1 /* $OpenBSD: subr_hibernate.c,v 1.24 2011/11/16 23:52:27 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 struct hibernate_zlib_state *hibernate_state; 36 37 /* Temporary vaddr ranges used during hibernate */ 38 vaddr_t hibernate_temp_page; 39 vaddr_t hibernate_copy_page; 40 41 /* Hibernate info as read from disk during resume */ 42 union hibernate_info disk_hiber_info; 43 paddr_t global_pig_start; 44 vaddr_t global_piglet_va; 45 46 /* 47 * Hib alloc enforced alignment. 48 */ 49 #define HIB_ALIGN 8 /* bytes alignment */ 50 51 /* 52 * sizeof builtin operation, but with alignment constraint. 53 */ 54 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 55 56 struct hiballoc_entry { 57 size_t hibe_use; 58 size_t hibe_space; 59 RB_ENTRY(hiballoc_entry) hibe_entry; 60 }; 61 62 /* 63 * Compare hiballoc entries based on the address they manage. 64 * 65 * Since the address is fixed, relative to struct hiballoc_entry, 66 * we just compare the hiballoc_entry pointers. 67 */ 68 static __inline int 69 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 70 { 71 return l < r ? -1 : (l > r); 72 } 73 74 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 75 76 /* 77 * Given a hiballoc entry, return the address it manages. 78 */ 79 static __inline void * 80 hib_entry_to_addr(struct hiballoc_entry *entry) 81 { 82 caddr_t addr; 83 84 addr = (caddr_t)entry; 85 addr += HIB_SIZEOF(struct hiballoc_entry); 86 return addr; 87 } 88 89 /* 90 * Given an address, find the hiballoc that corresponds. 91 */ 92 static __inline struct hiballoc_entry* 93 hib_addr_to_entry(void *addr_param) 94 { 95 caddr_t addr; 96 97 addr = (caddr_t)addr_param; 98 addr -= HIB_SIZEOF(struct hiballoc_entry); 99 return (struct hiballoc_entry*)addr; 100 } 101 102 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 103 104 /* 105 * Allocate memory from the arena. 106 * 107 * Returns NULL if no memory is available. 108 */ 109 void * 110 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 111 { 112 struct hiballoc_entry *entry, *new_entry; 113 size_t find_sz; 114 115 /* 116 * Enforce alignment of HIB_ALIGN bytes. 117 * 118 * Note that, because the entry is put in front of the allocation, 119 * 0-byte allocations are guaranteed a unique address. 120 */ 121 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 122 123 /* 124 * Find an entry with hibe_space >= find_sz. 125 * 126 * If the root node is not large enough, we switch to tree traversal. 127 * Because all entries are made at the bottom of the free space, 128 * traversal from the end has a slightly better chance of yielding 129 * a sufficiently large space. 130 */ 131 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 132 entry = RB_ROOT(&arena->hib_addrs); 133 if (entry != NULL && entry->hibe_space < find_sz) { 134 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 135 if (entry->hibe_space >= find_sz) 136 break; 137 } 138 } 139 140 /* 141 * Insufficient or too fragmented memory. 142 */ 143 if (entry == NULL) 144 return NULL; 145 146 /* 147 * Create new entry in allocated space. 148 */ 149 new_entry = (struct hiballoc_entry*)( 150 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 151 new_entry->hibe_space = entry->hibe_space - find_sz; 152 new_entry->hibe_use = alloc_sz; 153 154 /* 155 * Insert entry. 156 */ 157 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 158 panic("hib_alloc: insert failure"); 159 entry->hibe_space = 0; 160 161 /* Return address managed by entry. */ 162 return hib_entry_to_addr(new_entry); 163 } 164 165 /* 166 * Free a pointer previously allocated from this arena. 167 * 168 * If addr is NULL, this will be silently accepted. 169 */ 170 void 171 hib_free(struct hiballoc_arena *arena, void *addr) 172 { 173 struct hiballoc_entry *entry, *prev; 174 175 if (addr == NULL) 176 return; 177 178 /* 179 * Derive entry from addr and check it is really in this arena. 180 */ 181 entry = hib_addr_to_entry(addr); 182 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 183 panic("hib_free: freed item %p not in hib arena", addr); 184 185 /* 186 * Give the space in entry to its predecessor. 187 * 188 * If entry has no predecessor, change its used space into free space 189 * instead. 190 */ 191 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 192 if (prev != NULL && 193 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 194 prev->hibe_use + prev->hibe_space) == entry) { 195 /* Merge entry. */ 196 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 197 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 198 entry->hibe_use + entry->hibe_space; 199 } else { 200 /* Flip used memory to free space. */ 201 entry->hibe_space += entry->hibe_use; 202 entry->hibe_use = 0; 203 } 204 } 205 206 /* 207 * Initialize hiballoc. 208 * 209 * The allocator will manage memmory at ptr, which is len bytes. 210 */ 211 int 212 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 213 { 214 struct hiballoc_entry *entry; 215 caddr_t ptr; 216 size_t len; 217 218 RB_INIT(&arena->hib_addrs); 219 220 /* 221 * Hib allocator enforces HIB_ALIGN alignment. 222 * Fixup ptr and len. 223 */ 224 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 225 len = p_len - ((size_t)ptr - (size_t)p_ptr); 226 len &= ~((size_t)HIB_ALIGN - 1); 227 228 /* 229 * Insufficient memory to be able to allocate and also do bookkeeping. 230 */ 231 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 232 return ENOMEM; 233 234 /* 235 * Create entry describing space. 236 */ 237 entry = (struct hiballoc_entry*)ptr; 238 entry->hibe_use = 0; 239 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 240 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 241 242 return 0; 243 } 244 245 /* 246 * Zero all free memory. 