xref: /openbsd-src/sys/kern/subr_hibernate.c (revision 91ba896db697da68a85cad0ccf0e596c2e766af5)
1 /*	$OpenBSD: subr_hibernate.c,v 1.83 2014/01/21 01:48:44 tedu Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <uvm/uvm.h>
32 #include <uvm/uvm_swap.h>
33 #include <machine/hibernate.h>
34 
35 /*
36  * Hibernate piglet layout information
37  *
38  * The piglet is a scratch area of memory allocated by the suspending kernel.
39  * Its phys and virt addrs are recorded in the signature block. The piglet is
40  * used to guarantee an unused area of memory that can be used by the resuming
41  * kernel for various things. The piglet is excluded during unpack operations.
42  * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB).
43  *
44  * Offset from piglet_base	Purpose
45  * ----------------------------------------------------------------------------
46  * 0				I/O page used during resume
47  * 1*PAGE_SIZE		 	I/O page used during hibernate suspend
48  * 2*PAGE_SIZE		 	I/O page used during hibernate suspend
49  * 3*PAGE_SIZE			copy page used during hibernate suspend
50  * 4*PAGE_SIZE			final chunk ordering list (8 pages)
51  * 12*PAGE_SIZE			piglet chunk ordering list (8 pages)
52  * 20*PAGE_SIZE			temp chunk ordering list (8 pages)
53  * 28*PAGE_SIZE			start of hiballoc area
54  * 108*PAGE_SIZE		end of hiballoc area (80 pages)
55  * ...				unused
56  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
57  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
58  * 3*HIBERNATE_CHUNK_SIZE	end of piglet
59  */
60 
61 /* Temporary vaddr ranges used during hibernate */
62 vaddr_t hibernate_temp_page;
63 vaddr_t hibernate_copy_page;
64 
65 /* Hibernate info as read from disk during resume */
66 union hibernate_info disk_hib;
67 paddr_t global_pig_start;
68 vaddr_t global_piglet_va;
69 
70 /* #define HIB_DEBUG */
71 #ifdef HIB_DEBUG
72 int	hib_debug = 99;
73 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
74 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
75 #else
76 #define DPRINTF(x...)
77 #define DNPRINTF(n,x...)
78 #endif
79 
80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
81 
82 /*
83  * Hib alloc enforced alignment.
84  */
85 #define HIB_ALIGN		8 /* bytes alignment */
86 
87 /*
88  * sizeof builtin operation, but with alignment constraint.
89  */
90 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
91 
92 struct hiballoc_entry {
93 	size_t			hibe_use;
94 	size_t			hibe_space;
95 	RB_ENTRY(hiballoc_entry) hibe_entry;
96 };
97 
98 /*
99  * Compare hiballoc entries based on the address they manage.
100  *
101  * Since the address is fixed, relative to struct hiballoc_entry,
102  * we just compare the hiballoc_entry pointers.
103  */
104 static __inline int
105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
106 {
107 	return l < r ? -1 : (l > r);
108 }
109 
110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
111 
112 /*
113  * Given a hiballoc entry, return the address it manages.
114  */
115 static __inline void *
116 hib_entry_to_addr(struct hiballoc_entry *entry)
117 {
118 	caddr_t addr;
119 
120 	addr = (caddr_t)entry;
121 	addr += HIB_SIZEOF(struct hiballoc_entry);
122 	return addr;
123 }
124 
125 /*
126  * Given an address, find the hiballoc that corresponds.
127  */
128 static __inline struct hiballoc_entry*
129 hib_addr_to_entry(void *addr_param)
130 {
131 	caddr_t addr;
132 
133 	addr = (caddr_t)addr_param;
134 	addr -= HIB_SIZEOF(struct hiballoc_entry);
135 	return (struct hiballoc_entry*)addr;
136 }
137 
138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
139 
140 /*
141  * Allocate memory from the arena.
142  *
143  * Returns NULL if no memory is available.
144  */
145 void *
146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
147 {
148 	struct hiballoc_entry *entry, *new_entry;
149 	size_t find_sz;
150 
151 	/*
152 	 * Enforce alignment of HIB_ALIGN bytes.
153 	 *
154 	 * Note that, because the entry is put in front of the allocation,
155 	 * 0-byte allocations are guaranteed a unique address.
156 	 */
157 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
158 
159 	/*
160 	 * Find an entry with hibe_space >= find_sz.
161 	 *
162 	 * If the root node is not large enough, we switch to tree traversal.
163 	 * Because all entries are made at the bottom of the free space,
164 	 * traversal from the end has a slightly better chance of yielding
165 	 * a sufficiently large space.
166 	 */
167 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
168 	entry = RB_ROOT(&arena->hib_addrs);
169 	if (entry != NULL && entry->hibe_space < find_sz) {
170 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
171 			if (entry->hibe_space >= find_sz)
172 				break;
173 		}
174 	}
175 
176 	/*
177 	 * Insufficient or too fragmented memory.
178 	 */
179 	if (entry == NULL)
180 		return NULL;
181 
182 	/*
183 	 * Create new entry in allocated space.
184 	 */
185 	new_entry = (struct hiballoc_entry*)(
186 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
187 	new_entry->hibe_space = entry->hibe_space - find_sz;
188 	new_entry->hibe_use = alloc_sz;
189 
190 	/*
191 	 * Insert entry.
192 	 */
193 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
194 		panic("hib_alloc: insert failure");
195 	entry->hibe_space = 0;
196 
197 	/* Return address managed by entry. */
198 	return hib_entry_to_addr(new_entry);
199 }
200 
201 /*
202  * Free a pointer previously allocated from this arena.
203  *
204  * If addr is NULL, this will be silently accepted.
205  */
206 void
207 hib_free(struct hiballoc_arena *arena, void *addr)
208 {
209 	struct hiballoc_entry *entry, *prev;
210 
211 	if (addr == NULL)
212 		return;
213 
214 	/*
215 	 * Derive entry from addr and check it is really in this arena.
216 	 */
217 	entry = hib_addr_to_entry(addr);
218 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
219 		panic("hib_free: freed item %p not in hib arena", addr);
220 
221 	/*
222 	 * Give the space in entry to its predecessor.
223 	 *
224 	 * If entry has no predecessor, change its used space into free space
225 	 * instead.
226 	 */
227 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
228 	if (prev != NULL &&
229 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
230 	    prev->hibe_use + prev->hibe_space) == entry) {
231 		/* Merge entry. */
232 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
233 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
234 		    entry->hibe_use + entry->hibe_space;
235 	} else {
236 		/* Flip used memory to free space. */
237 		entry->hibe_space += entry->hibe_use;
238 		entry->hibe_use = 0;
239 	}
240 }
241 
242 /*
243  * Initialize hiballoc.
244  *
245  * The allocator will manage memmory at ptr, which is len bytes.
246  */
247 int
248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
249 {
250 	struct hiballoc_entry *entry;
251 	caddr_t ptr;
252 	size_t len;
253 
254 	RB_INIT(&arena->hib_addrs);
255 
256 	/*
257 	 * Hib allocator enforces HIB_ALIGN alignment.
258 	 * Fixup ptr and len.
259 	 */
260 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
261 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
262 	len &= ~((size_t)HIB_ALIGN - 1);
263 
264 	/*
265 	 * Insufficient memory to be able to allocate and also do bookkeeping.
266 	 */
267 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
268 		return ENOMEM;
269 
270 	/*
271 	 * Create entry describing space.
