 /* Process next block of data */ 733 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 734 if (i != Z_OK && i != Z_STREAM_END) { 735 /* 736 * XXX - this will likely reboot/hang most machines, 737 * but there's not much else we can do here. 738 */ 739 panic("inflate error"); 740 } 741 742 dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out; 743 } while (i != Z_STREAM_END); 744 } 745 746 /* 747 * deflate from src into the I/O page, up to 'remaining' bytes 748 * 749 * Returns number of input bytes consumed, and may reset 750 * the 'remaining' parameter if not all the output space was consumed 751 * (this information is needed to know how much to write to disk 752 */ 753 size_t 754 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 755 size_t *remaining) 756 { 757 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 758 759 /* Set up the stream for deflate */ 760 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 761 hibernate_state->hib_stream.avail_out = *remaining; 762 hibernate_state->hib_stream.next_in = (caddr_t)src; 763 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 764 (PAGE_SIZE - *remaining); 765 766 /* Process next block of data */ 767 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 768 panic("hibernate zlib deflate error\n"); 769 770 /* Update pointers and return number of bytes consumed */ 771 *remaining = hibernate_state->hib_stream.avail_out; 772 return (PAGE_SIZE - (src & PAGE_MASK)) - 773 hibernate_state->hib_stream.avail_in; 774 } 775 776 /* 777 * Write the hibernation information specified in hiber_info 778 * to the location in swap previously calculated (last block of 779 * swap), called the "signature block". 780 * 781 * Write the memory chunk table to the area in swap immediately 782 * preceding the signature block. 783 */ 784 int 785 hibernate_write_signature(union hibernate_info *hiber_info) 786 { 787 u_int8_t *io_page; 788 int result = 0; 789 790 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 791 if (!io_page) 792 return (1); 793 794 /* Write hibernate info to disk */ 795 if (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 796 (vaddr_t)hiber_info, hiber_info->secsize, 1, io_page)) 797 result = 1; 798 799 free(io_page, M_DEVBUF); 800 return (result); 801 } 802 803 /* 804 * Write the memory chunk table to the area in swap immediately 805 * preceding the signature block. The chunk table is stored 806 * in the piglet when this function is called. 807 */ 808 int 809 hibernate_write_chunktable(union hibernate_info *hiber_info) 810 { 811 struct hibernate_disk_chunk *chunks; 812 vaddr_t hibernate_chunk_table_start; 813 size_t hibernate_chunk_table_size; 814 u_int8_t *io_page; 815 daddr_t chunkbase; 816 int i; 817 818 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 819 if (!io_page) 820 return (1); 821 822 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 823 824 chunkbase = hiber_info->sig_offset - 825 (hibernate_chunk_table_size / hiber_info->secsize); 826 827 hibernate_chunk_table_start = hiber_info->piglet_va + 828 HIBERNATE_CHUNK_SIZE; 829 830 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 831 HIBERNATE_CHUNK_SIZE); 832 833 /* Write chunk table */ 834 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 835 if (hiber_info->io_func(hiber_info->device, 836 chunkbase + (i/hiber_info->secsize), 837 (vaddr_t)(hibernate_chunk_table_start + i), 838 MAXPHYS, 1, io_page)) { 839 free(io_page, M_DEVBUF); 840 return (1); 841 } 842 } 843 844 free(io_page, M_DEVBUF); 845 return (0); 846 } 847 848 /* 849 * Write an empty hiber_info to the swap signature block, which is 850 * guaranteed to not match any valid hiber_info. 851 */ 852 int 853 hibernate_clear_signature(void) 854 { 855 union hibernate_info blank_hiber_info; 856 union hibernate_info hiber_info; 857 u_int8_t *io_page; 858 859 /* Zero out a blank hiber_info */ 860 bzero(&blank_hiber_info, sizeof(hiber_info)); 