247 */ 248 void 249 uvm_pmr_zero_everything(void) 250 { 251 struct uvm_pmemrange *pmr; 252 struct vm_page *pg; 253 int i; 254 255 uvm_lock_fpageq(); 256 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 257 /* Zero single pages. */ 258 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 259 != NULL) { 260 uvm_pmr_remove(pmr, pg); 261 uvm_pagezero(pg); 262 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 263 uvmexp.zeropages++; 264 uvm_pmr_insert(pmr, pg, 0); 265 } 266 267 /* Zero multi page ranges. */ 268 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 269 != NULL) { 270 pg--; /* Size tree always has second page. */ 271 uvm_pmr_remove(pmr, pg); 272 for (i = 0; i < pg->fpgsz; i++) { 273 uvm_pagezero(&pg[i]); 274 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 275 uvmexp.zeropages++; 276 } 277 uvm_pmr_insert(pmr, pg, 0); 278 } 279 } 280 uvm_unlock_fpageq(); 281 } 282 283 /* 284 * Mark all memory as dirty. 285 * 286 * Used to inform the system that the clean memory isn't clean for some 287 * reason, for example because we just came back from hibernate. 288 */ 289 void 290 uvm_pmr_dirty_everything(void) 291 { 292 struct uvm_pmemrange *pmr; 293 struct vm_page *pg; 294 int i; 295 296 uvm_lock_fpageq(); 297 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 298 /* Dirty single pages. */ 299 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 300 != NULL) { 301 uvm_pmr_remove(pmr, pg); 302 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 303 uvm_pmr_insert(pmr, pg, 0); 304 } 305 306 /* Dirty multi page ranges. */ 307 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 308 != NULL) { 309 pg--; /* Size tree always has second page. */ 310 uvm_pmr_remove(pmr, pg); 311 for (i = 0; i < pg->fpgsz; i++) 312 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 317 uvmexp.zeropages = 0; 318 uvm_unlock_fpageq(); 319 } 320 321 /* 322 * Allocate the highest address that can hold sz. 323 * 324 * sz in bytes. 325 */ 326 int 327 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 328 { 329 struct uvm_pmemrange *pmr; 330 struct vm_page *pig_pg, *pg; 331 332 /* 333 * Convert sz to pages, since that is what pmemrange uses internally. 334 */ 335 sz = atop(round_page(sz)); 336 337 uvm_lock_fpageq(); 338 339 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 340 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 341 if (pig_pg->fpgsz >= sz) { 342 goto found; 343 } 344 } 345 } 346 347 /* 348 * Allocation failure. 349 */ 350 uvm_unlock_pageq(); 351 return ENOMEM; 352 353 found: 354 /* Remove page from freelist. */ 355 uvm_pmr_remove_size(pmr, pig_pg); 356 pig_pg->fpgsz -= sz; 357 pg = pig_pg + pig_pg->fpgsz; 358 if (pig_pg->fpgsz == 0) 359 uvm_pmr_remove_addr(pmr, pig_pg); 360 else 361 uvm_pmr_insert_size(pmr, pig_pg); 362 363 uvmexp.free -= sz; 364 *addr = VM_PAGE_TO_PHYS(pg); 365 366 /* 367 * Update pg flags. 368 * 369 * Note that we trash the sz argument now. 370 */ 371 while (sz > 0) { 372 KASSERT(pg->pg_flags & PQ_FREE); 373 374 atomic_clearbits_int(&pg->pg_flags, 375 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 376 377 if (pg->pg_flags & PG_ZERO) 378 uvmexp.zeropages -= sz; 379 atomic_clearbits_int(&pg->pg_flags, 380 PG_ZERO|PQ_FREE); 381 382 pg->uobject = NULL; 383 pg->uanon = NULL; 384 pg->pg_version++; 385 386 /* 387 * Next. 388 */ 389 pg++; 390 sz--; 391 } 392 393 /* Return. */ 394 uvm_unlock_fpageq(); 395 return 0; 396 } 397 398 /* 399 * Allocate a piglet area. 400 * 401 * This is as low as possible. 402 * Piglets are aligned. 403 * 404 * sz and align in bytes. 405 * 406 * The call will sleep for the pagedaemon to attempt to free memory. 407 * The pagedaemon may decide its not possible to free enough memory, causing 408 * the allocation to fail. 409 */ 410 int 411 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 412 { 413 paddr_t pg_addr, piglet_addr; 414 struct uvm_pmemrange *pmr; 415 struct vm_page *pig_pg, *pg; 416 struct pglist pageq; 417 int pdaemon_woken; 418 vaddr_t piglet_va; 419 420 KASSERT((align & (align - 1)) == 0); 421 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 422 423 /* 424 * Fixup arguments: align must be at least PAGE_SIZE, 425 * sz will be converted to pagecount, since that is what 426 * pmemrange uses internally. 427 */ 428 if (align < PAGE_SIZE) 429 align = PAGE_SIZE; 430 sz = round_page(sz); 431 432 uvm_lock_fpageq(); 433 434 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 435 pmr_use) { 436 retry: 437 /* 438 * Search for a range with enough space. 439 * Use the address tree, to ensure the range is as low as 440 * possible. 441 */ 442 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 443 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 444 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 445 446 if (atop(pg_addr) + pig_pg->fpgsz >= 447 atop(piglet_addr) + atop(sz)) 448 goto found; 449 } 450 } 451 452 /* 453 * Try to coerse the pagedaemon into freeing memory 454 * for the piglet. 455 * 456 * pdaemon_woken is set to prevent the code from 457 * falling into an endless loop. 458 */ 459 if (!pdaemon_woken) { 460 pdaemon_woken = 1; 461 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 462 sz, UVM_PLA_FAILOK) == 0) 463 goto retry; 464 } 465 466 /* Return failure. */ 467 uvm_unlock_fpageq(); 468 return ENOMEM; 469 470 found: 471 /* 472 * Extract piglet from pigpen. 473 */ 474 TAILQ_INIT(&pageq); 475 uvm_pmr_extract_range(pmr, pig_pg, 476 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 477 478 *pa = piglet_addr; 479 uvmexp.free -= atop(sz); 480 481 /* 482 * Update pg flags. 483 * 484 * Note that we trash the sz argument now. 485 */ 486 TAILQ_FOREACH(pg, &pageq, pageq) { 487 KASSERT(pg->pg_flags & PQ_FREE); 488 489 atomic_clearbits_int(&pg->pg_flags, 490 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 491 492 if (pg->pg_flags & PG_ZERO) 493 uvmexp.zeropages--; 494 atomic_clearbits_int(&pg->pg_flags, 495 PG_ZERO|PQ_FREE); 496 497 pg->uobject = NULL; 498 pg->uanon = NULL; 499 pg->pg_version++; 500 } 501 502 uvm_unlock_fpageq(); 503 504 /* 505 * Now allocate a va. 506 * Use direct mappings for the pages. 507 */ 508 509 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 510 if (!piglet_va) { 511 uvm_pglistfree(&pageq); 512 return ENOMEM; 513 } 514 515 /* 516 * Map piglet to va. 517 */ 518 TAILQ_FOREACH(pg, &pageq, pageq) { 519 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 520 piglet_va += PAGE_SIZE; 521 } 522 pmap_update(pmap_kernel()); 523 524 return 0; 525 } 526 527 /* 528 * Free a piglet area. 529 */ 530 void 531 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 532 { 533 paddr_t pa; 534 struct vm_page *pg; 535 536 /* 537 * Fix parameters. 