1 /* $OpenBSD: subr_hibernate.c,v 1.73 2013/11/06 18:41:00 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hib, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hib->io_func = get_hibernate_io_function(); 650 if (hib->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hib->device = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hib->device, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 667 return (1); 668 669 /* Make sure the signature can fit in one block */ 670 if(sizeof(union hibernate_info) > DEV_BSIZE) 671 return (1); 672 673 /* Magic number */ 674 hib->magic = HIBERNATE_MAGIC; 675 676 /* Calculate signature block location */ 677 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 678 sizeof(union hibernate_info)/DEV_BSIZE; 679 680 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 681 682 /* Stash kernel version information */ 683 bzero(&hib->kernel_version, 128); 684 bcopy(version, &hib->kernel_version, 685 min(strlen(version), sizeof(hib->kernel_version)-1)); 686 687 if (suspend) { 688 /* Allocate piglet region */ 689 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 690 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 691 HIBERNATE_CHUNK_SIZE)) { 692 printf("Hibernate failed to allocate the piglet\n"); 693 return (1); 694 } 695 hib->io_page = (void *)hib->piglet_va; 696 697 /* 698 * Initialization of the hibernate IO function for drivers 699 * that need to do prep work (such as allocating memory or 700 * setting up data structures that cannot safely be done 701 * during suspend without causing side effects). There is 702 * a matching HIB_DONE call performed after the write is 703 * completed. 704 */ 705 if (hib->io_func(hib->device, 706 DL_GETPOFFSET(&dl.d_partitions[1]), 707 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 708 HIB_INIT, hib->io_page)) 709 goto fail; 710 711 } else { 712 /* 713 * Resuming kernels use a regular I/O page since we won't 714 * have access to the suspended kernel's piglet VA at this 715 * point. No need to free this I/O page as it will vanish 716 * as part of the resume. 717 */ 718 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 719 if (!hib->io_page) 720 return (1); 721 } 722 723 724 if (get_hibernate_info_md(hib)) 725 goto fail; 726 727 728 return (0); 729 fail: 730 if (suspend) 731 uvm_pmr_free_piglet(hib->piglet_va, 732 HIBERNATE_CHUNK_SIZE * 3); 733 734 return (1); 735 } 736 737 /* 738 * Allocate nitems*size bytes from the hiballoc area presently in use 739 */ 740 void * 741 hibernate_zlib_alloc(void *unused, int nitems, int size) 742 { 743 struct hibernate_zlib_state *hibernate_state; 744 745 hibernate_state = 746 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 747 748 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 749 } 750 751 /* 752 * Free the memory pointed to by addr in the hiballoc area presently in 753 * use 754 */ 755 void 756 hibernate_zlib_free(void *unused, void *addr) 757 { 758 struct hibernate_zlib_state *hibernate_state; 759 760 hibernate_state = 761 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 762 763 hib_free(&hibernate_state->hiballoc_arena, addr); 764 } 765 766 /* 767 * Gets the next RLE value from the image stream 768 */ 769 int 770 hibernate_get_next_rle(void) 771 { 772 int rle, i; 773 struct hibernate_zlib_state *hibernate_state; 774 775 hibernate_state = 776 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 777 778 /* Read RLE code */ 779 hibernate_state->hib_stream.next_out = (char *)&rle; 780 hibernate_state->hib_stream.avail_out = sizeof(rle); 781 782 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 783 if (i != Z_OK && i != Z_STREAM_END) { 784 /* 785 * XXX - this will likely reboot/hang most machines 786 * since the console output buffer will be unmapped, 787 * but there's not much else we can do here. 788 */ 789 panic("inflate rle error"); 790 } 791 792 /* Sanity check what RLE value we got */ 793 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 794 panic("invalid RLE code"); 795 796 if (i == Z_STREAM_END) 797 rle = -1; 798 799 return rle; 800 } 801 802 /* 803 * Inflate next page of data from the image stream 804 */ 805 int 806 hibernate_inflate_page(void) 807 { 808 struct hibernate_zlib_state *hibernate_state; 809 int i; 810 811 hibernate_state = 812 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 813 814 /* Set up the stream for inflate */ 815 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 816 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 817 818 /* Process next