861 862 if (get_hibernate_info(&hiber_info, 0)) 863 return (1); 864 865 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 866 if (!io_page) 867 return (1); 868 869 /* Write (zeroed) hibernate info to disk */ 870 /* XXX - use regular kernel write routine for this */ 871 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 872 (vaddr_t)&blank_hiber_info, hiber_info.secsize, 1, io_page)) 873 panic("error hibernate write 6\n"); 874 875 free(io_page, M_DEVBUF); 876 877 return (0); 878 } 879 880 /* 881 * Check chunk range overlap when calculating whether or not to copy a 882 * compressed chunk to the piglet area before decompressing. 883 * 884 * returns zero if the ranges do not overlap, non-zero otherwise. 885 */ 886 int 887 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 888 { 889 /* case A : end of r1 overlaps start of r2 */ 890 if (r1s < r2s && r1e > r2s) 891 return (1); 892 893 /* case B : r1 entirely inside r2 */ 894 if (r1s >= r2s && r1e <= r2e) 895 return (1); 896 897 /* case C : r2 entirely inside r1 */ 898 if (r2s >= r1s && r2e <= r1e) 899 return (1); 900 901 /* case D : end of r2 overlaps start of r1 */ 902 if (r2s < r1s && r2e > r1s) 903 return (1); 904 905 return (0); 906 } 907 908 /* 909 * Compare two hibernate_infos to determine if they are the same (eg, 910 * we should be performing a hibernate resume on this machine. 911 * Not all fields are checked - just enough to verify that the machine 912 * has the same memory configuration and kernel as the one that 913 * wrote the signature previously. 914 */ 915 int 916 hibernate_compare_signature(union hibernate_info *mine, 917 union hibernate_info *disk) 918 { 919 u_int i; 920 921 if (mine->nranges != disk->nranges) 922 return (1); 923 924 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 925 return (1); 926 927 for (i = 0; i < mine->nranges; i++) { 928 if ((mine->ranges[i].base != disk->ranges[i].base) || 929 (mine->ranges[i].end != disk->ranges[i].end) ) 930 return (1); 931 } 932 933 return (0); 934 } 935 936 /* 937 * Reads read_size bytes from the hibernate device specified in 938 * hib_info at offset blkctr. Output is placed into the vaddr specified 939 * at dest. 940 * 941 * Separate offsets and pages are used to handle misaligned reads (reads 942 * that span a page boundary). 943 * 944 * blkctr specifies a relative offset (relative to the start of swap), 945 * not an absolute disk offset 946 * 947 */ 948 int 949 hibernate_read_block(union hibernate_info *hib_info, daddr_t blkctr, 950 size_t read_size, vaddr_t dest) 951 { 952 struct buf *bp; 953 struct bdevsw *bdsw; 954 int error; 955 956 bp = geteblk(read_size); 957 bdsw = &bdevsw[major(hib_info->device)]; 958 959 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 960 if (error) { 961 printf("hibernate_read_block open failed\n"); 962 return (1); 963 } 964 965 bp->b_bcount = read_size; 966 bp->b_blkno = blkctr; 967 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 968 SET(bp->b_flags, B_BUSY | B_READ | B_RAW); 969 bp->b_dev = hib_info->device; 970 bp->b_cylinder = 0; 971 (*bdsw->d_strategy)(bp); 972 973 error = biowait(bp); 974 if (error) { 975 printf("hibernate_read_block biowait failed %d\n", error); 976 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 977 curproc); 978 if (error) 979 printf("hibernate_read_block error close failed\n"); 980 return (1); 981 } 982 983 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 984 if (error) { 985 printf("hibernate_read_block close failed\n"); 986 return (1); 987 } 988 989 bcopy(bp->b_data, (caddr_t)dest, read_size); 990 991 bp->b_flags |= B_INVAL; 992 brelse(bp); 993 994 return (0); 995 } 996 997 /* 998 * Reads the signature block from swap, checks against the current machine's 999 * information. If the information matches, perform a resume by reading the 1000 * saved image into the pig area, and unpacking. 