538 */ 539 sz = round_page(sz); 540 541 /* 542 * Find the first page in piglet. 543 * Since piglets are contiguous, the first pg is all we need. 544 */ 545 if (!pmap_extract(pmap_kernel(), va, &pa)) 546 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 547 pg = PHYS_TO_VM_PAGE(pa); 548 if (pg == NULL) 549 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 550 551 /* 552 * Unmap. 553 */ 554 pmap_kremove(va, sz); 555 pmap_update(pmap_kernel()); 556 557 /* 558 * Free the physical and virtual memory. 559 */ 560 uvm_pmr_freepages(pg, atop(sz)); 561 km_free((void *)va, sz, &kv_any, &kp_none); 562 } 563 564 /* 565 * Physmem RLE compression support. 566 * 567 * Given a physical page address, it will return the number of pages 568 * starting at the address, that are free. 569 * Returns 0 if the page at addr is not free. 570 */ 571 psize_t 572 uvm_page_rle(paddr_t addr) 573 { 574 struct vm_page *pg, *pg_end; 575 struct vm_physseg *vmp; 576 int pseg_idx, off_idx; 577 578 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 579 if (pseg_idx == -1) 580 return 0; 581 582 vmp = &vm_physmem[pseg_idx]; 583 pg = &vmp->pgs[off_idx]; 584 if (!(pg->pg_flags & PQ_FREE)) 585 return 0; 586 587 /* 588 * Search for the first non-free page after pg. 589 * Note that the page may not be the first page in a free pmemrange, 590 * therefore pg->fpgsz cannot be used. 591 */ 592 for (pg_end = pg; pg_end <= vmp->lastpg && 593 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++); 594 return pg_end - pg; 595 } 596 597 /* 598 * Fills out the hibernate_info union pointed to by hiber_info 599 * with information about this machine (swap signature block 600 * offsets, number of memory ranges, kernel in use, etc) 601 */ 602 int 603 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 604 { 605 int chunktable_size; 606 struct disklabel dl; 607 char err_string[128], *dl_ret; 608 609 /* Determine I/O function to use */ 610 hiber_info->io_func = get_hibernate_io_function(); 611 if (hiber_info->io_func == NULL) 612 return (1); 613 614 /* Calculate hibernate device */ 615 hiber_info->device = swdevt[0].sw_dev; 616 617 /* Read disklabel (used to calculate signature and image offsets) */ 618 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 619 620 if (dl_ret) { 621 printf("Hibernate error reading disklabel: %s\n", dl_ret); 622 return (1); 623 } 624 625 hiber_info->secsize = dl.d_secsize; 626 627 /* Make sure the signature can fit in one block */ 628 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 629 630 /* Calculate swap offset from start of disk */ 631 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 632 633 /* Calculate signature block location */ 634 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 635 dl.d_partitions[1].p_size - 636 sizeof(union hibernate_info)/hiber_info->secsize; 637 638 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 639 640 /* Stash kernel version information */ 641 bzero(&hiber_info->kernel_version, 128); 642 bcopy(version, &hiber_info->kernel_version, 643 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 644 645 if (suspend) { 646 /* Allocate piglet region */ 647 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 648 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 649 HIBERNATE_CHUNK_SIZE)) { 650 printf("Hibernate failed to allocate the piglet\n"); 651 return (1); 652 } 653 hiber_info->io_page = (void *)hiber_info->piglet_va; 654 } else { 655 /* 656 * Resuming kernels use a regular I/O page since we won't 657 * have access to the suspended kernel's piglet VA at this 658 * point. No need to free this I/O page as it will vanish 659 * as part of the resume. 660 */ 661 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 662 if (!hiber_info->io_page) 663 return (1); 664 } 665 666 667 /* 668 * Initialize of the hibernate IO function (for drivers which 669 * need that) 670 */ 671 if (hiber_info->io_func(hiber_info->device, 0, 672 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 673 goto fail; 674 675 if (get_hibernate_info_md(hiber_info)) 676 goto fail; 677 678 /* Calculate memory image location */ 679 hiber_info->image_offset = dl.d_partitions[1].p_offset + 680 dl.d_partitions[1].p_size - 681 (hiber_info->image_size / hiber_info->secsize) - 682 sizeof(union hibernate_info)/hiber_info->secsize - 683 chunktable_size; 684 685 return (0); 686 fail: 687 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 688 return (1); 689 } 690 691 /* 692 * Allocate nitems*size bytes from the hiballoc area presently in use 693 */ 694 void 695 *hibernate_zlib_alloc(void *unused, int nitems, int size) 696 { 697 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 698 } 699 700 /* 701 * Free the memory pointed to by addr in the hiballoc area presently in 702 * use 703 */ 704 void 705 hibernate_zlib_free(void *unused, void *addr) 706 { 707 hib_free(&hibernate_state->hiballoc_arena, addr); 708 } 709 710 /* 711 * Inflate size bytes from src into dest, skipping any pages in 712 * [src..dest] that are special (see hibernate_inflate_skip) 713 * 714 * For each page of output data, we map HIBERNATE_TEMP_PAGE 715 * to the current output page, and tell inflate() to inflate 716 * its data there, resulting in the inflated data being placed 717 * at the proper paddr. 718 * 719 * This function executes while using the resume-time stack 720 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 721 * will likely hang or reset the machine. 