1 /* $OpenBSD: subr_hibernate.c,v 1.92 2014/05/31 04:36:59 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, PG_PMAPMASK); 411 412 if (pg->pg_flags & PG_ZERO) 413 uvmexp.zeropages -= sz; 414 atomic_clearbits_int(&pg->pg_flags, 415 PG_ZERO|PQ_FREE); 416 417 pg->uobject = NULL; 418 pg->uanon = NULL; 419 pg->pg_version++; 420 421 /* 422 * Next. 423 */ 424 pg++; 425 sz--; 426 } 427 428 /* Return. */ 429 uvm_unlock_fpageq(); 430 return 0; 431 } 432 433 /* 434 * Allocate a piglet area. 435 * 436 * This is as low as possible. 437 * Piglets are aligned. 438 * 439 * sz and align in bytes. 440 * 441 * The call will sleep for the pagedaemon to attempt to free memory. 442 * The pagedaemon may decide its not possible to free enough memory, causing 443 * the allocation to fail. 444 */ 445 int 446 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 447 { 448 paddr_t pg_addr, piglet_addr; 449 struct uvm_pmemrange *pmr; 450 struct vm_page *pig_pg, *pg; 451 struct pglist pageq; 452 int pdaemon_woken; 453 vaddr_t piglet_va; 454 455 /* Ensure align is a power of 2 */ 456 KASSERT((align & (align - 1)) == 0); 457 458 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 459 460 /* 461 * Fixup arguments: align must be at least PAGE_SIZE, 462 * sz will be converted to pagecount, since that is what 463 * pmemrange uses internally. 464 */ 465 if (align < PAGE_SIZE) 466 align = PAGE_SIZE; 467 sz = round_page(sz); 468 469 uvm_lock_fpageq(); 470 471 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 472 pmr_use) { 473 retry: 474 /* 475 * Search for a range with enough space. 476 * Use the address tree, to ensure the range is as low as 477 * possible. 478 */ 479 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 480 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 481 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 482 483 if (atop(pg_addr) + pig_pg->fpgsz >= 484 atop(piglet_addr) + atop(sz)) 485 goto found; 486 } 487 } 488 489 /* 490 * Try to coerce the pagedaemon into freeing memory 491 * for the piglet. 492 * 493 * pdaemon_woken is set to prevent the code from 494 * falling into an endless loop. 495 */ 496 if (!pdaemon_woken) { 497 pdaemon_woken = 1; 498 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 499 sz, UVM_PLA_FAILOK) == 0) 500 goto retry; 501 } 502 503 /* Return failure. */ 504 uvm_unlock_fpageq(); 505 return ENOMEM; 506 507 found: 508 /* 509 * Extract piglet from pigpen. 510 */ 511 TAILQ_INIT(&pageq); 512 uvm_pmr_extract_range(pmr, pig_pg, 513 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 514 515 *pa = piglet_addr; 516 uvmexp.free -= atop(sz); 517 518 /* 519 * Update pg flags. 520 * 521 * Note that we trash the sz argument now. 522 */ 523 TAILQ_FOREACH(pg, &pageq, pageq) { 524 KASSERT(pg->pg_flags & PQ_FREE); 525 526 atomic_clearbits_int(&pg->pg_flags, PG_PMAPMASK); 527 528 if (pg->pg_flags & PG_ZERO) 529 uvmexp.zeropages--; 530 atomic_clearbits_int(&pg->pg_flags, 531 PG_ZERO|PQ_FREE); 532 533 pg->uobject = NULL; 534 pg->uanon = NULL; 535 pg->pg_version++; 536 } 537 538 uvm_unlock_fpageq(); 539 540 /* 541 * Now allocate a va. 542 * Use direct mappings for the pages. 543 */ 544 545 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 546 if (!piglet_va) { 547 uvm_pglistfree(&pageq); 548 return ENOMEM; 549 } 550 551 /* 552 * Map piglet to va. 553 */ 554 TAILQ_FOREACH(pg, &pageq, pageq) { 555 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 556 piglet_va += PAGE_SIZE; 557 } 558 pmap_update(pmap_kernel()); 559 560 return 0; 561 } 562 563 /* 564 * Free a piglet area. 565 */ 566 void 567 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 568 { 569 paddr_t pa; 570 struct vm_page *pg; 571 572 /* 573 * Fix parameters. 574 */ 575 sz = round_page(sz); 576 577 /* 578 * Find the first page in piglet. 579 * Since piglets are contiguous, the first pg is all we need. 580 */ 581 if (!pmap_extract(pmap_kernel(), va, &pa)) 582 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 583 pg = PHYS_TO_VM_PAGE(pa); 584 if (pg == NULL) 585 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 586 587 /* 588 * Unmap. 589 */ 590 pmap_kremove(va, sz); 591 pmap_update(pmap_kernel()); 592 593 /* 594 * Free the physical and virtual memory. 595 */ 596 uvm_pmr_freepages(pg, atop(sz)); 597 km_free((void *)va, sz, &kv_any, &kp_none); 598 } 599 600 /* 601 * Physmem RLE compression support. 602 * 603 * Given a physical page address, return the number of pages starting at the 604 * address that are free. Clamps to the number of pages in 605 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 606 */ 607 int 608 uvm_page_rle(paddr_t addr) 609 { 610 struct vm_page *pg, *pg_end; 611 struct vm_physseg *vmp; 612 int pseg_idx, off_idx; 613 614 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 615 if (pseg_idx == -1) 616 return 0; 617 618 vmp = &vm_physmem[pseg_idx]; 619 pg = &vmp->pgs[off_idx]; 620 if (!