272 	 */
273 	entry = (struct hiballoc_entry*)ptr;
274 	entry->hibe_use = 0;
275 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
276 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
277 
278 	return 0;
279 }
280 
281 /*
282  * Zero all free memory.
283  */
284 void
285 uvm_pmr_zero_everything(void)
286 {
287 	struct uvm_pmemrange	*pmr;
288 	struct vm_page		*pg;
289 	int			 i;
290 
291 	uvm_lock_fpageq();
292 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
293 		/* Zero single pages. */
294 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
295 		    != NULL) {
296 			uvm_pmr_remove(pmr, pg);
297 			uvm_pagezero(pg);
298 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
299 			uvmexp.zeropages++;
300 			uvm_pmr_insert(pmr, pg, 0);
301 		}
302 
303 		/* Zero multi page ranges. */
304 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
305 		    != NULL) {
306 			pg--; /* Size tree always has second page. */
307 			uvm_pmr_remove(pmr, pg);
308 			for (i = 0; i < pg->fpgsz; i++) {
309 				uvm_pagezero(&pg[i]);
310 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
311 				uvmexp.zeropages++;
312 			}
313 			uvm_pmr_insert(pmr, pg, 0);
314 		}
315 	}
316 	uvm_unlock_fpageq();
317 }
318 
319 /*
320  * Mark all memory as dirty.
321  *
322  * Used to inform the system that the clean memory isn't clean for some
323  * reason, for example because we just came back from hibernate.
324  */
325 void
326 uvm_pmr_dirty_everything(void)
327 {
328 	struct uvm_pmemrange	*pmr;
329 	struct vm_page		*pg;
330 	int			 i;
331 
332 	uvm_lock_fpageq();
333 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
334 		/* Dirty single pages. */
335 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
336 		    != NULL) {
337 			uvm_pmr_remove(pmr, pg);
338 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
339 			uvm_pmr_insert(pmr, pg, 0);
340 		}
341 
342 		/* Dirty multi page ranges. */
343 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
344 		    != NULL) {
345 			pg--; /* Size tree always has second page. */
346 			uvm_pmr_remove(pmr, pg);
347 			for (i = 0; i < pg->fpgsz; i++)
348 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
349 			uvm_pmr_insert(pmr, pg, 0);
350 		}
351 	}
352 
353 	uvmexp.zeropages = 0;
354 	uvm_unlock_fpageq();
355 }
356 
357 /*
358  * Allocate the highest address that can hold sz.
359  *
360  * sz in bytes.
361  */
362 int
363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
364 {
365 	struct uvm_pmemrange	*pmr;
366 	struct vm_page		*pig_pg, *pg;
367 
368 	/*
369 	 * Convert sz to pages, since that is what pmemrange uses internally.
370 	 */
371 	sz = atop(round_page(sz));
372 
373 	uvm_lock_fpageq();
374 
375 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
376 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
377 			if (pig_pg->fpgsz >= sz) {
378 				goto found;
379 			}
380 		}
381 	}
382 
383 	/*
384 	 * Allocation failure.
385 	 */
386 	uvm_unlock_fpageq();
387 	return ENOMEM;
388 
389 found:
390 	/* Remove page from freelist. */
391 	uvm_pmr_remove_size(pmr, pig_pg);
392 	pig_pg->fpgsz -= sz;
393 	pg = pig_pg + pig_pg->fpgsz;
394 	if (pig_pg->fpgsz == 0)
395 		uvm_pmr_remove_addr(pmr, pig_pg);
396 	else
397 		uvm_pmr_insert_size(pmr, pig_pg);
398 
399 	uvmexp.free -= sz;
400 	*addr = VM_PAGE_TO_PHYS(pg);
401 
402 	/*
403 	 * Update pg flags.
404 	 *
405 	 * Note that we trash the sz argument now.
406 	 */
407 	while (sz > 0) {
408 		KASSERT(pg->pg_flags & PQ_FREE);
409 
410 		atomic_clearbits_int(&pg->pg_flags,
411 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
412 
413 		if (pg->pg_flags & PG_ZERO)
414 			uvmexp.zeropages -= sz;
415 		atomic_clearbits_int(&pg->pg_flags,
416 		    PG_ZERO|PQ_FREE);
417 
418 		pg->uobject = NULL;
419 		pg->uanon = NULL;
420 		pg->pg_version++;
421 
422 		/*
423 		 * Next.
424 		 */
425 		pg++;
426 		sz--;
427 	}
428 
429 	/* Return. */
430 	uvm_unlock_fpageq();
431 	return 0;
432 }
433 
434 /*
435  * Allocate a piglet area.
436  *
437  * This is as low as possible.
438  * Piglets are aligned.
439  *
440  * sz and align in bytes.
441  *
442  * The call will sleep for the pagedaemon to attempt to free memory.
443  * The pagedaemon may decide its not possible to free enough memory, causing
444  * the allocation to fail.
445  */
446 int
447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
448 {
449 	paddr_t			 pg_addr, piglet_addr;
450 	struct uvm_pmemrange	*pmr;
451 	struct vm_page		*pig_pg, *pg;
452 	struct pglist		 pageq;
453 	int			 pdaemon_woken;
454 	vaddr_t			 piglet_va;
455 
456 	/* Ensure align is a power of 2 */
457 	KASSERT((align & (align - 1)) == 0);
458 
459 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
460 
461 	/*
462 	 * Fixup arguments: align must be at least PAGE_SIZE,
463 	 * sz will be converted to pagecount, since that is what
464 	 * pmemrange uses internally.
465 	 */
466 	if (align < PAGE_SIZE)
467 		align = PAGE_SIZE;
468 	sz = round_page(sz);
469 
470 	uvm_lock_fpageq();
471 
472 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
473 	    pmr_use) {
474 retry:
475 		/*
476 		 * Search for a range with enough space.
477 		 * Use the address tree, to ensure the range is as low as
478 		 * possible.
479 		 */
480 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
481 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
482 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
483 
484 			if (atop(pg_addr) + pig_pg->fpgsz >=
485 			    atop(piglet_addr) + atop(sz))
486 				goto found;
487 		}
488 	}
489 
490 	/*
491 	 * Try to coerce the pagedaemon into freeing memory
492 	 * for the piglet.
493 	 *
494 	 * pdaemon_woken is set to prevent the code from
495 	 * falling into an endless loop.
496 	 */
497 	if (!pdaemon_woken) {
498 		pdaemon_woken = 1;
499 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
500 		    sz, UVM_PLA_FAILOK) == 0)
501 			goto retry;
502 	}
503 
504 	/* Return failure. */
505 	uvm_unlock_fpageq();
506 	return ENOMEM;
507 
508 found:
509 	/*
510 	 * Extract piglet from pigpen.
511 	 */
512 	TAILQ_INIT(&pageq);
513 	uvm_pmr_extract_range(pmr, pig_pg,
514 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
515 
516 	*pa = piglet_addr;
517 	uvmexp.free -= atop(sz);
518 
519 	/*
520 	 * Update pg flags.
521 	 *
522 	 * Note that we trash the sz argument now.
523 	 */
524 	TAILQ_FOREACH(pg, &pageq, pageq) {
525 		KASSERT(pg->pg_flags & PQ_FREE);
526 
527 		atomic_clearbits_int(&pg->pg_flags,
528 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
529 
530 		if (pg->pg_flags & PG_ZERO)
531 			uvmexp.zeropages--;
532 		atomic_clearbits_int(&pg->pg_flags,
533 		    PG_ZERO|PQ_FREE);
534 
535 		pg->uobject = NULL;
536 		pg->uanon = NULL;
537 		pg->pg_version++;
538 	}
539 
540 	uvm_unlock_fpageq();
541 
542 	/*
543 	 * Now allocate a va.