1001 */ 1002 void 1003 hibernate_resume(void) 1004 { 1005 union hibernate_info hiber_info; 1006 u_int8_t *io_page; 1007 int s; 1008 1009 /* Scrub temporary vaddr ranges used during resume */ 1010 hibernate_temp_page = (vaddr_t)NULL; 1011 hibernate_fchunk_area = (vaddr_t)NULL; 1012 hibernate_chunktable_area = (vaddr_t)NULL; 1013 hibernate_stack_page = (vaddr_t)NULL; 1014 1015 /* Get current running machine's hibernate info */ 1016 bzero(&hiber_info, sizeof(hiber_info)); 1017 if (get_hibernate_info(&hiber_info, 0)) 1018 return; 1019 1020 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 1021 if (!io_page) 1022 return; 1023 1024 /* Read hibernate info from disk */ 1025 s = splbio(); 1026 1027 /* XXX use regular kernel read routine here */ 1028 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 1029 (vaddr_t)&disk_hiber_info, hiber_info.secsize, 0, io_page)) 1030 panic("error in hibernate read\n"); 1031 1032 free(io_page, M_DEVBUF); 1033 1034 /* 1035 * If on-disk and in-memory hibernate signatures match, 1036 * this means we should do a resume from hibernate. 1037 */ 1038 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1039 return; 1040 1041 /* 1042 * Allocate several regions of vaddrs for use during read. 1043 * These mappings go into the resuming kernel's page table, and are 1044 * used only during image read. 1045 */ 1046 hibernate_temp_page = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, 1047 &kp_none, &kd_nowait); 1048 if (!hibernate_temp_page) 1049 goto fail; 1050 1051 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1052 &kp_none, &kd_nowait); 1053 if (!hibernate_fchunk_area) 1054 goto fail; 1055 1056 /* Allocate a temporary chunktable area */ 1057 hibernate_chunktable_area = (vaddr_t)malloc(HIBERNATE_CHUNK_TABLE_SIZE, 1058 M_DEVBUF, M_NOWAIT); 1059 if (!hibernate_chunktable_area) 1060 goto fail; 1061 1062 /* Allocate one temporary page of VAs for the resume time stack */ 1063 hibernate_stack_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1064 &kp_none, &kd_nowait); 1065 if (!hibernate_stack_page) 1066 goto fail; 1067 1068 /* Read the image from disk into the image (pig) area */ 1069 if (hibernate_read_image(&disk_hiber_info)) 1070 goto fail; 1071 1072 /* Point of no return ... */ 1073 1074 disable_intr(); 1075 cold = 1; 1076 1077 /* Switch stacks */ 1078 hibernate_switch_stack_machdep(); 1079 1080 /* 1081 * Image is now in high memory (pig area), copy to correct location 1082 * in memory. We'll eventually end up copying on top of ourself, but 1083 * we are assured the kernel code here is the same between the 1084 * hibernated and resuming kernel, and we are running on our own 1085 * stack, so the overwrite is ok. 1086 */ 1087 hibernate_unpack_image(&disk_hiber_info); 1088 1089 /* 1090 * Resume the loaded kernel by jumping to the MD resume vector. 1091 * We won't be returning from this call. 1092 */ 1093 hibernate_resume_machdep(); 1094 1095 fail: 1096 printf("Unable to resume hibernated image\n"); 1097 1098 if (hibernate_temp_page) 1099 km_free((void *)hibernate_temp_page, 2*PAGE_SIZE, &kv_any, 1100 &kp_none); 1101 1102 if (hibernate_fchunk_area) 1103 km_free((void *)hibernate_fchunk_area, 3*PAGE_SIZE, &kv_any, 1104 &kp_none); 1105 1106 if (io_page) 1107 free((void *)io_page, M_DEVBUF); 1108 1109 if (hibernate_chunktable_area) 1110 free((void *)hibernate_chunktable_area, M_DEVBUF); 1111 } 1112 1113 /* 1114 * Unpack image from pig area to original location by looping through the 1115 * list of output chunks in the order they should be restored (fchunks). 1116 * This ordering is used to avoid having inflate overwrite a chunk in the 1117 * middle of processing that chunk. This will, of course, happen during the 1118 * final output chunk, where we copy the chunk to the piglet area first, 1119 * before inflating. 