(pg->pg_flags & PQ_FREE)) 621 return 0; 622 623 /* 624 * Search for the first non-free page after pg. 625 * Note that the page may not be the first page in a free pmemrange, 626 * therefore pg->fpgsz cannot be used. 627 */ 628 for (pg_end = pg; pg_end <= vmp->lastpg && 629 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 630 ; 631 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 632 } 633 634 /* 635 * Fills out the hibernate_info union pointed to by hiber_info 636 * with information about this machine (swap signature block 637 * offsets, number of memory ranges, kernel in use, etc) 638 */ 639 int 640 get_hibernate_info(union hibernate_info *hib, int suspend) 641 { 642 int chunktable_size; 643 struct disklabel dl; 644 char err_string[128], *dl_ret; 645 646 /* Determine I/O function to use */ 647 hib->io_func = get_hibernate_io_function(); 648 if (hib->io_func == NULL) 649 return (1); 650 651 /* Calculate hibernate device */ 652 hib->dev = swdevt[0].sw_dev; 653 654 /* Read disklabel (used to calculate signature and image offsets) */ 655 dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128); 656 657 if (dl_ret) { 658 printf("Hibernate error reading disklabel: %s\n", dl_ret); 659 return (1); 660 } 661 662 /* Make sure we have a swap partition. */ 663 if (dl.d_partitions[1].p_fstype != FS_SWAP || 664 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 665 return (1); 666 667 /* Make sure the signature can fit in one block */ 668 if (sizeof(union hibernate_info) > DEV_BSIZE) 669 return (1); 670 671 /* Magic number */ 672 hib->magic = HIBERNATE_MAGIC; 673 674 /* Calculate signature block location */ 675 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 676 sizeof(union hibernate_info)/DEV_BSIZE; 677 678 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 679 680 /* Stash kernel version information */ 681 memset(&hib->kernel_version, 0, 128); 682 bcopy(version, &hib->kernel_version, 683 min(strlen(version), sizeof(hib->kernel_version)-1)); 684 685 if (suspend) { 686 /* Allocate piglet region */ 687 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 688 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 689 HIBERNATE_CHUNK_SIZE)) { 690 printf("Hibernate failed to allocate the piglet\n"); 691 return (1); 692 } 693 hib->io_page = (void *)hib->piglet_va; 694 695 /* 696 * Initialization of the hibernate IO function for drivers 697 * that need to do prep work (such as allocating memory or 698 * setting up data structures that cannot safely be done 699 * during suspend without causing side effects). There is 700 * a matching HIB_DONE call performed after the write is 701 * completed. 702 */ 703 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 704 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 705 HIB_INIT, hib->io_page)) 706 goto fail; 707 708 } else { 709 /* 710 * Resuming kernels use a regular I/O page since we won't 711 * have access to the suspended kernel's piglet VA at this 712 * point. No need to free this I/O page as it will vanish 713 * as part of the resume. 714 */ 715 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 716 if (!hib->io_page) 717 return (1); 718 } 719 720 721 if (get_hibernate_info_md(hib)) 722 goto fail; 723 724 725 return (0); 726 fail: 727 if (suspend) 728 uvm_pmr_free_piglet(hib->piglet_va, 729 HIBERNATE_CHUNK_SIZE * 3); 730 731 return (1); 732 } 733 734 /* 735 * Allocate nitems*size bytes from the hiballoc area presently in use 736 */ 737 void * 738 hibernate_zlib_alloc(void *unused, int nitems, int size) 739 { 740 struct hibernate_zlib_state *hibernate_state; 741 742 hibernate_state = 743 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 744 745 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 746 } 747 748 /* 749 * Free the memory pointed to by addr in the hiballoc area presently in 750 * use 751 */ 752 void 753 hibernate_zlib_free(void *unused, void *addr) 754 { 755 struct hibernate_zlib_state *hibernate_state; 756 757 hibernate_state = 758 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 759 760 hib_free(&hibernate_state->hiballoc_arena, addr); 761 } 762 763 /* 764 * Inflate next page of data from the image stream 765 */ 766 int 767 hibernate_inflate_page(void) 768 { 769 struct hibernate_zlib_state *hibernate_state; 770 int i; 771 772 hibernate_state = 773 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 774 775 /* Set up the stream for inflate */ 776 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 777 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 778 779 /* Process next block of data */ 780 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 781 if (i != Z_OK && i != Z_STREAM_END) { 782 /* 783 * XXX - this will likely reboot/hang most machines 784 * since the console output buffer will be unmapped, 785 * but there's not much else we can do here. 786 */ 787 panic("inflate error"); 788 } 789 790 /* We should always have extracted a full page ... */ 791 if (hibernate_state->hib_stream.avail_out != 0) { 792 /* 793 * XXX - this will likely reboot/hang most machines 794 * since the console output buffer will be unmapped, 795 * but there's not much else we can do here. 796 */ 797 panic("incomplete page"); 798 } 799 800 return (i == Z_STREAM_END); 801 } 802 803 /* 804 * Inflate size bytes from src into dest, skipping any pages in 805 * [src..dest] that are special (see hibernate_inflate_skip) 806 * 807 * This function executes while using the resume-time stack 808 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 809 * will likely hang or reset the machine since the console output buffer 810 * will be unmapped. 