544 	 * Use direct mappings for the pages.
545 	 */
546 
547 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
548 	if (!piglet_va) {
549 		uvm_pglistfree(&pageq);
550 		return ENOMEM;
551 	}
552 
553 	/*
554 	 * Map piglet to va.
555 	 */
556 	TAILQ_FOREACH(pg, &pageq, pageq) {
557 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
558 		piglet_va += PAGE_SIZE;
559 	}
560 	pmap_update(pmap_kernel());
561 
562 	return 0;
563 }
564 
565 /*
566  * Free a piglet area.
567  */
568 void
569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
570 {
571 	paddr_t			 pa;
572 	struct vm_page		*pg;
573 
574 	/*
575 	 * Fix parameters.
576 	 */
577 	sz = round_page(sz);
578 
579 	/*
580 	 * Find the first page in piglet.
581 	 * Since piglets are contiguous, the first pg is all we need.
582 	 */
583 	if (!pmap_extract(pmap_kernel(), va, &pa))
584 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
585 	pg = PHYS_TO_VM_PAGE(pa);
586 	if (pg == NULL)
587 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
588 
589 	/*
590 	 * Unmap.
591 	 */
592 	pmap_kremove(va, sz);
593 	pmap_update(pmap_kernel());
594 
595 	/*
596 	 * Free the physical and virtual memory.
597 	 */
598 	uvm_pmr_freepages(pg, atop(sz));
599 	km_free((void *)va, sz, &kv_any, &kp_none);
600 }
601 
602 /*
603  * Physmem RLE compression support.
604  *
605  * Given a physical page address, return the number of pages starting at the
606  * address that are free.  Clamps to the number of pages in
607  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
608  */
609 int
610 uvm_page_rle(paddr_t addr)
611 {
612 	struct vm_page		*pg, *pg_end;
613 	struct vm_physseg	*vmp;
614 	int			 pseg_idx, off_idx;
615 
616 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
617 	if (pseg_idx == -1)
618 		return 0;
619 
620 	vmp = &vm_physmem[pseg_idx];
621 	pg = &vmp->pgs[off_idx];
622 	if (!(pg->pg_flags & PQ_FREE))
623 		return 0;
624 
625 	/*
626 	 * Search for the first non-free page after pg.
627 	 * Note that the page may not be the first page in a free pmemrange,
628 	 * therefore pg->fpgsz cannot be used.
629 	 */
630 	for (pg_end = pg; pg_end <= vmp->lastpg &&
631 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
632 		;
633 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
634 }
635 
636 /*
637  * Fills out the hibernate_info union pointed to by hiber_info
638  * with information about this machine (swap signature block
639  * offsets, number of memory ranges, kernel in use, etc)
640  */
641 int
642 get_hibernate_info(union hibernate_info *hib, int suspend)
643 {
644 	int chunktable_size;
645 	struct disklabel dl;
646 	char err_string[128], *dl_ret;
647 
648 	/* Determine I/O function to use */
649 	hib->io_func = get_hibernate_io_function();
650 	if (hib->io_func == NULL)
651 		return (1);
652 
653 	/* Calculate hibernate device */
654 	hib->dev = swdevt[0].sw_dev;
655 
656 	/* Read disklabel (used to calculate signature and image offsets) */
657 	dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128);
658 
659 	if (dl_ret) {
660 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
661 		return (1);
662 	}
663 
664 	/* Make sure we have a swap partition. */
665 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
666 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
667 		return (1);
668 
669 	/* Make sure the signature can fit in one block */
670 	if (sizeof(union hibernate_info) > DEV_BSIZE)
671 		return (1);
672 
673 	/* Magic number */
674 	hib->magic = HIBERNATE_MAGIC;
675 
676 	/* Calculate signature block location */
677 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
678 	    sizeof(union hibernate_info)/DEV_BSIZE;
679 
680 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
681 
682 	/* Stash kernel version information */
683 	memset(&hib->kernel_version, 0, 128);
684 	bcopy(version, &hib->kernel_version,
685 	    min(strlen(version), sizeof(hib->kernel_version)-1));
686 
687 	if (suspend) {
688 		/* Allocate piglet region */
689 		if (uvm_pmr_alloc_piglet(&hib->piglet_va,
690 		    &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
691 		    HIBERNATE_CHUNK_SIZE)) {
692 			printf("Hibernate failed to allocate the piglet\n");
693 			return (1);
694 		}
695 		hib->io_page = (void *)hib->piglet_va;
696 
697 		/*
698 		 * Initialization of the hibernate IO function for drivers
699 		 * that need to do prep work (such as allocating memory or
700 		 * setting up data structures that cannot safely be done
701 		 * during suspend without causing side effects). There is
702 		 * a matching HIB_DONE call performed after the write is
703 		 * completed.
704 		 */
705 		if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
706 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
707 		    HIB_INIT, hib->io_page))
708 			goto fail;
709 
710 	} else {
711 		/*
712 		 * Resuming kernels use a regular I/O page since we won't
713 		 * have access to the suspended kernel's piglet VA at this
714 		 * point. No need to free this I/O page as it will vanish
715 		 * as part of the resume.
716 		 */
717 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
718 		if (!hib->io_page)
719 			return (1);
720 	}
721 
722 
723 	if (get_hibernate_info_md(hib))
724 		goto fail;
725 
726 
727 	return (0);
728 fail:
729 	if (suspend)
730 		uvm_pmr_free_piglet(hib->piglet_va,
731 		    HIBERNATE_CHUNK_SIZE * 3);
732 
733 	return (1);
734 }
735 
736 /*
737  * Allocate nitems*size bytes from the hiballoc area presently in use
738  */
739 void *
740 hibernate_zlib_alloc(void *unused, int nitems, int size)
741 {
742 	struct hibernate_zlib_state *hibernate_state;
743 
744 	hibernate_state =
745 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
746 
747 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
748 }
749 
750 /*
751  * Free the memory pointed to by addr in the hiballoc area presently in
752  * use
753  */
754 void
755 hibernate_zlib_free(void *unused, void *addr)
756 {
757 	struct hibernate_zlib_state *hibernate_state;
758 
759 	hibernate_state =
760 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
761 
762 	hib_free(&hibernate_state->hiballoc_arena, addr);
763 }
764 
765 /*
766  * Inflate next page of data from the image stream
767  */
768 int
769 hibernate_inflate_page(void)
770 {
771 	struct hibernate_zlib_state *hibernate_state;
772 	int i;
773 
774 	hibernate_state =
775 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
776 
777 	/* Set up the stream for inflate */
778 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
779 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
780 
781 	/* Process next block of data */
782 	i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
783 	if (i != Z_OK && i != Z_STREAM_END) {
784 		/*
785 		 * XXX - this will likely reboot/hang most machines
786 		 *       since the console output buffer will be unmapped,
787 		 *       but there's not much else we can do here.
788 		 */
789 		panic("inflate error");
790 	}
791 
792 	/* We should always have extracted a full page ... */
793 	if (hibernate_state->hib_stream.avail_out != 0) {
794 		/*
795 		 * XXX - this will likely reboot/hang most machines
796 		 *       since the console output buffer will be unmapped,
797 		 *       but there's not much else we can do here.