722 */ 723 void 724 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest, 725 paddr_t src, size_t size) 726 { 727 int i; 728 729 hibernate_state->hib_stream.avail_in = size; 730 hibernate_state->hib_stream.next_in = (char *)src; 731 732 do { 733 /* Flush cache and TLB */ 734 hibernate_flush(); 735 736 /* 737 * Is this a special page? If yes, redirect the 738 * inflate output to a scratch page (eg, discard it) 739 */ 740 if (hibernate_inflate_skip(hiber_info, dest)) 741 hibernate_enter_resume_mapping( 742 HIBERNATE_INFLATE_PAGE, 743 HIBERNATE_INFLATE_PAGE, 0); 744 else 745 hibernate_enter_resume_mapping( 746 HIBERNATE_INFLATE_PAGE, dest, 0); 747 748 /* Set up the stream for inflate */ 749 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 750 hibernate_state->hib_stream.next_out = 751 (char *)HIBERNATE_INFLATE_PAGE; 752 753 /* Process next block of data */ 754 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 755 if (i != Z_OK && i != Z_STREAM_END) { 756 /* 757 * XXX - this will likely reboot/hang most machines, 758 * but there's not much else we can do here. 759 */ 760 panic("inflate error"); 761 } 762 763 dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out; 764 } while (i != Z_STREAM_END); 765 } 766 767 /* 768 * deflate from src into the I/O page, up to 'remaining' bytes 769 * 770 * Returns number of input bytes consumed, and may reset 771 * the 'remaining' parameter if not all the output space was consumed 772 * (this information is needed to know how much to write to disk 773 */ 774 size_t 775 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 776 size_t *remaining) 777 { 778 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 779 780 /* Set up the stream for deflate */ 781 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 782 hibernate_state->hib_stream.avail_out = *remaining; 783 hibernate_state->hib_stream.next_in = (caddr_t)src; 784 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 785 (PAGE_SIZE - *remaining); 786 787 /* Process next block of data */ 788 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 789 panic("hibernate zlib deflate error\n"); 790 791 /* Update pointers and return number of bytes consumed */ 792 *remaining = hibernate_state->hib_stream.avail_out; 793 return (PAGE_SIZE - (src & PAGE_MASK)) - 794 hibernate_state->hib_stream.avail_in; 795 } 796 797 /* 798 * Write the hibernation information specified in hiber_info 799 * to the location in swap previously calculated (last block of 800 * swap), called the "signature block". 801 * 802 * Write the memory chunk table to the area in swap immediately 803 * preceding the signature block. 804 */ 805 int 806 hibernate_write_signature(union hibernate_info *hiber_info) 807 { 808 /* Write hibernate info to disk */ 809 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 810 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 811 hiber_info->io_page)); 812 } 813 814 /* 815 * Write the memory chunk table to the area in swap immediately 816 * preceding the signature block. The chunk table is stored 817 * in the piglet when this function is called. 818 */ 819 int 820 hibernate_write_chunktable(union hibernate_info *hiber_info) 821 { 822 struct hibernate_disk_chunk *chunks; 823 vaddr_t hibernate_chunk_table_start; 824 size_t hibernate_chunk_table_size; 825 daddr_t chunkbase; 826 int i; 827 828 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 829 830 chunkbase = hiber_info->sig_offset - 831 (hibernate_chunk_table_size / hiber_info->secsize); 832 833 hibernate_chunk_table_start = hiber_info->piglet_va + 834 HIBERNATE_CHUNK_SIZE; 835 836 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 837 HIBERNATE_CHUNK_SIZE); 838 839 /* Write chunk table */ 840 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 841 if (hiber_info->io_func(hiber_info->device, 842 chunkbase + (i/hiber_info->secsize), 843 (vaddr_t)(hibernate_chunk_table_start + i), 844 MAXPHYS, HIB_W, hiber_info->io_page)) 845 return (1); 846 } 847 848 return (0); 849 } 850 851 /* 852 * Write an empty hiber_info to the swap signature block, which is 853 * guaranteed to not match any valid hiber_info. 854 */ 855 int 856 hibernate_clear_signature(void) 857 { 858 union hibernate_info blank_hiber_info; 859 union hibernate_info hiber_info; 860 861 /* Zero out a blank hiber_info */ 862 bzero(&blank_hiber_info, sizeof(hiber_info)); 863 864 if (get_hibernate_info(&hiber_info, 0)) 865 return (1); 866 867 /* Write (zeroed) hibernate info to disk */ 868 /* XXX - use regular kernel write routine for this */ 869 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 870 (vaddr_t)&blank_hiber_info, hiber_info.secsize, HIB_W, 871 hiber_info.io_page)) 872 panic("error hibernate write 6\n"); 873 874 return (0); 875 } 876 877 /* 878 * Check chunk range overlap when calculating whether or not to copy a 879 * compressed chunk to the piglet area before decompressing. 880 * 881 * returns zero if the ranges do not overlap, non-zero otherwise. 882 */ 883 int 884 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 885 { 886 /* case A : end of r1 overlaps start of r2 */ 887 if (r1s < r2s && r1e > r2s) 888 return (1); 889 890 /* case B : r1 entirely inside r2 */ 891 if (r1s >= r2s && r1e <= r2e) 892 return (1); 893 894 /* case C : r2 entirely inside r1 */ 895 if (r2s >= r1s && r2e <= r1e) 896 return (1); 897 898 /* case D : end of r2 overlaps start of r1 */ 899 if (r2s < r1s && r2e > r1s) 900 return (1); 901 902 return (0); 903 } 904 905 /* 906 * Compare two hibernate_infos to determine if they are the same (eg, 907 * we should be performing a hibernate resume on this machine. 908 * Not all fields are checked - just enough to verify that the machine 909 * has the same memory configuration and kernel as the one that 910 * wrote the signature previously. 911 */ 912 int 913 hibernate_compare_signature(union hibernate_info *mine, 914 union hibernate_info *disk) 915 { 916 u_int i; 917 918 if (mine->nranges != disk->nranges) 919 return (1); 920 921 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 922 return (1); 923 924 for (i = 0; i < mine->nranges; i++) { 925 if ((mine->ranges[i].base != disk->ranges[i].base) || 926 (mine->ranges[i].end != disk->ranges[i].end) ) 927 return (1); 928 } 929 930 return (0); 931 } 932 933 /* 934 * Reads read_size bytes from the hibernate device specified in 935 * hib_info at offset blkctr. Output is placed into the vaddr specified 936 * at dest. 937 * 938 * Separate offsets and pages are used to handle misaligned reads (reads 939 * that span a page boundary). 