811 */ 812 void 813 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 814 paddr_t src, size_t size) 815 { 816 int end_stream = 0 ; 817 struct hibernate_zlib_state *hibernate_state; 818 819 hibernate_state = 820 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 821 822 hibernate_state->hib_stream.next_in = (char *)src; 823 hibernate_state->hib_stream.avail_in = size; 824 825 do { 826 /* 827 * Is this a special page? If yes, redirect the 828 * inflate output to a scratch page (eg, discard it) 829 */ 830 if (hibernate_inflate_skip(hib, dest)) { 831 hibernate_enter_resume_mapping( 832 HIBERNATE_INFLATE_PAGE, 833 HIBERNATE_INFLATE_PAGE, 0); 834 } else { 835 hibernate_enter_resume_mapping( 836 HIBERNATE_INFLATE_PAGE, dest, 0); 837 } 838 839 hibernate_flush(); 840 end_stream = hibernate_inflate_page(); 841 842 dest += PAGE_SIZE; 843 } while (!end_stream); 844 } 845 846 /* 847 * deflate from src into the I/O page, up to 'remaining' bytes 848 * 849 * Returns number of input bytes consumed, and may reset 850 * the 'remaining' parameter if not all the output space was consumed 851 * (this information is needed to know how much to write to disk 852 */ 853 size_t 854 hibernate_deflate(union hibernate_info *hib, paddr_t src, 855 size_t *remaining) 856 { 857 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 858 struct hibernate_zlib_state *hibernate_state; 859 860 hibernate_state = 861 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 862 863 /* Set up the stream for deflate */ 864 hibernate_state->hib_stream.next_in = (caddr_t)src; 865 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 866 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 867 (PAGE_SIZE - *remaining); 868 hibernate_state->hib_stream.avail_out = *remaining; 869 870 /* Process next block of data */ 871 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 872 panic("hibernate zlib deflate error"); 873 874 /* Update pointers and return number of bytes consumed */ 875 *remaining = hibernate_state->hib_stream.avail_out; 876 return (PAGE_SIZE - (src & PAGE_MASK)) - 877 hibernate_state->hib_stream.avail_in; 878 } 879 880 /* 881 * Write the hibernation information specified in hiber_info 882 * to the location in swap previously calculated (last block of 883 * swap), called the "signature block". 884 */ 885 int 886 hibernate_write_signature(union hibernate_info *hib) 887 { 888 /* Write hibernate info to disk */ 889 return (hib->io_func(hib->dev, hib->sig_offset, 890 (vaddr_t)hib, DEV_BSIZE, HIB_W, 891 hib->io_page)); 892 } 893 894 /* 895 * Write the memory chunk table to the area in swap immediately 896 * preceding the signature block. The chunk table is stored 897 * in the piglet when this function is called. Returns errno. 898 */ 899 int 900 hibernate_write_chunktable(union hibernate_info *hib) 901 { 902 struct hibernate_disk_chunk *chunks; 903 vaddr_t hibernate_chunk_table_start; 904 size_t hibernate_chunk_table_size; 905 int i, err; 906 907 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 908 909 hibernate_chunk_table_start = hib->piglet_va + 910 HIBERNATE_CHUNK_SIZE; 911 912 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 913 HIBERNATE_CHUNK_SIZE); 914 915 /* Write chunk table */ 916 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 917 if ((err = hib->io_func(hib->dev, 918 hib->chunktable_offset + (i/DEV_BSIZE), 919 (vaddr_t)(hibernate_chunk_table_start + i), 920 MAXPHYS, HIB_W, hib->io_page))) { 921 DPRINTF("chunktable write error: %d\n", err); 922 return (err); 923 } 924 } 925 926 return (0); 927 } 928 929 /* 930 * Write an empty hiber_info to the swap signature block, which is 931 * guaranteed to not match any valid hib. 932 */ 933 int 934 hibernate_clear_signature(void) 935 { 936 union hibernate_info blank_hiber_info; 937 union hibernate_info hib; 938 939 /* Zero out a blank hiber_info */ 940 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 941 942 /* Get the signature block location */ 943 if (get_hibernate_info(&hib, 0)) 944 return (1); 945 946 /* Write (zeroed) hibernate info to disk */ 947 DPRINTF("clearing hibernate signature block location: %lld\n", 948 hib.sig_offset); 949 if (hibernate_block_io(&hib, 950 hib.sig_offset, 951 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 952 printf("Warning: could not clear hibernate signature\n"); 953 954 return (0); 955 } 956 957 /* 958 * Check chunk range overlap when calculating whether or not to copy a 959 * compressed chunk to the piglet area before decompressing. 960 * 961 * returns zero if the ranges do not overlap, non-zero otherwise. 962 */ 963 int 964 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 965 { 966 /* case A : end of r1 overlaps start of r2 */ 967 if (r1s < r2s && r1e > r2s) 968 return (1); 969 970 /* case B : r1 entirely inside r2 */ 971 if (r1s >= r2s && r1e <= r2e) 972 return (1); 973 974 /* case C : r2 entirely inside r1 */ 975 if (r2s >= r1s && r2e <= r1e) 976 return (1); 977 978 /* case D : end of r2 overlaps start of r1 */ 979 if (r2s < r1s && r2e > r1s) 980 return (1); 981 982 return (0); 983 } 984 985 /* 986 * Compare two hibernate_infos to determine if they are the same (eg, 987 * we should be performing a hibernate resume on this machine. 988 * Not all fields are checked - just enough to verify that the machine 989 * has the same memory configuration and kernel as the one that 990 * wrote the signature previously. 991 */ 992 int 993 hibernate_compare_signature(union hibernate_info *mine, 994 union hibernate_info *disk) 995 { 996 u_int i; 997 998 if (mine->nranges != disk->nranges) { 999 DPRINTF("hibernate memory range count mismatch\n"); 1000 return (1); 1001 } 1002 1003 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1004 DPRINTF("hibernate kernel version mismatch\n"); 1005 return (1); 1006 } 1007 1008 for (i = 0; i < mine->nranges; i++) { 1009 if ((mine->ranges[i].base != disk->ranges[i].base) || 1010 (mine->ranges[i].end != disk->ranges[i].end) ) { 1011 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1012 i, 1013 (void *)mine->ranges[i].base, 1014 (void *)mine->ranges[i].end, 1015 (void *)disk->ranges[i].base, 1016 (void *)disk->ranges[i].end); 1017 return (1); 1018 } 1019 } 1020 1021 return (0); 1022 } 1023 1024 /* 1025 * Transfers xfer_size bytes between the hibernate device specified in 1026 * hib_info at offset blkctr and the vaddr specified at dest. 1027 * 1028 * Separate offsets and pages are used to handle misaligned reads (reads 1029 * that span a page boundary). 