798 		 */
799 		panic("incomplete page");
800 	}
801 
802 	return (i == Z_STREAM_END);
803 }
804 
805 /*
806  * Inflate size bytes from src into dest, skipping any pages in
807  * [src..dest] that are special (see hibernate_inflate_skip)
808  *
809  * This function executes while using the resume-time stack
810  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
811  * will likely hang or reset the machine since the console output buffer
812  * will be unmapped.
813  */
814 void
815 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
816     paddr_t src, size_t size)
817 {
818 	int end_stream = 0 ;
819 	struct hibernate_zlib_state *hibernate_state;
820 
821 	hibernate_state =
822 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
823 
824 	hibernate_state->hib_stream.next_in = (char *)src;
825 	hibernate_state->hib_stream.avail_in = size;
826 
827 	do {
828 		/* Flush cache and TLB */
829 		hibernate_flush();
830 
831 		/*
832 		 * Is this a special page? If yes, redirect the
833 		 * inflate output to a scratch page (eg, discard it)
834 		 */
835 		if (hibernate_inflate_skip(hib, dest)) {
836 			hibernate_enter_resume_mapping(
837 			    HIBERNATE_INFLATE_PAGE,
838 			    HIBERNATE_INFLATE_PAGE, 0);
839 		} else {
840 			hibernate_enter_resume_mapping(
841 			    HIBERNATE_INFLATE_PAGE, dest, 0);
842 		}
843 
844 		hibernate_flush();
845 		end_stream = hibernate_inflate_page();
846 
847 		dest += PAGE_SIZE;
848 	} while (!end_stream);
849 }
850 
851 /*
852  * deflate from src into the I/O page, up to 'remaining' bytes
853  *
854  * Returns number of input bytes consumed, and may reset
855  * the 'remaining' parameter if not all the output space was consumed
856  * (this information is needed to know how much to write to disk
857  */
858 size_t
859 hibernate_deflate(union hibernate_info *hib, paddr_t src,
860     size_t *remaining)
861 {
862 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
863 	struct hibernate_zlib_state *hibernate_state;
864 
865 	hibernate_state =
866 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
867 
868 	/* Set up the stream for deflate */
869 	hibernate_state->hib_stream.next_in = (caddr_t)src;
870 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
871 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
872 	    (PAGE_SIZE - *remaining);
873 	hibernate_state->hib_stream.avail_out = *remaining;
874 
875 	/* Process next block of data */
876 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
877 		panic("hibernate zlib deflate error");
878 
879 	/* Update pointers and return number of bytes consumed */
880 	*remaining = hibernate_state->hib_stream.avail_out;
881 	return (PAGE_SIZE - (src & PAGE_MASK)) -
882 	    hibernate_state->hib_stream.avail_in;
883 }
884 
885 /*
886  * Write the hibernation information specified in hiber_info
887  * to the location in swap previously calculated (last block of
888  * swap), called the "signature block".
889  */
890 int
891 hibernate_write_signature(union hibernate_info *hib)
892 {
893 	/* Write hibernate info to disk */
894 	return (hib->io_func(hib->dev, hib->sig_offset,
895 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
896 	    hib->io_page));
897 }
898 
899 /*
900  * Write the memory chunk table to the area in swap immediately
901  * preceding the signature block. The chunk table is stored
902  * in the piglet when this function is called.  Returns errno.
903  */
904 int
905 hibernate_write_chunktable(union hibernate_info *hib)
906 {
907 	struct hibernate_disk_chunk *chunks;
908 	vaddr_t hibernate_chunk_table_start;
909 	size_t hibernate_chunk_table_size;
910 	int i, err;
911 
912 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
913 
914 	hibernate_chunk_table_start = hib->piglet_va +
915 	    HIBERNATE_CHUNK_SIZE;
916 
917 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
918 	    HIBERNATE_CHUNK_SIZE);
919 
920 	/* Write chunk table */
921 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
922 		if ((err = hib->io_func(hib->dev,
923 		    hib->chunktable_offset + (i/DEV_BSIZE),
924 		    (vaddr_t)(hibernate_chunk_table_start + i),
925 		    MAXPHYS, HIB_W, hib->io_page))) {
926 			DPRINTF("chunktable write error: %d\n", err);
927 			return (err);
928 		}
929 	}
930 
931 	return (0);
932 }
933 
934 /*
935  * Write an empty hiber_info to the swap signature block, which is
936  * guaranteed to not match any valid hib.
937  */
938 int
939 hibernate_clear_signature(void)
940 {
941 	union hibernate_info blank_hiber_info;
942 	union hibernate_info hib;
943 
944 	/* Zero out a blank hiber_info */
945 	memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
946 
947 	/* Get the signature block location */
948 	if (get_hibernate_info(&hib, 0))
949 		return (1);
950 
951 	/* Write (zeroed) hibernate info to disk */
952 	DPRINTF("clearing hibernate signature block location: %lld\n",
953 		hib.sig_offset);
954 	if (hibernate_block_io(&hib,
955 	    hib.sig_offset,
956 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
957 		printf("Warning: could not clear hibernate signature\n");
958 
959 	return (0);
960 }
961 
962 /*
963  * Check chunk range overlap when calculating whether or not to copy a
964  * compressed chunk to the piglet area before decompressing.
965  *
966  * returns zero if the ranges do not overlap, non-zero otherwise.
967  */
968 int
969 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
970 {
971 	/* case A : end of r1 overlaps start of r2 */
972 	if (r1s < r2s && r1e > r2s)
973 		return (1);
974 
975 	/* case B : r1 entirely inside r2 */
976 	if (r1s >= r2s && r1e <= r2e)
977 		return (1);
978 
979 	/* case C : r2 entirely inside r1 */
980 	if (r2s >= r1s && r2e <= r1e)
981 		return (1);
982 
983 	/* case D : end of r2 overlaps start of r1 */
984 	if (r2s < r1s && r2e > r1s)
985 		return (1);
986 
987 	return (0);
988 }
989 
990 /*
991  * Compare two hibernate_infos to determine if they are the same (eg,
992  * we should be performing a hibernate resume on this machine.
993  * Not all fields are checked - just enough to verify that the machine
994  * has the same memory configuration and kernel as the one that
995  * wrote the signature previously.
996  */
997 int
998 hibernate_compare_signature(union hibernate_info *mine,
999     union hibernate_info *disk)
1000 {
1001 	u_int i;
1002 
1003 	if (mine->nranges != disk->nranges) {
1004 		DPRINTF("hibernate memory range count mismatch\n");
1005 		return (1);
1006 	}
1007 
1008 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
1009 		DPRINTF("hibernate kernel version mismatch\n");
1010 		return (1);
1011 	}
1012 
1013 	for (i = 0; i < mine->nranges; i++) {
1014 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
1015 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
1016 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
1017 				i, mine->ranges[i].base, mine->ranges[i].end,
1018 				disk->ranges[i].base, disk->ranges[i].end);
1019 			return (1);
1020 		}
1021 	}
1022 
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Transfers xfer_size bytes between the hibernate device specified in
1028  * hib_info at offset blkctr and the vaddr specified at dest.
1029  *
1030  * Separate offsets and pages are used to handle misaligned reads (reads
1031  * that span a page boundary).