940 * 941 * blkctr specifies a relative offset (relative to the start of swap), 942 * not an absolute disk offset 943 * 944 */ 945 int 946 hibernate_read_block(union hibernate_info *hib_info, daddr_t blkctr, 947 size_t read_size, vaddr_t dest) 948 { 949 struct buf *bp; 950 struct bdevsw *bdsw; 951 int error; 952 953 bp = geteblk(read_size); 954 bdsw = &bdevsw[major(hib_info->device)]; 955 956 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 957 if (error) { 958 printf("hibernate_read_block open failed\n"); 959 return (1); 960 } 961 962 bp->b_bcount = read_size; 963 bp->b_blkno = blkctr; 964 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 965 SET(bp->b_flags, B_BUSY | B_READ | B_RAW); 966 bp->b_dev = hib_info->device; 967 bp->b_cylinder = 0; 968 (*bdsw->d_strategy)(bp); 969 970 error = biowait(bp); 971 if (error) { 972 printf("hibernate_read_block biowait failed %d\n", error); 973 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 974 curproc); 975 if (error) 976 printf("hibernate_read_block error close failed\n"); 977 return (1); 978 } 979 980 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 981 if (error) { 982 printf("hibernate_read_block close failed\n"); 983 return (1); 984 } 985 986 bcopy(bp->b_data, (caddr_t)dest, read_size); 987 988 bp->b_flags |= B_INVAL; 989 brelse(bp); 990 991 return (0); 992 } 993 994 /* 995 * Reads the signature block from swap, checks against the current machine's 996 * information. If the information matches, perform a resume by reading the 997 * saved image into the pig area, and unpacking. 998 */ 999 void 1000 hibernate_resume(void) 1001 { 1002 union hibernate_info hiber_info; 1003 int s; 1004 1005 /* Get current running machine's hibernate info */ 1006 bzero(&hiber_info, sizeof(hiber_info)); 1007 if (get_hibernate_info(&hiber_info, 0)) 1008 return; 1009 1010 /* Read hibernate info from disk */ 1011 s = splbio(); 1012 1013 /* XXX use regular kernel read routine here */ 1014 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 1015 (vaddr_t)&disk_hiber_info, hiber_info.secsize, HIB_R, 1016 hiber_info.io_page)) 1017 panic("error in hibernate read\n"); 1018 1019 /* 1020 * If on-disk and in-memory hibernate signatures match, 1021 * this means we should do a resume from hibernate. 1022 */ 1023 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1024 return; 1025 1026 /* Read the image from disk into the image (pig) area */ 1027 if (hibernate_read_image(&disk_hiber_info)) 1028 goto fail; 1029 1030 /* Point of no return ... */ 1031 1032 disable_intr(); 1033 cold = 1; 1034 1035 /* Switch stacks */ 1036 hibernate_switch_stack_machdep(); 1037 1038 /* 1039 * Image is now in high memory (pig area), copy to correct location 1040 * in memory. We'll eventually end up copying on top of ourself, but 1041 * we are assured the kernel code here is the same between the 1042 * hibernated and resuming kernel, and we are running on our own 1043 * stack, so the overwrite is ok. 1044 */ 1045 hibernate_unpack_image(&disk_hiber_info); 1046 1047 /* 1048 * Resume the loaded kernel by jumping to the MD resume vector. 1049 * We won't be returning from this call. 1050 */ 1051 hibernate_resume_machdep(); 1052 1053 fail: 1054 printf("Unable to resume hibernated image\n"); 1055 } 1056 1057 /* 1058 * Unpack image from pig area to original location by looping through the 1059 * list of output chunks in the order they should be restored (fchunks). 1060 * This ordering is used to avoid having inflate overwrite a chunk in the 1061 * middle of processing that chunk. This will, of course, happen during the 1062 * final output chunk, where we copy the chunk to the piglet area first, 1063 * before inflating. 1064 */ 1065 void 1066 hibernate_unpack_image(union hibernate_info *hiber_info) 1067 { 1068 struct hibernate_disk_chunk *chunks; 1069 union hibernate_info local_hiber_info; 1070 paddr_t image_cur = global_pig_start; 1071 int *fchunks, i; 1072 char *pva = (char *)hiber_info->piglet_va; 1073 1074 /* Mask off based on arch-specific piglet page size */ 1075 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1076 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1077 1078 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1079 1080 /* Can't use hiber_info that's passed in after here */ 1081 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1082 1083 hibernate_activate_resume_pt_machdep(); 1084 1085 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1086 /* Reset zlib for inflate */ 1087 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1088 panic("hibernate failed to reset zlib for inflate\n"); 1089 1090 /* 1091 * If there is a conflict, copy the chunk to the piglet area 1092 * before unpacking it to its original location. 1093 */ 1094 if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1095 hibernate_inflate(&local_hiber_info, 1096 chunks[fchunks[i]].base, image_cur, 1097 chunks[fchunks[i]].compressed_size); 1098 else { 1099 bcopy((caddr_t)image_cur, 1100 pva + (HIBERNATE_CHUNK_SIZE * 2), 1101 chunks[fchunks[i]].compressed_size); 1102 hibernate_inflate(&local_hiber_info, 1103 chunks[fchunks[i]].base, 1104 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1105 chunks[fchunks[i]].compressed_size); 1106 } 1107 image_cur += chunks[fchunks[i]].compressed_size; 1108 } 1109 } 1110 1111 /* 1112 * Write a compressed version of this machine's memory to disk, at the 1113 * precalculated swap offset: 1114 * 1115 * end of swap - signature block size - chunk table size - memory size 1116 * 1117 * The function begins by looping through each phys mem range, cutting each 1118 * one into 4MB chunks. These chunks are then compressed individually 1119 * and written out to disk, in phys mem order. Some chunks might compress 1120 * more than others, and for this reason, each chunk's size is recorded 1121 * in the chunk table, which is written to disk after the image has 1122 * properly been compressed and written (in hibernate_write_chunktable). 