1030 * 1031 * blkctr specifies a relative offset (relative to the start of swap), 1032 * not an absolute disk offset 1033 * 1034 */ 1035 int 1036 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1037 size_t xfer_size, vaddr_t dest, int iswrite) 1038 { 1039 struct buf *bp; 1040 struct bdevsw *bdsw; 1041 int error; 1042 1043 bp = geteblk(xfer_size); 1044 bdsw = &bdevsw[major(hib->dev)]; 1045 1046 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1047 if (error) { 1048 printf("hibernate_block_io open failed\n"); 1049 return (1); 1050 } 1051 1052 if (iswrite) 1053 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1054 1055 bp->b_bcount = xfer_size; 1056 bp->b_blkno = blkctr; 1057 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1058 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1059 bp->b_dev = hib->dev; 1060 (*bdsw->d_strategy)(bp); 1061 1062 error = biowait(bp); 1063 if (error) { 1064 printf("hib block_io biowait error %d blk %lld size %zu\n", 1065 error, (long long)blkctr, xfer_size); 1066 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1067 curproc); 1068 if (error) 1069 printf("hibernate_block_io error close failed\n"); 1070 return (1); 1071 } 1072 1073 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1074 if (error) { 1075 printf("hibernate_block_io close failed\n"); 1076 return (1); 1077 } 1078 1079 if (!iswrite) 1080 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1081 1082 bp->b_flags |= B_INVAL; 1083 brelse(bp); 1084 1085 return (0); 1086 } 1087 1088 /* 1089 * Reads the signature block from swap, checks against the current machine's 1090 * information. If the information matches, perform a resume by reading the 1091 * saved image into the pig area, and unpacking. 1092 */ 1093 void 1094 hibernate_resume(void) 1095 { 1096 union hibernate_info hib; 1097 int s; 1098 1099 /* Get current running machine's hibernate info */ 1100 memset(&hib, 0, sizeof(hib)); 1101 if (get_hibernate_info(&hib, 0)) { 1102 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1103 return; 1104 } 1105 1106 /* Read hibernate info from disk */ 1107 s = splbio(); 1108 1109 DPRINTF("reading hibernate signature block location: %lld\n", 1110 hib.sig_offset); 1111 1112 if (hibernate_block_io(&hib, 1113 hib.sig_offset, 1114 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1115 DPRINTF("error in hibernate read"); 1116 splx(s); 1117 return; 1118 } 1119 1120 /* Check magic number */ 1121 if (disk_hib.magic != HIBERNATE_MAGIC) { 1122 DPRINTF("wrong magic number in hibernate signature: %x\n", 1123 disk_hib.magic); 1124 splx(s); 1125 return; 1126 } 1127 1128 /* 1129 * We (possibly) found a hibernate signature. Clear signature first, 1130 * to prevent accidental resume or endless resume cycles later. 1131 */ 1132 if (hibernate_clear_signature()) { 1133 DPRINTF("error clearing hibernate signature block\n"); 1134 splx(s); 1135 return; 1136 } 1137 1138 /* 1139 * If on-disk and in-memory hibernate signatures match, 1140 * this means we should do a resume from hibernate. 1141 */ 1142 if (hibernate_compare_signature(&hib, &disk_hib)) { 1143 DPRINTF("mismatched hibernate signature block\n"); 1144 splx(s); 1145 return; 1146 } 1147 1148 #ifdef MULTIPROCESSOR 1149 hibernate_quiesce_cpus(); 1150 #endif /* MULTIPROCESSOR */ 1151 1152 /* Read the image from disk into the image (pig) area */ 1153 if (hibernate_read_image(&disk_hib)) 1154 goto fail; 1155 1156 if (config_suspend(device_mainbus(), DVACT_QUIESCE) != 0) 1157 goto fail; 1158 1159 (void) splhigh(); 1160 hibernate_disable_intr_machdep(); 1161 cold = 1; 1162 1163 if (config_suspend(device_mainbus(), DVACT_SUSPEND) != 0) { 1164 cold = 0; 1165 hibernate_enable_intr_machdep(); 1166 goto fail; 1167 } 1168 1169 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1170 VM_PROT_ALL); 1171 pmap_activate(curproc); 1172 1173 printf("Unpacking image...\n"); 1174 1175 /* Switch stacks */ 1176 hibernate_switch_stack_machdep(); 1177 1178 /* Unpack and resume */ 1179 hibernate_unpack_image(&disk_hib); 1180 1181 fail: 1182 splx(s); 1183 printf("\nUnable to resume hibernated image\n"); 1184 } 1185 1186 /* 1187 * Unpack image from pig area to original location by looping through the 1188 * list of output chunks in the order they should be restored (fchunks). 1189 * 1190 * Note that due to the stack smash protector and the fact that we have 1191 * switched stacks, it is not permitted to return from this function. 1192 */ 1193 void 1194 hibernate_unpack_image(union hibernate_info *hib) 1195 { 1196 struct hibernate_disk_chunk *chunks; 1197 union hibernate_info local_hib; 1198 paddr_t image_cur = global_pig_start; 1199 short i, *fchunks; 1200 char *pva = (char *)hib->piglet_va; 1201 struct hibernate_zlib_state *hibernate_state; 1202 1203 hibernate_state = 1204 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1205 1206 /* Mask off based on arch-specific piglet page size */ 1207 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1208 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1209 1210 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1211 1212 /* Can't use hiber_info that's passed in after this point */ 1213 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1214 1215 /* 1216 * Point of no return. Once we pass this point, only kernel code can 1217 * be accessed. No global variables or other kernel data structures 1218 * are guaranteed to be coherent after unpack starts. 