block of data */ 819 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 820 if (i != Z_OK && i != Z_STREAM_END) { 821 /* 822 * XXX - this will likely reboot/hang most machines 823 * since the console output buffer will be unmapped, 824 * but there's not much else we can do here. 825 */ 826 panic("inflate error"); 827 } 828 829 /* We should always have extracted a full page ... */ 830 if (hibernate_state->hib_stream.avail_out != 0) { 831 /* 832 * XXX - this will likely reboot/hang most machines 833 * since the console output buffer will be unmapped, 834 * but there's not much else we can do here. 835 */ 836 panic("incomplete page"); 837 } 838 839 return (i == Z_STREAM_END); 840 } 841 842 /* 843 * Inflate size bytes from src into dest, skipping any pages in 844 * [src..dest] that are special (see hibernate_inflate_skip) 845 * 846 * This function executes while using the resume-time stack 847 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 848 * will likely hang or reset the machine since the console output buffer 849 * will be unmapped. 850 */ 851 void 852 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 853 paddr_t src, size_t size) 854 { 855 int end_stream = 0 ; 856 struct hibernate_zlib_state *hibernate_state; 857 858 hibernate_state = 859 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 860 861 hibernate_state->hib_stream.next_in = (char *)src; 862 hibernate_state->hib_stream.avail_in = size; 863 864 do { 865 /* Flush cache and TLB */ 866 hibernate_flush(); 867 868 /* 869 * Is this a special page? If yes, redirect the 870 * inflate output to a scratch page (eg, discard it) 871 */ 872 if (hibernate_inflate_skip(hib, dest)) { 873 hibernate_enter_resume_mapping( 874 HIBERNATE_INFLATE_PAGE, 875 HIBERNATE_INFLATE_PAGE, 0); 876 } else { 877 hibernate_enter_resume_mapping( 878 HIBERNATE_INFLATE_PAGE, dest, 0); 879 } 880 881 hibernate_flush(); 882 end_stream = hibernate_inflate_page(); 883 884 dest += PAGE_SIZE; 885 } while (!end_stream); 886 } 887 888 /* 889 * deflate from src into the I/O page, up to 'remaining' bytes 890 * 891 * Returns number of input bytes consumed, and may reset 892 * the 'remaining' parameter if not all the output space was consumed 893 * (this information is needed to know how much to write to disk 894 */ 895 size_t 896 hibernate_deflate(union hibernate_info *hib, paddr_t src, 897 size_t *remaining) 898 { 899 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 900 struct hibernate_zlib_state *hibernate_state; 901 902 hibernate_state = 903 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 904 905 /* Set up the stream for deflate */ 906 hibernate_state->hib_stream.next_in = (caddr_t)src; 907 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 908 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 909 (PAGE_SIZE - *remaining); 910 hibernate_state->hib_stream.avail_out = *remaining; 911 912 /* Process next block of data */ 913 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 914 panic("hibernate zlib deflate error"); 915 916 /* Update pointers and return number of bytes consumed */ 917 *remaining = hibernate_state->hib_stream.avail_out; 918 return (PAGE_SIZE - (src & PAGE_MASK)) - 919 hibernate_state->hib_stream.avail_in; 920 } 921 922 /* 923 * Write the hibernation information specified in hiber_info 924 * to the location in swap previously calculated (last block of 925 * swap), called the "signature block". 926 */ 927 int 928 hibernate_write_signature(union hibernate_info *hib) 929 { 930 /* Write hibernate info to disk */ 931 return (hib->io_func(hib->device, hib->sig_offset, 932 (vaddr_t)hib, DEV_BSIZE, HIB_W, 933 hib->io_page)); 934 } 935 936 /* 937 * Write the memory chunk table to the area in swap immediately 938 * preceding the signature block. The chunk table is stored 939 * in the piglet when this function is called. 