1120 */ 1121 void 1122 hibernate_unpack_image(union hibernate_info *hiber_info) 1123 { 1124 struct hibernate_disk_chunk *chunks; 1125 union hibernate_info local_hiber_info; 1126 paddr_t image_cur = global_pig_start; 1127 vaddr_t tempva; 1128 int *fchunks, i; 1129 char *pva = (char *)hiber_info->piglet_va; 1130 1131 /* Mask off based on arch-specific piglet page size */ 1132 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1133 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1134 1135 /* Copy temporary chunktable to piglet */ 1136 tempva = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1137 &kp_none, &kd_nowait); 1138 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1139 pmap_kenter_pa(tempva + i, hiber_info->piglet_pa + 1140 HIBERNATE_CHUNK_SIZE + i, VM_PROT_ALL); 1141 1142 bcopy((caddr_t)hibernate_chunktable_area, (caddr_t)tempva, 1143 HIBERNATE_CHUNK_TABLE_SIZE); 1144 1145 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1146 1147 /* Can't use hiber_info that's passed in after here */ 1148 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1149 1150 hibernate_activate_resume_pt_machdep(); 1151 1152 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1153 /* Reset zlib for inflate */ 1154 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1155 panic("hibernate failed to reset zlib for inflate\n"); 1156 1157 /* 1158 * If there is a conflict, copy the chunk to the piglet area 1159 * before unpacking it to its original location. 1160 */ 1161 if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1162 hibernate_inflate(&local_hiber_info, 1163 chunks[fchunks[i]].base, image_cur, 1164 chunks[fchunks[i]].compressed_size); 1165 else { 1166 bcopy((caddr_t)image_cur, 1167 pva + (HIBERNATE_CHUNK_SIZE * 2), 1168 chunks[fchunks[i]].compressed_size); 1169 hibernate_inflate(&local_hiber_info, 1170 chunks[fchunks[i]].base, 1171 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1172 chunks[fchunks[i]].compressed_size); 1173 } 1174 image_cur += chunks[fchunks[i]].compressed_size; 1175 } 1176 } 1177 1178 /* 1179 * Write a compressed version of this machine's memory to disk, at the 1180 * precalculated swap offset: 1181 * 1182 * end of swap - signature block size - chunk table size - memory size 1183 * 1184 * The function begins by looping through each phys mem range, cutting each 1185 * one into 4MB chunks. These chunks are then compressed individually 1186 * and written out to disk, in phys mem order. Some chunks might compress 1187 * more than others, and for this reason, each chunk's size is recorded 1188 * in the chunk table, which is written to disk after the image has 1189 * properly been compressed and written (in hibernate_write_chunktable). 1190 * 1191 * When this function is called, the machine is nearly suspended - most 1192 * devices are quiesced/suspended, interrupts are off, and cold has 1193 * been set. This means that there can be no side effects once the 1194 * write has started, and the write function itself can also have no 1195 * side effects. 1196 * 1197 * This function uses the piglet area during this process as follows: 1198 * 1199 * offset from piglet base use 1200 * ----------------------- -------------------- 1201 * 0 i/o allocation area 1202 * PAGE_SIZE i/o write area 1203 * 2*PAGE_SIZE temp/scratch page 1204 * 3*PAGE_SIZE temp/scratch page 1205 * 4*PAGE_SIZE hiballoc arena 1206 * 5*PAGE_SIZE to 85*PAGE_SIZE zlib deflate area 1207 * ... 1208 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1209 * 1210 * Some transient piglet content is saved as part of deflate, 1211 * but it is irrelevant during resume as it will be repurposed 1212 * at that time for other things. 