1219 * 1220 * The image is now in high memory (pig area), we unpack from the pig 1221 * to the correct location in memory. We'll eventually end up copying 1222 * on top of ourself, but we are assured the kernel code here is the 1223 * same between the hibernated and resuming kernel, and we are running 1224 * on our own stack, so the overwrite is ok. 1225 */ 1226 hibernate_activate_resume_pt_machdep(); 1227 1228 for (i = 0; i < local_hib.chunk_ctr; i++) { 1229 /* Reset zlib for inflate */ 1230 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1231 panic("hibernate failed to reset zlib for inflate"); 1232 1233 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1234 image_cur); 1235 1236 image_cur += chunks[fchunks[i]].compressed_size; 1237 1238 } 1239 1240 /* 1241 * Resume the loaded kernel by jumping to the MD resume vector. 1242 * We won't be returning from this call. 1243 */ 1244 hibernate_resume_machdep(); 1245 } 1246 1247 /* 1248 * Bounce a compressed image chunk to the piglet, entering mappings for the 1249 * copied pages as needed 1250 */ 1251 void 1252 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1253 { 1254 size_t ct, ofs; 1255 paddr_t src = img_cur; 1256 vaddr_t dest = piglet; 1257 1258 /* Copy first partial page */ 1259 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1260 ofs = (src & PAGE_MASK); 1261 1262 if (ct < PAGE_SIZE) { 1263 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1264 (src - ofs), 0); 1265 hibernate_flush(); 1266 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1267 src += ct; 1268 dest += ct; 1269 } 1270 1271 /* Copy remaining pages */ 1272 while (src < size + img_cur) { 1273 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1274 hibernate_flush(); 1275 ct = PAGE_SIZE; 1276 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1277 hibernate_flush(); 1278 src += ct; 1279 dest += ct; 1280 } 1281 } 1282 1283 /* 1284 * Process a chunk by bouncing it to the piglet, followed by unpacking 1285 */ 1286 void 1287 hibernate_process_chunk(union hibernate_info *hib, 1288 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1289 { 1290 char *pva = (char *)hib->piglet_va; 1291 1292 hibernate_copy_chunk_to_piglet(img_cur, 1293 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1294 1295 hibernate_inflate_region(hib, chunk->base, 1296 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1297 chunk->compressed_size); 1298 } 1299 1300 /* 1301 * Write a compressed version of this machine's memory to disk, at the 1302 * precalculated swap offset: 1303 * 1304 * end of swap - signature block size - chunk table size - memory size 1305 * 1306 * The function begins by looping through each phys mem range, cutting each 1307 * one into MD sized chunks. These chunks are then compressed individually 1308 * and written out to disk, in phys mem order. Some chunks might compress 1309 * more than others, and for this reason, each chunk's size is recorded 1310 * in the chunk table, which is written to disk after the image has 1311 * properly been compressed and written (in hibernate_write_chunktable). 1312 * 1313 * When this function is called, the machine is nearly suspended - most 1314 * devices are quiesced/suspended, interrupts are off, and cold has 1315 * been set. This means that there can be no side effects once the 1316 * write has started, and the write function itself can also have no 1317 * side effects. This also means no printfs are permitted (since printf 1318 * has side effects.) 1319 * 1320 * Return values : 1321 * 1322 * 0 - success 1323 * EIO - I/O error occurred writing the chunks 1324 * EINVAL - Failed to write a complete range 1325 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1326 */ 1327 int 1328 hibernate_write_chunks(union hibernate_info *hib) 1329 { 1330 paddr_t range_base, range_end, inaddr, temp_inaddr; 1331 size_t nblocks, out_remaining, used; 1332 struct hibernate_disk_chunk *chunks; 1333 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1334 daddr_t blkctr = 0; 1335 int i, err; 1336 struct hibernate_zlib_state *hibernate_state; 1337 1338 hibernate_state = 1339 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1340 1341 hib->chunk_ctr = 0; 1342 1343 /* 1344 * Allocate VA for the temp and copy page. 1345 * 1346 * These will become part of the suspended kernel and will 1347 * be freed in hibernate_free, upon resume. 1348 */ 1349 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1350 &kp_none, &kd_nowait); 1351 if (!hibernate_temp_page) 1352 return (ENOMEM); 1353 1354 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1355 &kp_none, &kd_nowait); 1356 if (!hibernate_copy_page) { 1357 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1358 return (ENOMEM); 1359 } 1360 1361 pmap_kenter_pa(hibernate_copy_page, 1362 (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1363 1364 pmap_activate(curproc); 1365 1366 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1367 HIBERNATE_CHUNK_SIZE); 1368 1369 /* Calculate the chunk regions */ 1370 for (i = 0; i < hib->nranges; i++) { 1371 range_base = hib->ranges[i].base; 1372 range_end = hib->ranges[i].end; 1373 1374 inaddr = range_base; 1375 1376 while (inaddr < range_end) { 1377 chunks[hib->chunk_ctr].base = inaddr; 1378 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1379 chunks[hib->chunk_ctr].end = inaddr + 1380 HIBERNATE_CHUNK_SIZE; 1381 else 1382 chunks[hib->chunk_ctr].end = range_end; 1383 1384 inaddr += HIBERNATE_CHUNK_SIZE; 1385 hib->chunk_ctr ++; 1386 } 1387 } 1388 1389 /* Compress and write the chunks in the chunktable */ 1390 for (i = 0; i < hib->chunk_ctr; i++) { 1391 range_base = chunks[i].base; 1392 range_end = chunks[i].end; 1393 1394 chunks[i].offset = blkctr + hib->image_offset; 1395 1396 /* Reset zlib for deflate */ 1397 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1398 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1399 return (ENOMEM); 1400 } 1401 1402 inaddr = range_base; 1403 1404 /* 1405 * For each range, loop through its phys mem region 1406 * and write out the chunks (the last chunk might be 1407 * smaller than the chunk size). 