940 * 941 * Return values: 942 * 943 * 0 - success 944 * EIO - I/O error writing the chunktable 945 */ 946 int 947 hibernate_write_chunktable(union hibernate_info *hib) 948 { 949 struct hibernate_disk_chunk *chunks; 950 vaddr_t hibernate_chunk_table_start; 951 size_t hibernate_chunk_table_size; 952 daddr_t chunkbase; 953 int i, err; 954 955 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 956 957 chunkbase = hib->sig_offset - 958 (hibernate_chunk_table_size / DEV_BSIZE); 959 960 hibernate_chunk_table_start = hib->piglet_va + 961 HIBERNATE_CHUNK_SIZE; 962 963 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 964 HIBERNATE_CHUNK_SIZE); 965 966 /* Write chunk table */ 967 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 968 if ((err = hib->io_func(hib->device, 969 chunkbase + (i/DEV_BSIZE), 970 (vaddr_t)(hibernate_chunk_table_start + i), 971 MAXPHYS, HIB_W, hib->io_page))) { 972 DPRINTF("chunktable write error: %d\n", err); 973 return (EIO); 974 } 975 } 976 977 return (0); 978 } 979 980 /* 981 * Write an empty hiber_info to the swap signature block, which is 982 * guaranteed to not match any valid hib. 983 */ 984 int 985 hibernate_clear_signature(void) 986 { 987 union hibernate_info blank_hiber_info; 988 union hibernate_info hib; 989 990 /* Zero out a blank hiber_info */ 991 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 992 993 /* Get the signature block location */ 994 if (get_hibernate_info(&hib, 0)) 995 return (1); 996 997 /* Write (zeroed) hibernate info to disk */ 998 DPRINTF("clearing hibernate signature block location: %lld\n", 999 hib.sig_offset); 1000 if (hibernate_block_io(&hib, 1001 hib.sig_offset, 1002 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 1003 printf("Warning: could not clear hibernate signature\n"); 1004 1005 return (0); 1006 } 1007 1008 /* 1009 * Check chunk range overlap when calculating whether or not to copy a 1010 * compressed chunk to the piglet area before decompressing. 1011 * 1012 * returns zero if the ranges do not overlap, non-zero otherwise. 1013 */ 1014 int 1015 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1016 { 1017 /* case A : end of r1 overlaps start of r2 */ 1018 if (r1s < r2s && r1e > r2s) 1019 return (1); 1020 1021 /* case B : r1 entirely inside r2 */ 1022 if (r1s >= r2s && r1e <= r2e) 1023 return (1); 1024 1025 /* case C : r2 entirely inside r1 */ 1026 if (r2s >= r1s && r2e <= r1e) 1027 return (1); 1028 1029 /* case D : end of r2 overlaps start of r1 */ 1030 if (r2s < r1s && r2e > r1s) 1031 return (1); 1032 1033 return (0); 1034 } 1035 1036 /* 1037 * Compare two hibernate_infos to determine if they are the same (eg, 1038 * we should be performing a hibernate resume on this machine. 1039 * Not all fields are checked - just enough to verify that the machine 1040 * has the same memory configuration and kernel as the one that 1041 * wrote the signature previously. 1042 */ 1043 int 1044 hibernate_compare_signature(union hibernate_info *mine, 1045 union hibernate_info *disk) 1046 { 1047 u_int i; 1048 1049 if (mine->nranges != disk->nranges) { 1050 DPRINTF("hibernate memory range count mismatch\n"); 1051 return (1); 1052 } 1053 1054 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1055 DPRINTF("hibernate kernel version mismatch\n"); 1056 return (1); 1057 } 1058 1059 for (i = 0; i < mine->nranges; i++) { 1060 if ((mine->ranges[i].base != disk->ranges[i].base) || 1061 (mine->ranges[i].end != disk->ranges[i].end) ) { 1062 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1063 i, mine->ranges[i].base, mine->ranges[i].end, 1064 disk->ranges[i].base, disk->ranges[i].end); 1065 return (1); 1066 } 1067 } 1068 1069 return (0); 1070 } 1071 1072 /* 1073 * Transfers xfer_size bytes between the hibernate device specified in 1074 * hib_info at offset blkctr and the vaddr specified at dest. 1075 * 1076 * Separate offsets and pages are used to handle misaligned reads (reads 1077 * that span a page boundary). 1078 * 1079 * blkctr specifies a relative offset (relative to the start of swap), 1080 * not an absolute disk offset 1081 * 1082 */ 1083 int 1084 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1085 size_t xfer_size, vaddr_t dest, int iswrite) 1086 { 1087 struct buf *bp; 1088 struct bdevsw *bdsw; 1089 int error; 1090 1091 bp = geteblk(xfer_size); 1092 bdsw = &bdevsw[major(hib->device)]; 1093 1094 error = (*bdsw->d_open)(hib->device, FREAD, S_IFCHR, curproc); 1095 if (error) { 1096 printf("hibernate_block_io open failed\n"); 1097 return (1); 1098 } 1099 1100 if (iswrite) 1101 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1102 1103 bp->b_bcount = xfer_size; 1104 bp->b_blkno = blkctr; 1105 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1106 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1107 bp->b_dev = hib->device; 1108 bp->b_cylinder = 0; 1109 (*bdsw->d_strategy)(bp); 1110 1111 error = biowait(bp); 1112 if (error) { 1113 printf("hib block_io biowait error %d blk %lld size %zu\n", 1114 error, (long long)blkctr, xfer_size); 1115 error = (*bdsw->d_close)(hib->device, 0, S_IFCHR, 1116 curproc); 1117 if (error) 1118 printf("hibernate_block_io error close failed\n"); 1119 return (1); 1120 } 1121 1122 error = (*bdsw->d_close)(hib->device, FREAD, S_IFCHR, curproc); 1123 if (error) { 1124 printf("hibernate_block_io close failed\n"); 1125 return (1); 1126 } 1127 1128 if (!iswrite) 1129 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1130 1131 bp->b_flags |= B_INVAL; 1132 brelse(bp); 1133 1134 return (0); 1135 } 1136 1137 /* 1138 * Reads the signature block from swap, checks against the current machine's 1139 * information. If the information matches, perform a resume by reading the 1140 * saved image into the pig area, and unpacking. 