1032  *
1033  * blkctr specifies a relative offset (relative to the start of swap),
1034  * not an absolute disk offset
1035  *
1036  */
1037 int
1038 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
1039     size_t xfer_size, vaddr_t dest, int iswrite)
1040 {
1041 	struct buf *bp;
1042 	struct bdevsw *bdsw;
1043 	int error;
1044 
1045 	bp = geteblk(xfer_size);
1046 	bdsw = &bdevsw[major(hib->dev)];
1047 
1048 	error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
1049 	if (error) {
1050 		printf("hibernate_block_io open failed\n");
1051 		return (1);
1052 	}
1053 
1054 	if (iswrite)
1055 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1056 
1057 	bp->b_bcount = xfer_size;
1058 	bp->b_blkno = blkctr;
1059 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1060 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1061 	bp->b_dev = hib->dev;
1062 	(*bdsw->d_strategy)(bp);
1063 
1064 	error = biowait(bp);
1065 	if (error) {
1066 		printf("hib block_io biowait error %d blk %lld size %zu\n",
1067 			error, (long long)blkctr, xfer_size);
1068 		error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
1069 		    curproc);
1070 		if (error)
1071 			printf("hibernate_block_io error close failed\n");
1072 		return (1);
1073 	}
1074 
1075 	error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
1076 	if (error) {
1077 		printf("hibernate_block_io close failed\n");
1078 		return (1);
1079 	}
1080 
1081 	if (!iswrite)
1082 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1083 
1084 	bp->b_flags |= B_INVAL;
1085 	brelse(bp);
1086 
1087 	return (0);
1088 }
1089 
1090 /*
1091  * Reads the signature block from swap, checks against the current machine's
1092  * information. If the information matches, perform a resume by reading the
1093  * saved image into the pig area, and unpacking.
1094  */
1095 void
1096 hibernate_resume(void)
1097 {
1098 	union hibernate_info hib;
1099 	int s;
1100 
1101 	/* Get current running machine's hibernate info */
1102 	memset(&hib, 0, sizeof(hib));
1103 	if (get_hibernate_info(&hib, 0)) {
1104 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1105 		return;
1106 	}
1107 
1108 	/* Read hibernate info from disk */
1109 	s = splbio();
1110 
1111 	DPRINTF("reading hibernate signature block location: %lld\n",
1112 		hib.sig_offset);
1113 
1114 	if (hibernate_block_io(&hib,
1115 	    hib.sig_offset,
1116 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1117 		DPRINTF("error in hibernate read");
1118 		splx(s);
1119 		return;
1120 	}
1121 
1122 	/* Check magic number */
1123 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1124 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1125 			disk_hib.magic);
1126 		splx(s);
1127 		return;
1128 	}
1129 
1130 	/*
1131 	 * We (possibly) found a hibernate signature. Clear signature first,
1132 	 * to prevent accidental resume or endless resume cycles later.
1133 	 */
1134 	if (hibernate_clear_signature()) {
1135 		DPRINTF("error clearing hibernate signature block\n");
1136 		splx(s);
1137 		return;
1138 	}
1139 
1140 	/*
1141 	 * If on-disk and in-memory hibernate signatures match,
1142 	 * this means we should do a resume from hibernate.
1143 	 */
1144 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1145 		DPRINTF("mismatched hibernate signature block\n");
1146 		splx(s);
1147 		return;
1148 	}
1149 
1150 #ifdef MULTIPROCESSOR
1151 	hibernate_quiesce_cpus();
1152 #endif /* MULTIPROCESSOR */
1153 
1154 	/* Read the image from disk into the image (pig) area */
1155 	if (hibernate_read_image(&disk_hib))
1156 		goto fail;
1157 
1158 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0)
1159 		goto fail;
1160 
1161 	(void) splhigh();
1162 	hibernate_disable_intr_machdep();
1163 	cold = 1;
1164 
1165 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) {
1166 		cold = 0;
1167 		hibernate_enable_intr_machdep();
1168 		goto fail;
1169 	}
1170 
1171 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1172 	    VM_PROT_ALL);
1173 	pmap_activate(curproc);
1174 
1175 	printf("Unpacking image...\n");
1176 
1177 	/* Switch stacks */
1178 	hibernate_switch_stack_machdep();
1179 
1180 	/* Unpack and resume */
1181 	hibernate_unpack_image(&disk_hib);
1182 
1183 fail:
1184 	splx(s);
1185 	printf("\nUnable to resume hibernated image\n");
1186 }
1187 
1188 /*
1189  * Unpack image from pig area to original location by looping through the
1190  * list of output chunks in the order they should be restored (fchunks).
1191  *
1192  * Note that due to the stack smash protector and the fact that we have
1193  * switched stacks, it is not permitted to return from this function.
1194  */
1195 void
1196 hibernate_unpack_image(union hibernate_info *hib)
1197 {
1198 	struct hibernate_disk_chunk *chunks;
1199 	union hibernate_info local_hib;
1200 	paddr_t image_cur = global_pig_start;
1201 	short i, *fchunks;
1202 	char *pva = (char *)hib->piglet_va;
1203 	struct hibernate_zlib_state *hibernate_state;
1204 
1205 	hibernate_state =
1206 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1207 
1208 	/* Mask off based on arch-specific piglet page size */
1209 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1210 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1211 
1212 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1213 
1214 	/* Can't use hiber_info that's passed in after this point */
1215 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1216 
1217 	/*
1218 	 * Point of no return. Once we pass this point, only kernel code can
1219 	 * be accessed. No global variables or other kernel data structures
1220 	 * are guaranteed to be coherent after unpack starts.
1221 	 *
1222 	 * The image is now in high memory (pig area), we unpack from the pig
1223 	 * to the correct location in memory. We'll eventually end up copying
1224 	 * on top of ourself, but we are assured the kernel code here is the
1225 	 * same between the hibernated and resuming kernel, and we are running
1226 	 * on our own stack, so the overwrite is ok.
1227 	 */
1228 	hibernate_activate_resume_pt_machdep();
1229 
1230 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1231 		/* Reset zlib for inflate */
1232 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1233 			panic("hibernate failed to reset zlib for inflate");
1234 
1235 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1236 		    image_cur);
1237 
1238 		image_cur += chunks[fchunks[i]].compressed_size;
1239 
1240 	}
1241 
1242 	/*
1243 	 * Resume the loaded kernel by jumping to the MD resume vector.
1244 	 * We won't be returning from this call.
1245 	 */
1246 	hibernate_resume_machdep();
1247 }
1248 
1249 /*
1250  * Bounce a compressed image chunk to the piglet, entering mappings for the
1251  * copied pages as needed
1252  */
1253 void
1254 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1255 {
1256 	size_t ct, ofs;
1257 	paddr_t src = img_cur;
1258 	vaddr_t dest = piglet;
1259 
1260 	/* Copy first partial page */
1261 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1262 	ofs = (src & PAGE_MASK);
1263 
1264 	if (ct < PAGE_SIZE) {
1265 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1266 			(src - ofs), 0);
1267 		hibernate_flush();
1268 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1269 		src += ct;
1270 		dest += ct;
1271 	}
1272 	wbinvd();
1273 
1274 	/* Copy remaining pages */
1275 	while (src < size + img_cur) {
1276 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1277 		hibernate_flush();
1278 		ct = PAGE_SIZE;
1279 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1280 		hibernate_flush();
1281 		src += ct;
1282 		dest += ct;
1283 	}
1284 
1285 	hibernate_flush();
1286 	wbinvd();
1287 }
1288 
1289 /*
1290  * Process a chunk by bouncing it to the piglet, followed by unpacking
1291  */
1292 void
1293 hibernate_process_chunk(union hibernate_info *hib,
1294     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1295 {
1296 	char *pva = (char *)hib->piglet_va;
1297 
1298 	hibernate_copy_chunk_to_piglet(img_cur,
1299 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1300 
1301 	hibernate_inflate_region(hib, chunk->base,
1302 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1303 	    chunk->compressed_size);
1304 }
1305 
1306 /*
1307  * Write a compressed version of this machine's memory to disk, at the
1308  * precalculated swap offset:
1309  *
1310  * end of swap - signature block size - chunk table size - memory size
1311  *
1312  * The function begins by looping through each phys mem range, cutting each
1313  * one into MD sized chunks. These chunks are then compressed individually
1314  * and written out to disk, in phys mem order. Some chunks might compress
1315  * more than others, and for this reason, each chunk's size is recorded
1316  * in the chunk table, which is written to disk after the image has
1317  * properly been compressed and written (in hibernate_write_chunktable).