1213 */ 1214 int 1215 hibernate_write_chunks(union hibernate_info *hiber_info) 1216 { 1217 paddr_t range_base, range_end, inaddr, temp_inaddr; 1218 size_t nblocks, out_remaining, used, offset = 0; 1219 struct hibernate_disk_chunk *chunks; 1220 vaddr_t hibernate_alloc_page = hiber_info->piglet_va; 1221 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1222 daddr_t blkctr = hiber_info->image_offset; 1223 int i; 1224 1225 hiber_info->chunk_ctr = 0; 1226 1227 /* 1228 * Allocate VA for the temp and copy page. 1229 */ 1230 1231 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1232 &kp_none, &kd_nowait); 1233 if (!hibernate_temp_page) 1234 return (1); 1235 1236 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1237 &kp_none, &kd_nowait); 1238 if (!hibernate_copy_page) 1239 return (1); 1240 1241 pmap_kenter_pa(hibernate_copy_page, 1242 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1243 1244 /* XXX - not needed on all archs */ 1245 pmap_activate(curproc); 1246 1247 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1248 HIBERNATE_CHUNK_SIZE); 1249 1250 /* Calculate the chunk regions */ 1251 for (i = 0; i < hiber_info->nranges; i++) { 1252 range_base = hiber_info->ranges[i].base; 1253 range_end = hiber_info->ranges[i].end; 1254 1255 inaddr = range_base; 1256 1257 while (inaddr < range_end) { 1258 chunks[hiber_info->chunk_ctr].base = inaddr; 1259 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1260 chunks[hiber_info->chunk_ctr].end = inaddr + 1261 HIBERNATE_CHUNK_SIZE; 1262 else 1263 chunks[hiber_info->chunk_ctr].end = range_end; 1264 1265 inaddr += HIBERNATE_CHUNK_SIZE; 1266 hiber_info->chunk_ctr ++; 1267 } 1268 } 1269 1270 /* Compress and write the chunks in the chunktable */ 1271 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1272 range_base = chunks[i].base; 1273 range_end = chunks[i].end; 1274 1275 chunks[i].offset = blkctr; 1276 1277 /* Reset zlib for deflate */ 1278 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1279 return (1); 1280 1281 inaddr = range_base; 1282 1283 /* 1284 * For each range, loop through its phys mem region 1285 * and write out the chunks (the last chunk might be 1286 * smaller than the chunk size). 1287 */ 1288 while (inaddr < range_end) { 1289 out_remaining = PAGE_SIZE; 1290 while (out_remaining > 0 && inaddr < range_end) { 1291 pmap_kenter_pa(hibernate_temp_page, 1292 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1293 1294 /* XXX - not needed on all archs */ 1295 pmap_activate(curproc); 1296 1297 bcopy((caddr_t)hibernate_temp_page, 1298 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1299 1300 /* 1301 * Adjust for regions that are not evenly 1302 * divisible by PAGE_SIZE 1303 */ 1304 temp_inaddr = (inaddr & PAGE_MASK) + 1305 hibernate_copy_page; 1306 1307 /* Deflate from temp_inaddr to IO page */ 1308 inaddr += hibernate_deflate(hiber_info, 1309 temp_inaddr, &out_remaining); 1310 } 1311 1312 if (out_remaining == 0) { 1313 /* Filled up the page */ 1314 nblocks = PAGE_SIZE / hiber_info->secsize; 1315 1316 if (hiber_info->io_func(hiber_info->device, 1317 blkctr, (vaddr_t)hibernate_io_page, 1318 PAGE_SIZE, 1, (void *)hibernate_alloc_page)) 1319 return (1); 1320 1321 blkctr += nblocks; 1322 } 1323 } 1324 1325 if (inaddr != range_end) 1326 return (1); 1327 1328 /* 1329 * End of range. Round up to next secsize bytes 1330 * after finishing compress 1331 */ 1332 if (out_remaining == 0) 1333 out_remaining = PAGE_SIZE; 1334 1335 /* Finish compress */ 1336 hibernate_state->hib_stream.avail_in = 0; 1337 hibernate_state->hib_stream.avail_out = out_remaining; 1338 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1339 hibernate_state->hib_stream.next_out = 1340 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1341 1342 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1343 Z_STREAM_END) 1344 return (1); 1345 1346 out_remaining = hibernate_state->hib_stream.avail_out; 1347 1348 used = PAGE_SIZE - out_remaining; 1349 nblocks = used / hiber_info->secsize; 1350 1351 /* Round up to next block if needed */ 1352 if (used % hiber_info->secsize != 0) 1353 nblocks ++; 1354 1355 /* Write final block(s) for this chunk */ 1356 if (hiber_info->io_func(hiber_info->device, blkctr, 1357 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1358 1, (void *)hibernate_alloc_page)) 1359 return (1); 1360 1361 blkctr += nblocks; 1362 1363 offset = blkctr; 1364 chunks[i].compressed_size = (offset - chunks[i].offset) * 1365 hiber_info->secsize; 1366 } 1367 1368 return (0); 1369 } 1370 1371 /* 1372 * Reset the zlib stream state and allocate a new hiballoc area for either 1373 * inflate or deflate. This function is called once for each hibernate chunk. 