1141 */ 1142 void 1143 hibernate_resume(void) 1144 { 1145 union hibernate_info hib; 1146 int s; 1147 1148 /* Get current running machine's hibernate info */ 1149 bzero(&hib, sizeof(hib)); 1150 if (get_hibernate_info(&hib, 0)) { 1151 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1152 return; 1153 } 1154 1155 /* Read hibernate info from disk */ 1156 s = splbio(); 1157 1158 DPRINTF("reading hibernate signature block location: %lld\n", 1159 hib.sig_offset); 1160 1161 if (hibernate_block_io(&hib, 1162 hib.sig_offset, 1163 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1164 DPRINTF("error in hibernate read"); 1165 splx(s); 1166 return; 1167 } 1168 1169 /* Check magic number */ 1170 if (disk_hib.magic != HIBERNATE_MAGIC) { 1171 DPRINTF("wrong magic number in hibernate signature: %x\n", 1172 disk_hib.magic); 1173 splx(s); 1174 return; 1175 } 1176 1177 /* 1178 * We (possibly) found a hibernate signature. Clear signature first, 1179 * to prevent accidental resume or endless resume cycles later. 1180 */ 1181 if (hibernate_clear_signature()) { 1182 DPRINTF("error clearing hibernate signature block\n"); 1183 splx(s); 1184 return; 1185 } 1186 1187 /* 1188 * If on-disk and in-memory hibernate signatures match, 1189 * this means we should do a resume from hibernate. 1190 */ 1191 if (hibernate_compare_signature(&hib, &disk_hib)) { 1192 DPRINTF("mismatched hibernate signature block\n"); 1193 splx(s); 1194 return; 1195 } 1196 1197 #ifdef MULTIPROCESSOR 1198 hibernate_quiesce_cpus(); 1199 #endif /* MULTIPROCESSOR */ 1200 1201 /* Read the image from disk into the image (pig) area */ 1202 if (hibernate_read_image(&disk_hib)) 1203 goto fail; 1204 1205 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1206 goto fail; 1207 1208 (void) splhigh(); 1209 hibernate_disable_intr_machdep(); 1210 cold = 1; 1211 1212 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1213 cold = 0; 1214 hibernate_enable_intr_machdep(); 1215 goto fail; 1216 } 1217 1218 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1219 VM_PROT_ALL); 1220 pmap_activate(curproc); 1221 1222 printf("Unpacking image...\n"); 1223 1224 /* Switch stacks */ 1225 hibernate_switch_stack_machdep(); 1226 1227 /* Unpack and resume */ 1228 hibernate_unpack_image(&disk_hib); 1229 1230 fail: 1231 splx(s); 1232 printf("\nUnable to resume hibernated image\n"); 1233 } 1234 1235 /* 1236 * Unpack image from pig area to original location by looping through the 1237 * list of output chunks in the order they should be restored (fchunks). 1238 * 1239 * Note that due to the stack smash protector and the fact that we have 1240 * switched stacks, it is not permitted to return from this function. 1241 */ 1242 void 1243 hibernate_unpack_image(union hibernate_info *hib) 1244 { 1245 struct hibernate_disk_chunk *chunks; 1246 union hibernate_info local_hib; 1247 paddr_t image_cur = global_pig_start; 1248 short i, *fchunks; 1249 char *pva = (char *)hib->piglet_va; 1250 struct hibernate_zlib_state *hibernate_state; 1251 1252 hibernate_state = 1253 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1254 1255 /* Mask off based on arch-specific piglet page size */ 1256 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1257 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1258 1259 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1260 1261 /* Can't use hiber_info that's passed in after this point */ 1262 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1263 1264 /* 1265 * Point of no return. Once we pass this point, only kernel code can 1266 * be accessed. No global variables or other kernel data structures 1267 * are guaranteed to be coherent after unpack starts. 