1123 * 1124 * When this function is called, the machine is nearly suspended - most 1125 * devices are quiesced/suspended, interrupts are off, and cold has 1126 * been set. This means that there can be no side effects once the 1127 * write has started, and the write function itself can also have no 1128 * side effects. 1129 * 1130 * This function uses the piglet area during this process as follows: 1131 * 1132 * offset from piglet base use 1133 * ----------------------- -------------------- 1134 * 0 i/o allocation area 1135 * PAGE_SIZE i/o write area 1136 * 2*PAGE_SIZE temp/scratch page 1137 * 3*PAGE_SIZE temp/scratch page 1138 * 4*PAGE_SIZE hiballoc arena 1139 * 5*PAGE_SIZE to 85*PAGE_SIZE zlib deflate area 1140 * ... 1141 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1142 * 1143 * Some transient piglet content is saved as part of deflate, 1144 * but it is irrelevant during resume as it will be repurposed 1145 * at that time for other things. 1146 */ 1147 int 1148 hibernate_write_chunks(union hibernate_info *hiber_info) 1149 { 1150 paddr_t range_base, range_end, inaddr, temp_inaddr; 1151 size_t nblocks, out_remaining, used, offset = 0; 1152 struct hibernate_disk_chunk *chunks; 1153 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1154 daddr_t blkctr = hiber_info->image_offset; 1155 int i; 1156 1157 hiber_info->chunk_ctr = 0; 1158 1159 /* 1160 * Allocate VA for the temp and copy page. 1161 * These will becomee part of the suspended kernel and will 1162 * be freed in hibernate_free, upon resume. 1163 */ 1164 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1165 &kp_none, &kd_nowait); 1166 if (!hibernate_temp_page) 1167 return (1); 1168 1169 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1170 &kp_none, &kd_nowait); 1171 if (!hibernate_copy_page) 1172 return (1); 1173 1174 pmap_kenter_pa(hibernate_copy_page, 1175 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1176 1177 /* XXX - not needed on all archs */ 1178 pmap_activate(curproc); 1179 1180 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1181 HIBERNATE_CHUNK_SIZE); 1182 1183 /* Calculate the chunk regions */ 1184 for (i = 0; i < hiber_info->nranges; i++) { 1185 range_base = hiber_info->ranges[i].base; 1186 range_end = hiber_info->ranges[i].end; 1187 1188 inaddr = range_base; 1189 1190 while (inaddr < range_end) { 1191 chunks[hiber_info->chunk_ctr].base = inaddr; 1192 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1193 chunks[hiber_info->chunk_ctr].end = inaddr + 1194 HIBERNATE_CHUNK_SIZE; 1195 else 1196 chunks[hiber_info->chunk_ctr].end = range_end; 1197 1198 inaddr += HIBERNATE_CHUNK_SIZE; 1199 hiber_info->chunk_ctr ++; 1200 } 1201 } 1202 1203 /* Compress and write the chunks in the chunktable */ 1204 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1205 range_base = chunks[i].base; 1206 range_end = chunks[i].end; 1207 1208 chunks[i].offset = blkctr; 1209 1210 /* Reset zlib for deflate */ 1211 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1212 return (1); 1213 1214 inaddr = range_base; 1215 1216 /* 1217 * For each range, loop through its phys mem region 1218 * and write out the chunks (the last chunk might be 1219 * smaller than the chunk size). 1220 */ 1221 while (inaddr < range_end) { 1222 out_remaining = PAGE_SIZE; 1223 while (out_remaining > 0 && inaddr < range_end) { 1224 pmap_kenter_pa(hibernate_temp_page, 1225 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1226 1227 /* XXX - not needed on all archs */ 1228 pmap_activate(curproc); 1229 1230 bcopy((caddr_t)hibernate_temp_page, 1231 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1232 1233 /* 1234 * Adjust for regions that are not evenly 1235 * divisible by PAGE_SIZE 1236 */ 1237 temp_inaddr = (inaddr & PAGE_MASK) + 1238 hibernate_copy_page; 1239 1240 /* Deflate from temp_inaddr to IO page */ 1241 inaddr += hibernate_deflate(hiber_info, 1242 temp_inaddr, &out_remaining); 1243 } 1244 1245 if (out_remaining == 0) { 1246 /* Filled up the page */ 1247 nblocks = PAGE_SIZE / hiber_info->secsize; 1248 1249 if (hiber_info->io_func(hiber_info->device, 1250 blkctr, (vaddr_t)hibernate_io_page, 1251 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1252 return (1); 1253 1254 blkctr += nblocks; 1255 } 1256 } 1257 1258 if (inaddr != range_end) 1259 return (1); 1260 1261 /* 1262 * End of range. Round up to next secsize bytes 1263 * after finishing compress 1264 */ 1265 if (out_remaining == 0) 1266 out_remaining = PAGE_SIZE; 1267 1268 /* Finish compress */ 1269 hibernate_state->hib_stream.avail_in = 0; 1270 hibernate_state->hib_stream.avail_out = out_remaining; 1271 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1272 hibernate_state->hib_stream.next_out = 1273 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1274 1275 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1276 Z_STREAM_END) 1277 return (1); 1278 1279 out_remaining = hibernate_state->hib_stream.avail_out; 1280 1281 used = PAGE_SIZE - out_remaining; 1282 nblocks = used / hiber_info->secsize; 1283 1284 /* Round up to next block if needed */ 1285 if (used % hiber_info->secsize != 0) 1286 nblocks ++; 1287 1288 /* Write final block(s) for this chunk */ 1289 if (hiber_info->io_func(hiber_info->device, blkctr, 1290 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1291 HIB_W, hiber_info->io_page)) 1292 return (1); 1293 1294 blkctr += nblocks; 1295 1296 offset = blkctr; 1297 chunks[i].compressed_size = (offset - chunks[i].offset) * 1298 hiber_info->secsize; 1299 } 1300 1301 return (0); 1302 } 1303 1304 /* 1305 * Reset the zlib stream state and allocate a new hiballoc area for either 1306 * inflate or deflate. This function is called once for each hibernate chunk. 