1374 * Calling hiballoc_init multiple times is acceptable since the memory it is 1375 * provided is unmanaged memory (stolen). We use the memory provided to us 1376 * by the piglet allocated via the supplied hiber_info. 1377 */ 1378 int 1379 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1380 { 1381 vaddr_t hibernate_zlib_start; 1382 size_t hibernate_zlib_size; 1383 char *pva = (char *)hiber_info->piglet_va; 1384 1385 hibernate_state = (struct hibernate_zlib_state *) 1386 (pva + (7 * PAGE_SIZE)); 1387 1388 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1389 hibernate_zlib_size = 80 * PAGE_SIZE; 1390 1391 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1392 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1393 1394 /* Set up stream structure */ 1395 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1396 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1397 1398 /* Initialize the hiballoc arena for zlib allocs/frees */ 1399 hiballoc_init(&hibernate_state->hiballoc_arena, 1400 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1401 1402 if (deflate) { 1403 return deflateInit(&hibernate_state->hib_stream, 1404 Z_DEFAULT_COMPRESSION); 1405 } else 1406 return inflateInit(&hibernate_state->hib_stream); 1407 } 1408 1409 /* 1410 * Reads the hibernated memory image from disk, whose location and 1411 * size are recorded in hiber_info. Begin by reading the persisted 1412 * chunk table, which records the original chunk placement location 1413 * and compressed size for each. Next, allocate a pig region of 1414 * sufficient size to hold the compressed image. Next, read the 1415 * chunks into the pig area (calling hibernate_read_chunks to do this), 1416 * and finally, if all of the above succeeds, clear the hibernate signature. 1417 * The function will then return to hibernate_resume, which will proceed 1418 * to unpack the pig image to the correct place in memory. 1419 */ 1420 int 1421 hibernate_read_image(union hibernate_info *hiber_info) 1422 { 1423 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1424 paddr_t image_start, image_end, pig_start, pig_end; 1425 struct hibernate_disk_chunk *chunks; 1426 daddr_t blkctr; 1427 int i; 1428 1429 /* Calculate total chunk table size in disk blocks */ 1430 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1431 1432 blkctr = hiber_info->sig_offset - chunktable_size - 1433 hiber_info->swap_offset; 1434 1435 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1436 i += MAXPHYS, blkctr += MAXPHYS/hiber_info->secsize) 1437 hibernate_read_block(hiber_info, blkctr, MAXPHYS, 1438 hibernate_chunktable_area + i); 1439 1440 blkctr = hiber_info->image_offset; 1441 compressed_size = 0; 1442 chunks = (struct hibernate_disk_chunk *)hibernate_chunktable_area; 1443 1444 for (i = 0; i < hiber_info->chunk_ctr; i++) 1445 compressed_size += chunks[i].compressed_size; 1446 1447 disk_size = compressed_size; 1448 1449 /* Allocate the pig area */ 1450 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1451 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1452 return (1); 1453 1454 pig_end = pig_start + pig_sz; 1455 1456 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1457 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1458 image_start = pig_start; 1459 1460 image_start = image_end - disk_size; 1461 1462 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size); 1463 1464 /* Prepare the resume time pmap/page table */ 1465 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1466 1467 /* Read complete, clear the signature and return */ 1468 return hibernate_clear_signature(); 1469 } 1470 1471 /* 1472 * Read the hibernated memory chunks from disk (chunk information at this 1473 * point is stored in the piglet) into the pig area specified by 1474 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1475 * only chunk with overlap possibilities. 