1268 * 1269 * The image is now in high memory (pig area), we unpack from the pig 1270 * to the correct location in memory. We'll eventually end up copying 1271 * on top of ourself, but we are assured the kernel code here is the 1272 * same between the hibernated and resuming kernel, and we are running 1273 * on our own stack, so the overwrite is ok. 1274 */ 1275 hibernate_activate_resume_pt_machdep(); 1276 1277 for (i = 0; i < local_hib.chunk_ctr; i++) { 1278 /* Reset zlib for inflate */ 1279 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1280 panic("hibernate failed to reset zlib for inflate"); 1281 1282 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1283 image_cur); 1284 1285 image_cur += chunks[fchunks[i]].compressed_size; 1286 1287 } 1288 1289 /* 1290 * Resume the loaded kernel by jumping to the MD resume vector. 1291 * We won't be returning from this call. 1292 */ 1293 hibernate_resume_machdep(); 1294 } 1295 1296 /* 1297 * Bounce a compressed image chunk to the piglet, entering mappings for the 1298 * copied pages as needed 1299 */ 1300 void 1301 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1302 { 1303 size_t ct, ofs; 1304 paddr_t src = img_cur; 1305 vaddr_t dest = piglet; 1306 1307 /* Copy first partial page */ 1308 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1309 ofs = (src & PAGE_MASK); 1310 1311 if (ct < PAGE_SIZE) { 1312 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1313 (src - ofs), 0); 1314 hibernate_flush(); 1315 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1316 src += ct; 1317 dest += ct; 1318 } 1319 wbinvd(); 1320 1321 /* Copy remaining pages */ 1322 while (src < size + img_cur) { 1323 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1324 hibernate_flush(); 1325 ct = PAGE_SIZE; 1326 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1327 hibernate_flush(); 1328 src += ct; 1329 dest += ct; 1330 } 1331 1332 hibernate_flush(); 1333 wbinvd(); 1334 } 1335 1336 /* 1337 * Process a chunk by bouncing it to the piglet, followed by unpacking 1338 */ 1339 void 1340 hibernate_process_chunk(union hibernate_info *hib, 1341 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1342 { 1343 char *pva = (char *)hib->piglet_va; 1344 1345 hibernate_copy_chunk_to_piglet(img_cur, 1346 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1347 1348 hibernate_inflate_region(hib, chunk->base, 1349 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1350 chunk->compressed_size); 1351 } 1352 1353 /* 1354 * Write a compressed version of this machine's memory to disk, at the 1355 * precalculated swap offset: 1356 * 1357 * end of swap - signature block size - chunk table size - memory size 1358 * 1359 * The function begins by looping through each phys mem range, cutting each 1360 * one into MD sized chunks. These chunks are then compressed individually 1361 * and written out to disk, in phys mem order. Some chunks might compress 1362 * more than others, and for this reason, each chunk's size is recorded 1363 * in the chunk table, which is written to disk after the image has 1364 * properly been compressed and written (in hibernate_write_chunktable). 1365 * 1366 * When this function is called, the machine is nearly suspended - most 1367 * devices are quiesced/suspended, interrupts are off, and cold has 1368 * been set. This means that there can be no side effects once the 1369 * write has started, and the write function itself can also have no 1370 * side effects. This also means no printfs are permitted (since printf 1371 * has side effects.) 1372 * 1373 * Return values : 1374 * 1375 * 0 - success 1376 * EIO - I/O error occurred writing the chunks 1377 * EINVAL - Failed to write a complete range 1378 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1379 */ 1380 int 1381 hibernate_write_chunks(union hibernate_info *hib) 1382 { 1383 paddr_t range_base, range_end, inaddr, temp_inaddr; 1384 size_t nblocks, out_remaining, used; 1385 struct hibernate_disk_chunk *chunks; 1386 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1387 daddr_t blkctr = hib->image_offset, offset = 0; 1388 int i, err; 1389 struct hibernate_zlib_state *hibernate_state; 1390 1391 hibernate_state = 1392 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1393 1394 hib->chunk_ctr = 0; 1395 1396 /* 1397 * Allocate VA for the temp and copy page. 1398 * 1399 * These will become part of the suspended kernel and will 1400 * be freed in hibernate_free, upon resume. 