1408 */ 1409 while (inaddr < range_end) { 1410 out_remaining = PAGE_SIZE; 1411 while (out_remaining > 0 && inaddr < range_end) { 1412 1413 /* 1414 * Adjust for regions that are not evenly 1415 * divisible by PAGE_SIZE or overflowed 1416 * pages from the previous iteration. 1417 */ 1418 temp_inaddr = (inaddr & PAGE_MASK) + 1419 hibernate_copy_page; 1420 1421 /* Deflate from temp_inaddr to IO page */ 1422 if (inaddr != range_end) { 1423 pmap_kenter_pa(hibernate_temp_page, 1424 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1425 1426 pmap_activate(curproc); 1427 1428 bcopy((caddr_t)hibernate_temp_page, 1429 (caddr_t)hibernate_copy_page, 1430 PAGE_SIZE); 1431 inaddr += hibernate_deflate(hib, 1432 temp_inaddr, &out_remaining); 1433 } 1434 1435 if (out_remaining == 0) { 1436 /* Filled up the page */ 1437 nblocks = 1438 PAGE_SIZE / DEV_BSIZE; 1439 1440 if ((err = hib->io_func(hib->dev, 1441 blkctr + hib->image_offset, 1442 (vaddr_t)hibernate_io_page, 1443 PAGE_SIZE, HIB_W, hib->io_page))) { 1444 DPRINTF("hib write error %d\n", 1445 err); 1446 return (err); 1447 } 1448 1449 blkctr += nblocks; 1450 } 1451 } 1452 } 1453 1454 if (inaddr != range_end) { 1455 DPRINTF("deflate range ended prematurely\n"); 1456 return (EINVAL); 1457 } 1458 1459 /* 1460 * End of range. Round up to next secsize bytes 1461 * after finishing compress 1462 */ 1463 if (out_remaining == 0) 1464 out_remaining = PAGE_SIZE; 1465 1466 /* Finish compress */ 1467 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1468 hibernate_state->hib_stream.avail_in = 0; 1469 hibernate_state->hib_stream.next_out = 1470 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1471 1472 /* We have an extra output page available for finalize */ 1473 hibernate_state->hib_stream.avail_out = 1474 out_remaining + PAGE_SIZE; 1475 1476 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1477 Z_STREAM_END) { 1478 DPRINTF("deflate error in output stream: %d\n", err); 1479 return (err); 1480 } 1481 1482 out_remaining = hibernate_state->hib_stream.avail_out; 1483 1484 used = 2*PAGE_SIZE - out_remaining; 1485 nblocks = used / DEV_BSIZE; 1486 1487 /* Round up to next block if needed */ 1488 if (used % DEV_BSIZE != 0) 1489 nblocks ++; 1490 1491 /* Write final block(s) for this chunk */ 1492 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1493 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1494 HIB_W, hib->io_page))) { 1495 DPRINTF("hib final write error %d\n", err); 1496 return (err); 1497 } 1498 1499 blkctr += nblocks; 1500 1501 chunks[i].compressed_size = (blkctr + hib->image_offset - 1502 chunks[i].offset) * DEV_BSIZE; 1503 } 1504 1505 hib->chunktable_offset = hib->image_offset + blkctr; 1506 return (0); 1507 } 1508 1509 /* 1510 * Reset the zlib stream state and allocate a new hiballoc area for either 1511 * inflate or deflate. This function is called once for each hibernate chunk. 1512 * Calling hiballoc_init multiple times is acceptable since the memory it is 1513 * provided is unmanaged memory (stolen). We use the memory provided to us 1514 * by the piglet allocated via the supplied hib. 1515 */ 1516 int 1517 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1518 { 1519 vaddr_t hibernate_zlib_start; 1520 size_t hibernate_zlib_size; 1521 char *pva = (char *)hib->piglet_va; 1522 struct hibernate_zlib_state *hibernate_state; 1523 1524 hibernate_state = 1525 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1526 1527 if (!deflate) 1528 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1529 1530 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1531 hibernate_zlib_size = 80 * PAGE_SIZE; 1532 1533 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1534 memset(hibernate_state, 0, PAGE_SIZE); 1535 1536 /* Set up stream structure */ 1537 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1538 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1539 1540 /* Initialize the hiballoc arena for zlib allocs/frees */ 1541 hiballoc_init(&hibernate_state->hiballoc_arena, 1542 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1543 1544 if (deflate) { 1545 return deflateInit(&hibernate_state->hib_stream, 1546 Z_BEST_SPEED); 1547 } else 1548 return inflateInit(&hibernate_state->hib_stream); 1549 } 1550 1551 /* 1552 * Reads the hibernated memory image from disk, whose location and 1553 * size are recorded in hib. Begin by reading the persisted 1554 * chunk table, which records the original chunk placement location 1555 * and compressed size for each. Next, allocate a pig region of 1556 * sufficient size to hold the compressed image. Next, read the 1557 * chunks into the pig area (calling hibernate_read_chunks to do this), 1558 * and finally, if all of the above succeeds, clear the hibernate signature. 1559 * The function will then return to hibernate_resume, which will proceed 1560 * to unpack the pig image to the correct place in memory. 