1307 * Calling hiballoc_init multiple times is acceptable since the memory it is 1308 * provided is unmanaged memory (stolen). We use the memory provided to us 1309 * by the piglet allocated via the supplied hiber_info. 1310 */ 1311 int 1312 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1313 { 1314 vaddr_t hibernate_zlib_start; 1315 size_t hibernate_zlib_size; 1316 char *pva = (char *)hiber_info->piglet_va; 1317 1318 hibernate_state = (struct hibernate_zlib_state *) 1319 (pva + (7 * PAGE_SIZE)); 1320 1321 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1322 hibernate_zlib_size = 80 * PAGE_SIZE; 1323 1324 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1325 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1326 1327 /* Set up stream structure */ 1328 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1329 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1330 1331 /* Initialize the hiballoc arena for zlib allocs/frees */ 1332 hiballoc_init(&hibernate_state->hiballoc_arena, 1333 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1334 1335 if (deflate) { 1336 return deflateInit(&hibernate_state->hib_stream, 1337 Z_DEFAULT_COMPRESSION); 1338 } else 1339 return inflateInit(&hibernate_state->hib_stream); 1340 } 1341 1342 /* 1343 * Reads the hibernated memory image from disk, whose location and 1344 * size are recorded in hiber_info. Begin by reading the persisted 1345 * chunk table, which records the original chunk placement location 1346 * and compressed size for each. Next, allocate a pig region of 1347 * sufficient size to hold the compressed image. Next, read the 1348 * chunks into the pig area (calling hibernate_read_chunks to do this), 1349 * and finally, if all of the above succeeds, clear the hibernate signature. 1350 * The function will then return to hibernate_resume, which will proceed 1351 * to unpack the pig image to the correct place in memory. 1352 */ 1353 int 1354 hibernate_read_image(union hibernate_info *hiber_info) 1355 { 1356 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1357 paddr_t image_start, image_end, pig_start, pig_end; 1358 struct hibernate_disk_chunk *chunks; 1359 daddr_t blkctr; 1360 vaddr_t chunktable = (vaddr_t)NULL; 1361 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1362 HIBERNATE_CHUNK_SIZE; 1363 int i; 1364 1365 /* Calculate total chunk table size in disk blocks */ 1366 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1367 1368 blkctr = hiber_info->sig_offset - chunktable_size - 1369 hiber_info->swap_offset; 1370 1371 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1372 &kp_none, &kd_nowait); 1373 1374 if (!chunktable) 1375 return (1); 1376 1377 /* Read the chunktable from disk into the piglet chunktable */ 1378 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1379 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1380 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1381 hibernate_read_block(hiber_info, blkctr, PAGE_SIZE, 1382 chunktable + i); 1383 } 1384 1385 blkctr = hiber_info->image_offset; 1386 compressed_size = 0; 1387 pmap_kenter_pa(chunktable, piglet_chunktable, VM_PROT_ALL); 1388 chunks = (struct hibernate_disk_chunk *)chunktable; 1389 1390 for (i = 0; i < hiber_info->chunk_ctr; i++) 1391 compressed_size += chunks[i].compressed_size; 1392 1393 disk_size = compressed_size; 1394 1395 /* Allocate the pig area */ 1396 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1397 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1398 return (1); 1399 1400 pig_end = pig_start + pig_sz; 1401 1402 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1403 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1404 image_start = pig_start; 1405 1406 image_start = image_end - disk_size; 1407 1408 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1409 chunks); 1410 1411 /* Prepare the resume time pmap/page table */ 1412 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1413 1414 /* Read complete, clear the signature and return */ 1415 return hibernate_clear_signature(); 1416 } 1417 1418 /* 1419 * Read the hibernated memory chunks from disk (chunk information at this 1420 * point is stored in the piglet) into the pig area specified by 1421 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1422 * only chunk with overlap possibilities. 1423 * 1424 * This function uses the piglet area during this process as follows: 1425 * 1426 * offset from piglet base use 1427 * ----------------------- -------------------- 1428 * 0 i/o allocation area 1429 * PAGE_SIZE i/o write area 1430 * 2*PAGE_SIZE temp/scratch page 1431 * 3*PAGE_SIZE temp/scratch page 1432 * 4*PAGE_SIZE to 6*PAGE_SIZE chunk ordering area 1433 * 7*PAGE_SIZE hiballoc arena 1434 * 8*PAGE_SIZE to 88*PAGE_SIZE zlib deflate area 1435 * ... 1436 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1437 */ 1438 int 1439 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1440 paddr_t pig_end, size_t image_compr_size, 1441 struct hibernate_disk_chunk *chunks) 1442 { 1443 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1444 paddr_t copy_start, copy_end, piglet_cur; 1445 paddr_t piglet_base = hib_info->piglet_pa; 1446 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1447 daddr_t blkctr; 1448 size_t processed, compressed_size, read_size; 1449 int i, j, overlap, found, nchunks; 1450 int nochunks = 0, nfchunks = 0, npchunks = 0; 1451 int *ochunks, *pchunks, *fchunks; 1452 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1453 1454 global_pig_start = pig_start; 1455 1456 /* XXX - dont need this on all archs */ 1457 pmap_activate(curproc); 1458 1459 /* 1460 * These mappings go into the resuming kernel's page table, and are 1461 * used only during image read. They dissappear from existence 1462 * when the suspended kernel is unpacked on top of us. 1463 */ 1464 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1465 if (!tempva) 1466 return (1); 1467 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1468 &kp_none, &kd_nowait); 1469 if (!hibernate_fchunk_area) 1470 return (1); 1471 1472 /* Temporary output chunk ordering */ 1473 ochunks = (int *)hibernate_fchunk_area; 1474 1475 /* Piglet chunk ordering */ 1476 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1477 1478 /* Final chunk ordering */ 1479 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1480 1481 /* Map the chunk ordering region */ 1482 pmap_kenter_pa(hibernate_fchunk_area, 1483 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1484 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1485 VM_PROT_ALL); 1486 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1487 VM_PROT_ALL); 1488 1489 nchunks = hib_info->chunk_ctr; 1490 1491 /* Initially start all chunks as unplaced */ 1492 for (i = 0; i < nchunks; i++) 1493 chunks[i].flags = 0; 1494 1495 /* 1496 * Search the list for chunks that are outside the pig area. These 1497 * can be placed first in the final output list. 1498 */ 1499 for (i = 0; i < nchunks; i++) { 1500 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1501 ochunks[nochunks] = (u_int8_t)i; 1502 fchunks[nfchunks] = (u_int8_t)i; 1503 nochunks++; 1504 nfchunks++; 1505 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1506 } 1507 } 1508 1509 /* 1510 * Walk the ordering, place the chunks in ascending memory order. 