1401 */ 1402 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1403 &kp_none, &kd_nowait); 1404 if (!hibernate_temp_page) 1405 return (ENOMEM); 1406 1407 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1408 &kp_none, &kd_nowait); 1409 if (!hibernate_copy_page) { 1410 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1411 return (ENOMEM); 1412 } 1413 1414 pmap_kenter_pa(hibernate_copy_page, 1415 (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1416 1417 pmap_activate(curproc); 1418 1419 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1420 HIBERNATE_CHUNK_SIZE); 1421 1422 /* Calculate the chunk regions */ 1423 for (i = 0; i < hib->nranges; i++) { 1424 range_base = hib->ranges[i].base; 1425 range_end = hib->ranges[i].end; 1426 1427 inaddr = range_base; 1428 1429 while (inaddr < range_end) { 1430 chunks[hib->chunk_ctr].base = inaddr; 1431 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1432 chunks[hib->chunk_ctr].end = inaddr + 1433 HIBERNATE_CHUNK_SIZE; 1434 else 1435 chunks[hib->chunk_ctr].end = range_end; 1436 1437 inaddr += HIBERNATE_CHUNK_SIZE; 1438 hib->chunk_ctr ++; 1439 } 1440 } 1441 1442 /* Compress and write the chunks in the chunktable */ 1443 for (i = 0; i < hib->chunk_ctr; i++) { 1444 range_base = chunks[i].base; 1445 range_end = chunks[i].end; 1446 1447 chunks[i].offset = blkctr; 1448 1449 /* Reset zlib for deflate */ 1450 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1451 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1452 return (ENOMEM); 1453 } 1454 1455 inaddr = range_base; 1456 1457 /* 1458 * For each range, loop through its phys mem region 1459 * and write out the chunks (the last chunk might be 1460 * smaller than the chunk size). 1461 */ 1462 while (inaddr < range_end) { 1463 out_remaining = PAGE_SIZE; 1464 while (out_remaining > 0 && inaddr < range_end) { 1465 1466 /* 1467 * Adjust for regions that are not evenly 1468 * divisible by PAGE_SIZE or overflowed 1469 * pages from the previous iteration. 1470 */ 1471 temp_inaddr = (inaddr & PAGE_MASK) + 1472 hibernate_copy_page; 1473 1474 /* Deflate from temp_inaddr to IO page */ 1475 if (inaddr != range_end) { 1476 pmap_kenter_pa(hibernate_temp_page, 1477 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1478 1479 pmap_activate(curproc); 1480 1481 bcopy((caddr_t)hibernate_temp_page, 1482 (caddr_t)hibernate_copy_page, 1483 PAGE_SIZE); 1484 inaddr += hibernate_deflate(hib, 1485 temp_inaddr, &out_remaining); 1486 } 1487 1488 if (out_remaining == 0) { 1489 /* Filled up the page */ 1490 nblocks = 1491 PAGE_SIZE / DEV_BSIZE; 1492 1493 if ((err = hib->io_func( 1494 hib->device, 1495 blkctr, (vaddr_t)hibernate_io_page, 1496 PAGE_SIZE, HIB_W, 1497 hib->io_page))) { 1498 DPRINTF("hib write error %d\n", 1499 err); 1500 return (EIO); 1501 } 1502 1503 blkctr += nblocks; 1504 } 1505 } 1506 } 1507 1508 if (inaddr != range_end) { 1509 DPRINTF("deflate range ended prematurely\n"); 1510 return (EINVAL); 1511 } 1512 1513 /* 1514 * End of range. Round up to next secsize bytes 1515 * after finishing compress 1516 */ 1517 if (out_remaining == 0) 1518 out_remaining = PAGE_SIZE; 1519 1520 /* Finish compress */ 1521 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1522 hibernate_state->hib_stream.avail_in = 0; 1523 hibernate_state->hib_stream.next_out = 1524 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1525 1526 /* We have an extra output page available for finalize */ 1527 hibernate_state->hib_stream.avail_out = 1528 out_remaining + PAGE_SIZE; 1529 1530 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1531 Z_STREAM_END) { 1532 DPRINTF("deflate error in output stream: %d\n", err); 1533 return (EIO); 1534 } 1535 1536 out_remaining = hibernate_state->hib_stream.avail_out; 1537 1538 used = 2*PAGE_SIZE - out_remaining; 1539 nblocks = used / DEV_BSIZE; 1540 1541 /* Round up to next block if needed */ 1542 if (used % DEV_BSIZE != 0) 1543 nblocks ++; 1544 1545 /* Write final block(s) for this chunk */ 1546 if ((err = hib->io_func(hib->device, blkctr, 1547 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1548 HIB_W, hib->io_page))) { 1549 DPRINTF("hib final write error %d\n", err); 1550 return (EIO); 1551 } 1552 1553 blkctr += nblocks; 1554 1555 offset = blkctr; 1556 chunks[i].compressed_size = (offset - chunks[i].offset) * 1557 DEV_BSIZE; 1558 } 1559 1560 return (0); 1561 } 1562 1563 /* 1564 * Reset the zlib stream state and allocate a new hiballoc area for either 1565 * inflate or deflate. This function is called once for each hibernate chunk. 