1561 */ 1562 int 1563 hibernate_read_image(union hibernate_info *hib) 1564 { 1565 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1566 paddr_t image_start, image_end, pig_start, pig_end; 1567 struct hibernate_disk_chunk *chunks; 1568 daddr_t blkctr; 1569 vaddr_t chunktable = (vaddr_t)NULL; 1570 paddr_t piglet_chunktable = hib->piglet_pa + 1571 HIBERNATE_CHUNK_SIZE; 1572 int i, status; 1573 1574 status = 0; 1575 pmap_activate(curproc); 1576 1577 /* Calculate total chunk table size in disk blocks */ 1578 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1579 1580 blkctr = hib->chunktable_offset; 1581 1582 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1583 &kp_none, &kd_nowait); 1584 1585 if (!chunktable) 1586 return (1); 1587 1588 /* Map chunktable pages */ 1589 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1590 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1591 VM_PROT_ALL); 1592 pmap_update(pmap_kernel()); 1593 1594 /* Read the chunktable from disk into the piglet chunktable */ 1595 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1596 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1597 hibernate_block_io(hib, blkctr, MAXPHYS, 1598 chunktable + i, 0); 1599 1600 blkctr = hib->image_offset; 1601 compressed_size = 0; 1602 1603 chunks = (struct hibernate_disk_chunk *)chunktable; 1604 1605 for (i = 0; i < hib->chunk_ctr; i++) 1606 compressed_size += chunks[i].compressed_size; 1607 1608 disk_size = compressed_size; 1609 1610 printf("unhibernating @ block %lld length %lu bytes\n", 1611 hib->sig_offset - chunktable_size, 1612 compressed_size); 1613 1614 /* Allocate the pig area */ 1615 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1616 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) { 1617 status = 1; 1618 goto unmap; 1619 } 1620 1621 pig_end = pig_start + pig_sz; 1622 1623 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1624 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1625 image_start = image_end - disk_size; 1626 1627 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1628 chunks); 1629 1630 /* Prepare the resume time pmap/page table */ 1631 hibernate_populate_resume_pt(hib, image_start, image_end); 1632 1633 unmap: 1634 /* Unmap chunktable pages */ 1635 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1636 pmap_update(pmap_kernel()); 1637 1638 return (status); 1639 } 1640 1641 /* 1642 * Read the hibernated memory chunks from disk (chunk information at this 1643 * point is stored in the piglet) into the pig area specified by 1644 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1645 * only chunk with overlap possibilities. 1646 */ 1647 int 1648 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1649 paddr_t pig_end, size_t image_compr_size, 1650 struct hibernate_disk_chunk *chunks) 1651 { 1652 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1653 paddr_t copy_start, copy_end; 1654 paddr_t piglet_base = hib->piglet_pa; 1655 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1656 daddr_t blkctr; 1657 size_t processed, compressed_size, read_size; 1658 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1659 int num_io_pages; 1660 short *ochunks, *pchunks, *fchunks, i, j; 1661 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1662 1663 global_pig_start = pig_start; 1664 1665 pmap_activate(curproc); 1666 1667 /* 1668 * These mappings go into the resuming kernel's page table, and are 1669 * used only during image read. They dissappear from existence 1670 * when the suspended kernel is unpacked on top of us. 1671 */ 1672 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1673 &kd_nowait); 1674 if (!tempva) 1675 return (1); 1676 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1677 &kp_none, &kd_nowait); 1678 if (!hibernate_fchunk_area) 1679 return (1); 1680 1681 /* Final output chunk ordering VA */ 1682 fchunks = (short *)hibernate_fchunk_area; 1683 1684 /* Piglet chunk ordering VA */ 1685 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1686 1687 /* Final chunk ordering VA */ 1688 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1689 1690 /* Map the chunk ordering region */ 1691 for(i=0; i<24 ; i++) 1692 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1693 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1694 pmap_update(pmap_kernel()); 1695 1696 nchunks = hib->chunk_ctr; 1697 1698 /* Initially start all chunks as unplaced */ 1699 for (i = 0; i < nchunks; i++) 1700 chunks[i].flags = 0; 1701 1702 /* 1703 * Search the list for chunks that are outside the pig area. These 1704 * can be placed first in the final output list. 1705 */ 1706 for (i = 0; i < nchunks; i++) { 1707 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1708 ochunks[nochunks] = i; 1709 fchunks[nfchunks] = i; 1710 nochunks++; 1711 nfchunks++; 1712 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1713 } 1714 } 1715 1716 /* 1717 * Walk the ordering, place the chunks in ascending memory order. 1718 * Conflicts might arise, these are handled next. 1719 */ 1720 do { 1721 img_index = -1; 1722 found = 0; 1723 j = -1; 1724 for (i = 0; i < nchunks; i++) 1725 if (chunks[i].base < img_index && 1726 chunks[i].flags == 0 ) { 1727 j = i; 1728 img_index = chunks[i].base; 1729 } 1730 1731 if (j != -1) { 1732 found = 1; 1733 ochunks[nochunks] = j; 1734 nochunks++; 1735 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1736 } 1737 } while (found); 1738 1739 img_index = pig_start; 1740 1741 /* 1742 * Identify chunk output conflicts (chunks whose pig load area 1743 * corresponds to their original memory placement location) 1744 */ 1745 for (i = 0; i < nochunks ; i++) { 1746 overlap = 0; 1747 r1s = img_index; 1748 r1e = img_index + chunks[ochunks[i]].compressed_size; 1749 r2s = chunks[ochunks[i]].base; 1750 r2e = chunks[ochunks[i]].end; 1751 1752 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1753 if (overlap) 1754 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1755 img_index += chunks[ochunks[i]].compressed_size; 1756 } 1757 1758 /* 1759 * Prepare the final output chunk list. Calculate an output 1760 * inflate strategy for overlapping chunks if needed. 