1318  *
1319  * When this function is called, the machine is nearly suspended - most
1320  * devices are quiesced/suspended, interrupts are off, and cold has
1321  * been set. This means that there can be no side effects once the
1322  * write has started, and the write function itself can also have no
1323  * side effects. This also means no printfs are permitted (since printf
1324  * has side effects.)
1325  *
1326  * Return values :
1327  *
1328  * 0      - success
1329  * EIO    - I/O error occurred writing the chunks
1330  * EINVAL - Failed to write a complete range
1331  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1332  */
1333 int
1334 hibernate_write_chunks(union hibernate_info *hib)
1335 {
1336 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1337 	size_t nblocks, out_remaining, used;
1338 	struct hibernate_disk_chunk *chunks;
1339 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1340 	daddr_t blkctr = 0;
1341 	int i, err;
1342 	struct hibernate_zlib_state *hibernate_state;
1343 
1344 	hibernate_state =
1345 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1346 
1347 	hib->chunk_ctr = 0;
1348 
1349 	/*
1350 	 * Allocate VA for the temp and copy page.
1351 	 *
1352 	 * These will become part of the suspended kernel and will
1353 	 * be freed in hibernate_free, upon resume.
1354 	 */
1355 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1356 	    &kp_none, &kd_nowait);
1357 	if (!hibernate_temp_page)
1358 		return (ENOMEM);
1359 
1360 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1361 	    &kp_none, &kd_nowait);
1362 	if (!hibernate_copy_page) {
1363 		DPRINTF("out of memory allocating hibernate_copy_page\n");
1364 		return (ENOMEM);
1365 	}
1366 
1367 	pmap_kenter_pa(hibernate_copy_page,
1368 	    (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1369 
1370 	pmap_activate(curproc);
1371 
1372 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1373 	    HIBERNATE_CHUNK_SIZE);
1374 
1375 	/* Calculate the chunk regions */
1376 	for (i = 0; i < hib->nranges; i++) {
1377 		range_base = hib->ranges[i].base;
1378 		range_end = hib->ranges[i].end;
1379 
1380 		inaddr = range_base;
1381 
1382 		while (inaddr < range_end) {
1383 			chunks[hib->chunk_ctr].base = inaddr;
1384 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1385 				chunks[hib->chunk_ctr].end = inaddr +
1386 				    HIBERNATE_CHUNK_SIZE;
1387 			else
1388 				chunks[hib->chunk_ctr].end = range_end;
1389 
1390 			inaddr += HIBERNATE_CHUNK_SIZE;
1391 			hib->chunk_ctr ++;
1392 		}
1393 	}
1394 
1395 	/* Compress and write the chunks in the chunktable */
1396 	for (i = 0; i < hib->chunk_ctr; i++) {
1397 		range_base = chunks[i].base;
1398 		range_end = chunks[i].end;
1399 
1400 		chunks[i].offset = blkctr + hib->image_offset;
1401 
1402 		/* Reset zlib for deflate */
1403 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1404 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1405 			return (ENOMEM);
1406 		}
1407 
1408 		inaddr = range_base;
1409 
1410 		/*
1411 		 * For each range, loop through its phys mem region
1412 		 * and write out the chunks (the last chunk might be
1413 		 * smaller than the chunk size).
1414 		 */
1415 		while (inaddr < range_end) {
1416 			out_remaining = PAGE_SIZE;
1417 			while (out_remaining > 0 && inaddr < range_end) {
1418 
1419 				/*
1420 				 * Adjust for regions that are not evenly
1421 				 * divisible by PAGE_SIZE or overflowed
1422 				 * pages from the previous iteration.
1423 				 */
1424 				temp_inaddr = (inaddr & PAGE_MASK) +
1425 				    hibernate_copy_page;
1426 
1427 				/* Deflate from temp_inaddr to IO page */
1428 				if (inaddr != range_end) {
1429 					pmap_kenter_pa(hibernate_temp_page,
1430 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1431 
1432 					pmap_activate(curproc);
1433 
1434 					bcopy((caddr_t)hibernate_temp_page,
1435 					    (caddr_t)hibernate_copy_page,
1436 					    PAGE_SIZE);
1437 					inaddr += hibernate_deflate(hib,
1438 					    temp_inaddr, &out_remaining);
1439 				}
1440 
1441 				if (out_remaining == 0) {
1442 					/* Filled up the page */
1443 					nblocks =
1444 					    PAGE_SIZE / DEV_BSIZE;
1445 
1446 					if ((err = hib->io_func(hib->dev,
1447 					    blkctr + hib->image_offset,
1448 					    (vaddr_t)hibernate_io_page,
1449 					    PAGE_SIZE, HIB_W, hib->io_page))) {
1450 						DPRINTF("hib write error %d\n",
1451 						    err);
1452 						return (err);
1453 					}
1454 
1455 					blkctr += nblocks;
1456 				}
1457 			}
1458 		}
1459 
1460 		if (inaddr != range_end) {
1461 			DPRINTF("deflate range ended prematurely\n");
1462 			return (EINVAL);
1463 		}
1464 
1465 		/*
1466 		 * End of range. Round up to next secsize bytes
1467 		 * after finishing compress
1468 		 */
1469 		if (out_remaining == 0)
1470 			out_remaining = PAGE_SIZE;
1471 
1472 		/* Finish compress */
1473 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1474 		hibernate_state->hib_stream.avail_in = 0;
1475 		hibernate_state->hib_stream.next_out =
1476 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1477 
1478 		/* We have an extra output page available for finalize */
1479 		hibernate_state->hib_stream.avail_out =
1480 			out_remaining + PAGE_SIZE;
1481 
1482 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1483 		    Z_STREAM_END) {
1484 			DPRINTF("deflate error in output stream: %d\n", err);
1485 			return (err);
1486 		}
1487 
1488 		out_remaining = hibernate_state->hib_stream.avail_out;
1489 
1490 		used = 2*PAGE_SIZE - out_remaining;
1491 		nblocks = used / DEV_BSIZE;
1492 
1493 		/* Round up to next block if needed */
1494 		if (used % DEV_BSIZE != 0)
1495 			nblocks ++;
1496 
1497 		/* Write final block(s) for this chunk */
1498 		if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
1499 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1500 		    HIB_W, hib->io_page))) {
1501 			DPRINTF("hib final write error %d\n", err);
1502 			return (err);
1503 		}
1504 
1505 		blkctr += nblocks;
1506 
1507 		chunks[i].compressed_size = (blkctr + hib->image_offset -
1508 		    chunks[i].offset) * DEV_BSIZE;
1509 	}
1510 
1511 	hib->chunktable_offset = hib->image_offset + blkctr;
1512 	return (0);
1513 }
1514 
1515 /*
1516  * Reset the zlib stream state and allocate a new hiballoc area for either
1517  * inflate or deflate. This function is called once for each hibernate chunk.