1566 * Calling hiballoc_init multiple times is acceptable since the memory it is 1567 * provided is unmanaged memory (stolen). We use the memory provided to us 1568 * by the piglet allocated via the supplied hib. 1569 */ 1570 int 1571 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1572 { 1573 vaddr_t hibernate_zlib_start; 1574 size_t hibernate_zlib_size; 1575 char *pva = (char *)hib->piglet_va; 1576 struct hibernate_zlib_state *hibernate_state; 1577 1578 hibernate_state = 1579 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1580 1581 if(!deflate) 1582 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1583 1584 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1585 hibernate_zlib_size = 80 * PAGE_SIZE; 1586 1587 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1588 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1589 1590 /* Set up stream structure */ 1591 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1592 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1593 1594 /* Initialize the hiballoc arena for zlib allocs/frees */ 1595 hiballoc_init(&hibernate_state->hiballoc_arena, 1596 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1597 1598 if (deflate) { 1599 return deflateInit(&hibernate_state->hib_stream, 1600 Z_BEST_SPEED); 1601 } else 1602 return inflateInit(&hibernate_state->hib_stream); 1603 } 1604 1605 /* 1606 * Reads the hibernated memory image from disk, whose location and 1607 * size are recorded in hib. Begin by reading the persisted 1608 * chunk table, which records the original chunk placement location 1609 * and compressed size for each. Next, allocate a pig region of 1610 * sufficient size to hold the compressed image. Next, read the 1611 * chunks into the pig area (calling hibernate_read_chunks to do this), 1612 * and finally, if all of the above succeeds, clear the hibernate signature. 1613 * The function will then return to hibernate_resume, which will proceed 1614 * to unpack the pig image to the correct place in memory. 1615 */ 1616 int 1617 hibernate_read_image(union hibernate_info *hib) 1618 { 1619 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1620 paddr_t image_start, image_end, pig_start, pig_end; 1621 struct hibernate_disk_chunk *chunks; 1622 daddr_t blkctr; 1623 vaddr_t chunktable = (vaddr_t)NULL; 1624 paddr_t piglet_chunktable = hib->piglet_pa + 1625 HIBERNATE_CHUNK_SIZE; 1626 int i; 1627 1628 pmap_activate(curproc); 1629 1630 /* Calculate total chunk table size in disk blocks */ 1631 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1632 1633 blkctr = hib->sig_offset - chunktable_size; 1634 1635 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1636 &kp_none, &kd_nowait); 1637 1638 if (!chunktable) 1639 return (1); 1640 1641 /* Read the chunktable from disk into the piglet chunktable */ 1642 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1643 i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) { 1644 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1645 VM_PROT_ALL); 1646 pmap_update(pmap_kernel()); 1647 hibernate_block_io(hib, blkctr, PAGE_SIZE, 1648 chunktable + i, 0); 1649 } 1650 1651 blkctr = hib->image_offset; 1652 compressed_size = 0; 1653 1654 chunks = (struct hibernate_disk_chunk *)chunktable; 1655 1656 for (i = 0; i < hib->chunk_ctr; i++) 1657 compressed_size += chunks[i].compressed_size; 1658 1659 disk_size = compressed_size; 1660 1661 printf("unhibernating @ block %lld length %lu blocks\n", 1662 hib->sig_offset - chunktable_size, 1663 compressed_size); 1664 1665 /* Allocate the pig area */ 1666 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1667 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1668 return (1); 1669 1670 pig_end = pig_start + pig_sz; 1671 1672 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1673 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1674 image_start = image_end - disk_size; 1675 1676 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1677 chunks); 1678 1679 pmap_kremove(chunktable, PAGE_SIZE); 1680 pmap_update(pmap_kernel()); 1681 1682 /* Prepare the resume time pmap/page table */ 1683 hibernate_populate_resume_pt(hib, image_start, image_end); 1684 1685 return (0); 1686 } 1687 1688 /* 1689 * Read the hibernated memory chunks from disk (chunk information at this 1690 * point is stored in the piglet) into the pig area specified by 1691 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1692 * only chunk with overlap possibilities. 