1761 */ 1762 for (i = 0; i < nochunks ; i++) { 1763 /* 1764 * If a conflict is detected, consume enough compressed 1765 * output chunks to fill the piglet 1766 */ 1767 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1768 copy_start = piglet_base; 1769 copy_end = piglet_end; 1770 npchunks = 0; 1771 j = i; 1772 1773 while (copy_start < copy_end && j < nochunks) { 1774 pchunks[npchunks] = ochunks[j]; 1775 npchunks++; 1776 copy_start += 1777 chunks[ochunks[j]].compressed_size; 1778 i++; 1779 j++; 1780 } 1781 1782 for (j = 0; j < npchunks; j++) { 1783 fchunks[nfchunks] = pchunks[j]; 1784 chunks[pchunks[j]].flags |= 1785 HIBERNATE_CHUNK_USED; 1786 nfchunks++; 1787 } 1788 } else { 1789 /* 1790 * No conflict, chunk can be added without copying 1791 */ 1792 if ((chunks[ochunks[i]].flags & 1793 HIBERNATE_CHUNK_USED) == 0) { 1794 fchunks[nfchunks] = ochunks[i]; 1795 chunks[ochunks[i]].flags |= 1796 HIBERNATE_CHUNK_USED; 1797 nfchunks++; 1798 } 1799 } 1800 } 1801 1802 img_cur = pig_start; 1803 1804 for (i = 0; i < nfchunks; i++) { 1805 blkctr = chunks[fchunks[i]].offset; 1806 processed = 0; 1807 compressed_size = chunks[fchunks[i]].compressed_size; 1808 1809 while (processed < compressed_size) { 1810 if (compressed_size - processed >= MAXPHYS) 1811 read_size = MAXPHYS; 1812 else 1813 read_size = compressed_size - processed; 1814 1815 /* 1816 * We're reading read_size bytes, offset from the 1817 * start of a page by img_cur % PAGE_SIZE, so the 1818 * end will be read_size + (img_cur % PAGE_SIZE) 1819 * from the start of the first page. Round that 1820 * up to the next page size. 1821 */ 1822 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1823 + PAGE_SIZE - 1) / PAGE_SIZE; 1824 1825 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1826 1827 /* Map pages for this read */ 1828 for (j = 0; j < num_io_pages; j ++) 1829 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1830 img_cur + j * PAGE_SIZE, VM_PROT_ALL); 1831 1832 pmap_update(pmap_kernel()); 1833 1834 hibernate_block_io(hib, blkctr, read_size, 1835 tempva + (img_cur & PAGE_MASK), 0); 1836 1837 blkctr += (read_size / DEV_BSIZE); 1838 1839 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1840 pmap_update(pmap_kernel()); 1841 1842 processed += read_size; 1843 img_cur += read_size; 1844 } 1845 } 1846 1847 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1848 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1849 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1850 pmap_update(pmap_kernel()); 1851 1852 return (0); 1853 } 1854 1855 /* 1856 * Hibernating a machine comprises the following operations: 1857 * 1. Calculating this machine's hibernate_info information 1858 * 2. Allocating a piglet and saving the piglet's physaddr 1859 * 3. Calculating the memory chunks 1860 * 4. Writing the compressed chunks to disk 1861 * 5. Writing the chunk table 1862 * 6. Writing the signature block (hibernate_info) 1863 * 1864 * On most architectures, the function calling hibernate_suspend would 1865 * then power off the machine using some MD-specific implementation. 1866 */ 1867 int 1868 hibernate_suspend(void) 1869 { 1870 union hibernate_info hib; 1871 u_long start, end; 1872 1873 /* 1874 * Calculate memory ranges, swap offsets, etc. 1875 * This also allocates a piglet whose physaddr is stored in 1876 * hib->piglet_pa and vaddr stored in hib->piglet_va 1877 */ 1878 if (get_hibernate_info(&hib, 1)) { 1879 DPRINTF("failed to obtain hibernate info\n"); 1880 return (1); 1881 } 1882 1883 /* Find a page-addressed region in swap [start,end] */ 1884 if (uvm_hibswap(hib.dev, &start, &end)) { 1885 printf("cannot find any swap\n"); 1886 return (1); 1887 } 1888 1889 if (end - start < 1000) { 1890 printf("%lu\n is too small", end - start); 1891 return (1); 1892 } 1893 1894 /* Calculate block offsets in swap */ 1895 hib.image_offset = ctod(start); 1896 1897 /* XXX side effect */ 1898 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1899 hib.image_offset, ctod(end) - ctod(start)); 1900 1901 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1902 VM_PROT_ALL); 1903 pmap_activate(curproc); 1904 1905 /* Stash the piglet VA so we can free it in the resuming kernel */ 1906 global_piglet_va = hib.piglet_va; 1907 1908 DPRINTF("hibernate: writing chunks\n"); 1909 if (hibernate_write_chunks(&hib)) { 1910 DPRINTF("hibernate_write_chunks failed\n"); 1911 return (1); 1912 } 1913 1914 DPRINTF("hibernate: writing chunktable\n"); 1915 if (hibernate_write_chunktable(&hib)) { 1916 DPRINTF("hibernate_write_chunktable failed\n"); 1917 return (1); 1918 } 1919 1920 DPRINTF("hibernate: writing signature\n"); 1921 if (hibernate_write_signature(&hib)) { 1922 DPRINTF("hibernate_write_signature failed\n"); 1923 return (1); 1924 } 1925 1926 /* Allow the disk to settle */ 1927 delay(500000); 1928 1929 /* 1930 * Give the device-specific I/O function a notification that we're 1931 * done, and that it can clean up or shutdown as needed. 1932 */ 1933 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1934 1935 return (0); 1936 } 1937 1938 /* 1939 * Free items allocated by hibernate_suspend() 1940 */ 1941 void 1942 hibernate_free(void) 1943 { 1944 if (global_piglet_va) 1945 uvm_pmr_free_piglet(global_piglet_va, 1946 3*HIBERNATE_CHUNK_SIZE); 1947 1948 if (hibernate_copy_page) 1949 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1950 if (hibernate_temp_page) 1951 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1952 1953 pmap_update(pmap_kernel()); 1954 1955 if (hibernate_copy_page) 1956 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1957 &kv_any, &kp_none); 1958 if (hibernate_temp_page) 1959 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1960 &kv_any, &kp_none); 1961 1962 global_piglet_va = 0; 1963 hibernate_copy_page = 0; 1964 hibernate_temp_page = 0; 1965 } 1966