1476 * 1477 * This function uses the piglet area during this process as follows: 1478 * 1479 * offset from piglet base use 1480 * ----------------------- -------------------- 1481 * 0 i/o allocation area 1482 * PAGE_SIZE i/o write area 1483 * 2*PAGE_SIZE temp/scratch page 1484 * 3*PAGE_SIZE temp/scratch page 1485 * 4*PAGE_SIZE to 6*PAGE_SIZE chunk ordering area 1486 * 7*PAGE_SIZE hiballoc arena 1487 * 8*PAGE_SIZE to 88*PAGE_SIZE zlib deflate area 1488 * ... 1489 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1490 */ 1491 int 1492 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1493 paddr_t pig_end, size_t image_compr_size) 1494 { 1495 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1496 paddr_t copy_start, copy_end, piglet_cur; 1497 paddr_t piglet_base = hib_info->piglet_pa; 1498 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1499 daddr_t blkctr; 1500 size_t processed, compressed_size, read_size; 1501 int i, j, overlap, found, nchunks; 1502 int nochunks = 0, nfchunks = 0, npchunks = 0; 1503 struct hibernate_disk_chunk *chunks; 1504 int *ochunks, *pchunks, *fchunks; 1505 1506 global_pig_start = pig_start; 1507 1508 /* XXX - dont need this on all archs */ 1509 pmap_activate(curproc); 1510 1511 /* Temporary output chunk ordering */ 1512 ochunks = (int *)hibernate_fchunk_area; 1513 1514 /* Piglet chunk ordering */ 1515 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1516 1517 /* Final chunk ordering */ 1518 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1519 1520 /* Map the chunk ordering region */ 1521 pmap_kenter_pa(hibernate_fchunk_area, 1522 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1523 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1524 VM_PROT_ALL); 1525 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1526 VM_PROT_ALL); 1527 1528 nchunks = hib_info->chunk_ctr; 1529 chunks = (struct hibernate_disk_chunk *)hibernate_chunktable_area; 1530 1531 /* Initially start all chunks as unplaced */ 1532 for (i = 0; i < nchunks; i++) 1533 chunks[i].flags = 0; 1534 1535 /* 1536 * Search the list for chunks that are outside the pig area. These 1537 * can be placed first in the final output list. 1538 */ 1539 for (i = 0; i < nchunks; i++) { 1540 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1541 ochunks[nochunks] = (u_int8_t)i; 1542 fchunks[nfchunks] = (u_int8_t)i; 1543 nochunks++; 1544 nfchunks++; 1545 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1546 } 1547 } 1548 1549 /* 1550 * Walk the ordering, place the chunks in ascending memory order. 1551 * Conflicts might arise, these are handled next. 1552 */ 1553 do { 1554 img_index = -1; 1555 found = 0; 1556 j = -1; 1557 for (i = 0; i < nchunks; i++) 1558 if (chunks[i].base < img_index && 1559 chunks[i].flags == 0 ) { 1560 j = i; 1561 img_index = chunks[i].base; 1562 } 1563 1564 if (j != -1) { 1565 found = 1; 1566 ochunks[nochunks] = (short)j; 1567 nochunks++; 1568 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1569 } 1570 } while (found); 1571 1572 img_index = pig_start; 1573 1574 /* 1575 * Identify chunk output conflicts (chunks whose pig load area 1576 * corresponds to their original memory placement location) 1577 */ 1578 for (i = 0; i < nochunks ; i++) { 1579 overlap = 0; 1580 r1s = img_index; 1581 r1e = img_index + chunks[ochunks[i]].compressed_size; 1582 r2s = chunks[ochunks[i]].base; 1583 r2e = chunks[ochunks[i]].end; 1584 1585 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1586 if (overlap) 1587 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1588 img_index += chunks[ochunks[i]].compressed_size; 1589 } 1590 1591 /* 1592 * Prepare the final output chunk list. Calculate an output 1593 * inflate strategy for overlapping chunks if needed. 