1511 * Conflicts might arise, these are handled next. 1512 */ 1513 do { 1514 img_index = -1; 1515 found = 0; 1516 j = -1; 1517 for (i = 0; i < nchunks; i++) 1518 if (chunks[i].base < img_index && 1519 chunks[i].flags == 0 ) { 1520 j = i; 1521 img_index = chunks[i].base; 1522 } 1523 1524 if (j != -1) { 1525 found = 1; 1526 ochunks[nochunks] = (short)j; 1527 nochunks++; 1528 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1529 } 1530 } while (found); 1531 1532 img_index = pig_start; 1533 1534 /* 1535 * Identify chunk output conflicts (chunks whose pig load area 1536 * corresponds to their original memory placement location) 1537 */ 1538 for (i = 0; i < nochunks ; i++) { 1539 overlap = 0; 1540 r1s = img_index; 1541 r1e = img_index + chunks[ochunks[i]].compressed_size; 1542 r2s = chunks[ochunks[i]].base; 1543 r2e = chunks[ochunks[i]].end; 1544 1545 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1546 if (overlap) 1547 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1548 img_index += chunks[ochunks[i]].compressed_size; 1549 } 1550 1551 /* 1552 * Prepare the final output chunk list. Calculate an output 1553 * inflate strategy for overlapping chunks if needed. 1554 */ 1555 img_index = pig_start; 1556 for (i = 0; i < nochunks ; i++) { 1557 /* 1558 * If a conflict is detected, consume enough compressed 1559 * output chunks to fill the piglet 1560 */ 1561 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1562 copy_start = piglet_base; 1563 copy_end = piglet_end; 1564 piglet_cur = piglet_base; 1565 npchunks = 0; 1566 j = i; 1567 while (copy_start < copy_end && j < nochunks) { 1568 piglet_cur += chunks[ochunks[j]].compressed_size; 1569 pchunks[npchunks] = ochunks[j]; 1570 npchunks++; 1571 copy_start += chunks[ochunks[j]].compressed_size; 1572 img_index += chunks[ochunks[j]].compressed_size; 1573 i++; 1574 j++; 1575 } 1576 1577 piglet_cur = piglet_base; 1578 for (j = 0; j < npchunks; j++) { 1579 piglet_cur += chunks[pchunks[j]].compressed_size; 1580 fchunks[nfchunks] = pchunks[j]; 1581 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1582 nfchunks++; 1583 } 1584 } else { 1585 /* 1586 * No conflict, chunk can be added without copying 1587 */ 1588 if ((chunks[ochunks[i]].flags & 1589 HIBERNATE_CHUNK_USED) == 0) { 1590 fchunks[nfchunks] = ochunks[i]; 1591 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1592 nfchunks++; 1593 } 1594 img_index += chunks[ochunks[i]].compressed_size; 1595 } 1596 } 1597 1598 img_index = pig_start; 1599 for (i = 0; i < nfchunks; i++) { 1600 piglet_cur = piglet_base; 1601 img_index += chunks[fchunks[i]].compressed_size; 1602 } 1603 1604 img_cur = pig_start; 1605 1606 for (i = 0; i < nfchunks; i++) { 1607 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1608 processed = 0; 1609 compressed_size = chunks[fchunks[i]].compressed_size; 1610 1611 while (processed < compressed_size) { 1612 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1613 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1614 VM_PROT_ALL); 1615 1616 /* XXX - not needed on all archs */ 1617 pmap_activate(curproc); 1618 if (compressed_size - processed >= PAGE_SIZE) 1619 read_size = PAGE_SIZE; 1620 else 1621 read_size = compressed_size - processed; 1622 1623 hibernate_read_block(hib_info, blkctr, read_size, 1624 tempva + (img_cur & PAGE_MASK)); 1625 1626 blkctr += (read_size / hib_info->secsize); 1627 1628 hibernate_flush(); 1629 pmap_kremove(tempva, PAGE_SIZE); 1630 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1631 processed += read_size; 1632 img_cur += read_size; 1633 } 1634 } 1635 1636 return (0); 1637 } 1638 1639 /* 1640 * Hibernating a machine comprises the following operations: 1641 * 1. Calculating this machine's hibernate_info information 1642 * 2. Allocating a piglet and saving the piglet's physaddr 1643 * 3. Calculating the memory chunks 1644 * 4. Writing the compressed chunks to disk 1645 * 5. Writing the chunk table 1646 * 6. Writing the signature block (hibernate_info) 1647 * 1648 * On most architectures, the function calling hibernate_suspend would 1649 * then power off the machine using some MD-specific implementation. 1650 */ 1651 int 1652 hibernate_suspend(void) 1653 { 1654 union hibernate_info hib_info; 1655 1656 /* 1657 * Calculate memory ranges, swap offsets, etc. 1658 * This also allocates a piglet whose physaddr is stored in 1659 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1660 */ 1661 if (get_hibernate_info(&hib_info, 1)) 1662 return (1); 1663 1664 global_piglet_va = hib_info.piglet_va; 1665 1666 /* XXX - Won't need to zero everything with RLE */ 1667 uvm_pmr_zero_everything(); 1668 1669 if (hibernate_write_chunks(&hib_info)) 1670 return (1); 1671 1672 if (hibernate_write_chunktable(&hib_info)) 1673 return (1); 1674 1675 if (hibernate_write_signature(&hib_info)) 1676 return (1); 1677 1678 delay(500000); 1679 return (0); 1680 } 1681 1682 /* 1683 * Free items allocated during hibernate 1684 */ 1685 void 1686 hibernate_free(void) 1687 { 1688 uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE); 1689 1690 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1691 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1692 pmap_update(pmap_kernel()); 1693 1694 km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none); 1695 km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none); 1696 } 1697