1518  * Calling hiballoc_init multiple times is acceptable since the memory it is
1519  * provided is unmanaged memory (stolen). We use the memory provided to us
1520  * by the piglet allocated via the supplied hib.
1521  */
1522 int
1523 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1524 {
1525 	vaddr_t hibernate_zlib_start;
1526 	size_t hibernate_zlib_size;
1527 	char *pva = (char *)hib->piglet_va;
1528 	struct hibernate_zlib_state *hibernate_state;
1529 
1530 	hibernate_state =
1531 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1532 
1533 	if (!deflate)
1534 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1535 
1536 	hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE));
1537 	hibernate_zlib_size = 80 * PAGE_SIZE;
1538 
1539 	memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
1540 	memset(hibernate_state, 0, PAGE_SIZE);
1541 
1542 	/* Set up stream structure */
1543 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1544 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1545 
1546 	/* Initialize the hiballoc arena for zlib allocs/frees */
1547 	hiballoc_init(&hibernate_state->hiballoc_arena,
1548 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1549 
1550 	if (deflate) {
1551 		return deflateInit(&hibernate_state->hib_stream,
1552 		    Z_BEST_SPEED);
1553 	} else
1554 		return inflateInit(&hibernate_state->hib_stream);
1555 }
1556 
1557 /*
1558  * Reads the hibernated memory image from disk, whose location and
1559  * size are recorded in hib. Begin by reading the persisted
1560  * chunk table, which records the original chunk placement location
1561  * and compressed size for each. Next, allocate a pig region of
1562  * sufficient size to hold the compressed image. Next, read the
1563  * chunks into the pig area (calling hibernate_read_chunks to do this),
1564  * and finally, if all of the above succeeds, clear the hibernate signature.
1565  * The function will then return to hibernate_resume, which will proceed
1566  * to unpack the pig image to the correct place in memory.
1567  */
1568 int
1569 hibernate_read_image(union hibernate_info *hib)
1570 {
1571 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1572 	paddr_t image_start, image_end, pig_start, pig_end;
1573 	struct hibernate_disk_chunk *chunks;
1574 	daddr_t blkctr;
1575 	vaddr_t chunktable = (vaddr_t)NULL;
1576 	paddr_t piglet_chunktable = hib->piglet_pa +
1577 	    HIBERNATE_CHUNK_SIZE;
1578 	int i;
1579 
1580 	pmap_activate(curproc);
1581 
1582 	/* Calculate total chunk table size in disk blocks */
1583 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1584 
1585 	blkctr = hib->chunktable_offset;
1586 
1587 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1588 	    &kp_none, &kd_nowait);
1589 
1590 	if (!chunktable)
1591 		return (1);
1592 
1593 	/* Read the chunktable from disk into the piglet chunktable */
1594 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1595 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) {
1596 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1597 		    VM_PROT_ALL);
1598 		pmap_update(pmap_kernel());
1599 		hibernate_block_io(hib, blkctr, PAGE_SIZE,
1600 		    chunktable + i, 0);
1601 	}
1602 
1603 	blkctr = hib->image_offset;
1604 	compressed_size = 0;
1605 
1606 	chunks = (struct hibernate_disk_chunk *)chunktable;
1607 
1608 	for (i = 0; i < hib->chunk_ctr; i++)
1609 		compressed_size += chunks[i].compressed_size;
1610 
1611 	disk_size = compressed_size;
1612 
1613 	printf("unhibernating @ block %lld length %lu bytes\n",
1614 	    hib->sig_offset - chunktable_size,
1615 	    compressed_size);
1616 
1617 	/* Allocate the pig area */
1618 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1619 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1620 		return (1);
1621 
1622 	pig_end = pig_start + pig_sz;
1623 
1624 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1625 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1626 	image_start = image_end - disk_size;
1627 
1628 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1629 	    chunks);
1630 
1631 	pmap_kremove(chunktable, PAGE_SIZE);
1632 	pmap_update(pmap_kernel());
1633 
1634 	/* Prepare the resume time pmap/page table */
1635 	hibernate_populate_resume_pt(hib, image_start, image_end);
1636 
1637 	return (0);
1638 }
1639 
1640 /*
1641  * Read the hibernated memory chunks from disk (chunk information at this
1642  * point is stored in the piglet) into the pig area specified by
1643  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1644  * only chunk with overlap possibilities.
1645  */
1646 int
1647 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1648     paddr_t pig_end, size_t image_compr_size,
1649     struct hibernate_disk_chunk *chunks)
1650 {
1651 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1652 	paddr_t copy_start, copy_end, piglet_cur;
1653 	paddr_t piglet_base = hib->piglet_pa;
1654 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1655 	daddr_t blkctr;
1656 	size_t processed, compressed_size, read_size;
1657 	int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0;
1658 	short *ochunks, *pchunks, *fchunks, i, j;
1659 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1660 
1661 	global_pig_start = pig_start;
1662 
1663 	pmap_activate(curproc);
1664 
1665 	/*
1666 	 * These mappings go into the resuming kernel's page table, and are
1667 	 * used only during image read. They dissappear from existence
1668 	 * when the suspended kernel is unpacked on top of us.
1669 	 */
1670 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1671 	if (!tempva)
1672 		return (1);
1673 	hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any,
1674 	    &kp_none, &kd_nowait);
1675 	if (!hibernate_fchunk_area)
1676 		return (1);
1677 
1678 	/* Final output chunk ordering VA */
1679 	fchunks = (short *)hibernate_fchunk_area;
1680 
1681 	/* Piglet chunk ordering VA */
1682 	pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE));
1683 
1684 	/* Final chunk ordering VA */
1685 	ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE));
1686 
1687 	/* Map the chunk ordering region */
1688 	for(i=0; i<24 ; i++) {
1689 		pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE),
1690 			piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL);
1691 		pmap_update(pmap_kernel());
1692 	}
1693 
1694 	nchunks = hib->chunk_ctr;
1695 
1696 	/* Initially start all chunks as unplaced */
1697 	for (i = 0; i < nchunks; i++)
1698 		chunks[i].flags = 0;
1699 
1700 	/*
1701 	 * Search the list for chunks that are outside the pig area. These
1702 	 * can be placed first in the final output list.
1703 	 */
1704 	for (i = 0; i < nchunks; i++) {
1705 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1706 			ochunks[nochunks] = i;
1707 			fchunks[nfchunks] = i;
1708 			nochunks++;
1709 			nfchunks++;
1710 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * Walk the ordering, place the chunks in ascending memory order.
1716 	 * Conflicts might arise, these are handled next.
1717 	 */
1718 	do {
1719 		img_index = -1;
1720 		found = 0;
1721 		j = -1;
1722 		for (i = 0; i < nchunks; i++)
1723 			if (chunks[i].base < img_index &&
1724 			    chunks[i].flags == 0 ) {
1725 				j = i;
1726 				img_index = chunks[i].base;
1727 			}
1728 
1729 		if (j != -1) {
1730 			found = 1;
1731 			ochunks[nochunks] = j;
1732 			nochunks++;
1733 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1734 		}
1735 	} while (found);
1736 
1737 	img_index = pig_start;
1738 
1739 	/*
1740 	 * Identify chunk output conflicts (chunks whose pig load area
1741 	 * corresponds to their original memory placement location)
1742 	 */
1743 	for (i = 0; i < nochunks ; i++) {
1744 		overlap = 0;
1745 		r1s = img_index;
1746 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1747 		r2s = chunks[ochunks[i]].base;
1748 		r2e = chunks[ochunks[i]].end;
1749 
1750 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1751 		if (overlap)
1752 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1753 		img_index += chunks[ochunks[i]].compressed_size;
1754 	}
1755 
1756 	/*
1757 	 * Prepare the final output chunk list. Calculate an output
1758 	 * inflate strategy for overlapping chunks if needed.