1594 */ 1595 img_index = pig_start; 1596 for (i = 0; i < nochunks ; i++) { 1597 /* 1598 * If a conflict is detected, consume enough compressed 1599 * output chunks to fill the piglet 1600 */ 1601 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1602 copy_start = piglet_base; 1603 copy_end = piglet_end; 1604 piglet_cur = piglet_base; 1605 npchunks = 0; 1606 j = i; 1607 while (copy_start < copy_end && j < nochunks) { 1608 piglet_cur += chunks[ochunks[j]].compressed_size; 1609 pchunks[npchunks] = ochunks[j]; 1610 npchunks++; 1611 copy_start += chunks[ochunks[j]].compressed_size; 1612 img_index += chunks[ochunks[j]].compressed_size; 1613 i++; 1614 j++; 1615 } 1616 1617 piglet_cur = piglet_base; 1618 for (j = 0; j < npchunks; j++) { 1619 piglet_cur += chunks[pchunks[j]].compressed_size; 1620 fchunks[nfchunks] = pchunks[j]; 1621 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1622 nfchunks++; 1623 } 1624 } else { 1625 /* 1626 * No conflict, chunk can be added without copying 1627 */ 1628 if ((chunks[ochunks[i]].flags & 1629 HIBERNATE_CHUNK_USED) == 0) { 1630 fchunks[nfchunks] = ochunks[i]; 1631 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1632 nfchunks++; 1633 } 1634 img_index += chunks[ochunks[i]].compressed_size; 1635 } 1636 } 1637 1638 img_index = pig_start; 1639 for (i = 0; i < nfchunks; i++) { 1640 piglet_cur = piglet_base; 1641 img_index += chunks[fchunks[i]].compressed_size; 1642 } 1643 1644 img_cur = pig_start; 1645 1646 for (i = 0; i < nfchunks; i++) { 1647 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1648 processed = 0; 1649 compressed_size = chunks[fchunks[i]].compressed_size; 1650 1651 while (processed < compressed_size) { 1652 pmap_kenter_pa(hibernate_temp_page, img_cur, 1653 VM_PROT_ALL); 1654 pmap_kenter_pa(hibernate_temp_page + PAGE_SIZE, 1655 img_cur+PAGE_SIZE, VM_PROT_ALL); 1656 1657 /* XXX - not needed on all archs */ 1658 pmap_activate(curproc); 1659 if (compressed_size - processed >= PAGE_SIZE) 1660 read_size = PAGE_SIZE; 1661 else 1662 read_size = compressed_size - processed; 1663 1664 hibernate_read_block(hib_info, blkctr, read_size, 1665 hibernate_temp_page + (img_cur & PAGE_MASK)); 1666 1667 blkctr += (read_size / hib_info->secsize); 1668 1669 hibernate_flush(); 1670 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1671 pmap_kremove(hibernate_temp_page + PAGE_SIZE, 1672 PAGE_SIZE); 1673 processed += read_size; 1674 img_cur += read_size; 1675 } 1676 } 1677 1678 return (0); 1679 } 1680 1681 /* 1682 * Hibernating a machine comprises the following operations: 1683 * 1. Calculating this machine's hibernate_info information 1684 * 2. Allocating a piglet and saving the piglet's physaddr 1685 * 3. Calculating the memory chunks 1686 * 4. Writing the compressed chunks to disk 1687 * 5. Writing the chunk table 1688 * 6. Writing the signature block (hibernate_info) 1689 * 1690 * On most architectures, the function calling hibernate_suspend would 1691 * then power off the machine using some MD-specific implementation. 1692 */ 1693 int 1694 hibernate_suspend(void) 1695 { 1696 union hibernate_info hib_info; 1697 1698 /* 1699 * Calculate memory ranges, swap offsets, etc. 1700 * This also allocates a piglet whose physaddr is stored in 1701 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1702 */ 1703 if (get_hibernate_info(&hib_info, 1)) 1704 return (1); 1705 1706 /* XXX - Won't need to zero everything with RLE */ 1707 uvm_pmr_zero_everything(); 1708 1709 if (hibernate_write_chunks(&hib_info)) 1710 return (1); 1711 1712 if (hibernate_write_chunktable(&hib_info)) 1713 return (1); 1714 1715 if (hibernate_write_signature(&hib_info)) 1716 return (1); 1717 1718 delay(100000); 1719 return (0); 1720 } 1721