1759 	 */
1760 	img_index = pig_start;
1761 	for (i = 0; i < nochunks ; i++) {
1762 		/*
1763 		 * If a conflict is detected, consume enough compressed
1764 		 * output chunks to fill the piglet
1765 		 */
1766 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1767 			copy_start = piglet_base;
1768 			copy_end = piglet_end;
1769 			piglet_cur = piglet_base;
1770 			npchunks = 0;
1771 			j = i;
1772 
1773 			while (copy_start < copy_end && j < nochunks) {
1774 				piglet_cur +=
1775 				    chunks[ochunks[j]].compressed_size;
1776 				pchunks[npchunks] = ochunks[j];
1777 				npchunks++;
1778 				copy_start +=
1779 				    chunks[ochunks[j]].compressed_size;
1780 				img_index += chunks[ochunks[j]].compressed_size;
1781 				i++;
1782 				j++;
1783 			}
1784 
1785 			piglet_cur = piglet_base;
1786 			for (j = 0; j < npchunks; j++) {
1787 				piglet_cur +=
1788 				    chunks[pchunks[j]].compressed_size;
1789 				fchunks[nfchunks] = pchunks[j];
1790 				chunks[pchunks[j]].flags |=
1791 				    HIBERNATE_CHUNK_USED;
1792 				nfchunks++;
1793 			}
1794 		} else {
1795 			/*
1796 			 * No conflict, chunk can be added without copying
1797 			 */
1798 			if ((chunks[ochunks[i]].flags &
1799 			    HIBERNATE_CHUNK_USED) == 0) {
1800 				fchunks[nfchunks] = ochunks[i];
1801 				chunks[ochunks[i]].flags |=
1802 				    HIBERNATE_CHUNK_USED;
1803 				nfchunks++;
1804 			}
1805 			img_index += chunks[ochunks[i]].compressed_size;
1806 		}
1807 	}
1808 
1809 	img_index = pig_start;
1810 	for (i = 0; i < nfchunks; i++) {
1811 		piglet_cur = piglet_base;
1812 		img_index += chunks[fchunks[i]].compressed_size;
1813 	}
1814 
1815 	img_cur = pig_start;
1816 
1817 	for (i = 0; i < nfchunks; i++) {
1818 		blkctr = chunks[fchunks[i]].offset;
1819 		processed = 0;
1820 		compressed_size = chunks[fchunks[i]].compressed_size;
1821 
1822 		while (processed < compressed_size) {
1823 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1824 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1825 			    VM_PROT_ALL);
1826 			pmap_update(pmap_kernel());
1827 
1828 			if (compressed_size - processed >= PAGE_SIZE)
1829 				read_size = PAGE_SIZE;
1830 			else
1831 				read_size = compressed_size - processed;
1832 
1833 			hibernate_block_io(hib, blkctr, read_size,
1834 			    tempva + (img_cur & PAGE_MASK), 0);
1835 
1836 			blkctr += (read_size / DEV_BSIZE);
1837 
1838 			pmap_kremove(tempva, PAGE_SIZE);
1839 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1840 			processed += read_size;
1841 			img_cur += read_size;
1842 		}
1843 	}
1844 
1845 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1846 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1847 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1848 	pmap_update(pmap_kernel());
1849 
1850 	return (0);
1851 }
1852 
1853 /*
1854  * Hibernating a machine comprises the following operations:
1855  *  1. Calculating this machine's hibernate_info information
1856  *  2. Allocating a piglet and saving the piglet's physaddr
1857  *  3. Calculating the memory chunks
1858  *  4. Writing the compressed chunks to disk
1859  *  5. Writing the chunk table
1860  *  6. Writing the signature block (hibernate_info)
1861  *
1862  * On most architectures, the function calling hibernate_suspend would
1863  * then power off the machine using some MD-specific implementation.
1864  */
1865 int
1866 hibernate_suspend(void)
1867 {
1868 	union hibernate_info hib;
1869 	u_long start, end;
1870 
1871 	/*
1872 	 * Calculate memory ranges, swap offsets, etc.
1873 	 * This also allocates a piglet whose physaddr is stored in
1874 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1875 	 */
1876 	if (get_hibernate_info(&hib, 1)) {
1877 		DPRINTF("failed to obtain hibernate info\n");
1878 		return (1);
1879 	}
1880 
1881 	/* Find a page-addressed region in swap [start,end] */
1882 	if (uvm_hibswap(hib.dev, &start, &end)) {
1883 		printf("cannot find any swap\n");
1884 		return (1);
1885 	}
1886 
1887 	if (end - start < 1000) {
1888 		printf("%lu\n is too small", end - start);
1889 		return (1);
1890 	}
1891 
1892 	/* Calculate block offsets in swap */
1893 	hib.image_offset = ctod(start);
1894 
1895 	/* XXX side effect */
1896 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1897 	    hib.image_offset, ctod(end) - ctod(start));
1898 
1899 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1900 		VM_PROT_ALL);
1901 	pmap_activate(curproc);
1902 
1903 	/* Stash the piglet VA so we can free it in the resuming kernel */
1904 	global_piglet_va = hib.piglet_va;
1905 
1906 	DPRINTF("hibernate: writing chunks\n");
1907 	if (hibernate_write_chunks(&hib)) {
1908 		DPRINTF("hibernate_write_chunks failed\n");
1909 		return (1);
1910 	}
1911 
1912 	DPRINTF("hibernate: writing chunktable\n");
1913 	if (hibernate_write_chunktable(&hib)) {
1914 		DPRINTF("hibernate_write_chunktable failed\n");
1915 		return (1);
1916 	}
1917 
1918 	DPRINTF("hibernate: writing signature\n");
1919 	if (hibernate_write_signature(&hib)) {
1920 		DPRINTF("hibernate_write_signature failed\n");
1921 		return (1);
1922 	}
1923 
1924 	/* Allow the disk to settle */
1925 	delay(500000);
1926 
1927 	/*
1928 	 * Give the device-specific I/O function a notification that we're
1929 	 * done, and that it can clean up or shutdown as needed.
1930 	 */
1931 	hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
1932 
1933 	return (0);
1934 }
1935 
1936 /*
1937  * Free items allocated by hibernate_suspend()
1938  */
1939 void
1940 hibernate_free(void)
1941 {
1942 	if (global_piglet_va)
1943 		uvm_pmr_free_piglet(global_piglet_va,
1944 		    3*HIBERNATE_CHUNK_SIZE);
1945 
1946 	if (hibernate_copy_page)
1947 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1948 	if (hibernate_temp_page)
1949 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1950 
1951 	pmap_update(pmap_kernel());
1952 
1953 	if (hibernate_copy_page)
1954 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
1955 		    &kv_any, &kp_none);
1956 	if (hibernate_temp_page)
1957 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
1958 		    &kv_any, &kp_none);
1959 
1960 	global_piglet_va = 0;
1961 	hibernate_copy_page = 0;
1962 	hibernate_temp_page = 0;
1963 }
1964