1693 */ 1694 int 1695 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1696 paddr_t pig_end, size_t image_compr_size, 1697 struct hibernate_disk_chunk *chunks) 1698 { 1699 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1700 paddr_t copy_start, copy_end, piglet_cur; 1701 paddr_t piglet_base = hib->piglet_pa; 1702 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1703 daddr_t blkctr; 1704 size_t processed, compressed_size, read_size; 1705 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1706 short *ochunks, *pchunks, *fchunks, i, j; 1707 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1708 1709 global_pig_start = pig_start; 1710 1711 pmap_activate(curproc); 1712 1713 /* 1714 * These mappings go into the resuming kernel's page table, and are 1715 * used only during image read. They dissappear from existence 1716 * when the suspended kernel is unpacked on top of us. 1717 */ 1718 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1719 if (!tempva) 1720 return (1); 1721 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1722 &kp_none, &kd_nowait); 1723 if (!hibernate_fchunk_area) 1724 return (1); 1725 1726 /* Final output chunk ordering VA */ 1727 fchunks = (short *)hibernate_fchunk_area; 1728 1729 /* Piglet chunk ordering VA */ 1730 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1731 1732 /* Final chunk ordering VA */ 1733 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1734 1735 /* Map the chunk ordering region */ 1736 for(i=0; i<24 ; i++) { 1737 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1738 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1739 pmap_update(pmap_kernel()); 1740 } 1741 1742 nchunks = hib->chunk_ctr; 1743 1744 /* Initially start all chunks as unplaced */ 1745 for (i = 0; i < nchunks; i++) 1746 chunks[i].flags = 0; 1747 1748 /* 1749 * Search the list for chunks that are outside the pig area. These 1750 * can be placed first in the final output list. 1751 */ 1752 for (i = 0; i < nchunks; i++) { 1753 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1754 ochunks[nochunks] = i; 1755 fchunks[nfchunks] = i; 1756 nochunks++; 1757 nfchunks++; 1758 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1759 } 1760 } 1761 1762 /* 1763 * Walk the ordering, place the chunks in ascending memory order. 1764 * Conflicts might arise, these are handled next. 1765 */ 1766 do { 1767 img_index = -1; 1768 found = 0; 1769 j = -1; 1770 for (i = 0; i < nchunks; i++) 1771 if (chunks[i].base < img_index && 1772 chunks[i].flags == 0 ) { 1773 j = i; 1774 img_index = chunks[i].base; 1775 } 1776 1777 if (j != -1) { 1778 found = 1; 1779 ochunks[nochunks] = j; 1780 nochunks++; 1781 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1782 } 1783 } while (found); 1784 1785 img_index = pig_start; 1786 1787 /* 1788 * Identify chunk output conflicts (chunks whose pig load area 1789 * corresponds to their original memory placement location) 1790 */ 1791 for (i = 0; i < nochunks ; i++) { 1792 overlap = 0; 1793 r1s = img_index; 1794 r1e = img_index + chunks[ochunks[i]].compressed_size; 1795 r2s = chunks[ochunks[i]].base; 1796 r2e = chunks[ochunks[i]].end; 1797 1798 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1799 if (overlap) 1800 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1801 img_index += chunks[ochunks[i]].compressed_size; 1802 } 1803 1804 /* 1805 * Prepare the final output chunk list. Calculate an output 1806 * inflate strategy for overlapping chunks if needed. 1807 */ 1808 img_index = pig_start; 1809 for (i = 0; i < nochunks ; i++) { 1810 /* 1811 * If a conflict is detected, consume enough compressed 1812 * output chunks to fill the piglet 1813 */ 1814 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1815 copy_start = piglet_base; 1816 copy_end = piglet_end; 1817 piglet_cur = piglet_base; 1818 npchunks = 0; 1819 j = i; 1820 1821 while (copy_start < copy_end && j < nochunks) { 1822 piglet_cur += 1823 chunks[ochunks[j]].compressed_size; 1824 pchunks[npchunks] = ochunks[j]; 1825 npchunks++; 1826 copy_start += 1827 chunks[ochunks[j]].compressed_size; 1828 img_index += chunks[ochunks[j]].compressed_size; 1829 i++; 1830 j++; 1831 } 1832 1833 piglet_cur = piglet_base; 1834 for (j = 0; j < npchunks; j++) { 1835 piglet_cur += 1836 chunks[pchunks[j]].compressed_size; 1837 fchunks[nfchunks] = pchunks[j]; 1838 chunks[pchunks[j]].flags |= 1839 HIBERNATE_CHUNK_USED; 1840 nfchunks++; 1841 } 1842 } else { 1843 /* 1844 * No conflict, chunk can be added without copying 1845 */ 1846 if ((chunks[ochunks[i]].flags & 1847 HIBERNATE_CHUNK_USED) == 0) { 1848 fchunks[nfchunks] = ochunks[i]; 1849 chunks[ochunks[i]].flags |= 1850 HIBERNATE_CHUNK_USED; 1851 nfchunks++; 1852 } 1853 img_index += chunks[ochunks[i]].compressed_size; 1854 } 1855 } 1856 1857 img_index = pig_start; 1858 for (i = 0; i < nfchunks; i++) { 1859 piglet_cur = piglet_base; 1860 img_index += chunks[fchunks[i]].compressed_size; 1861 } 1862 1863 img_cur = pig_start; 1864 1865 for (i = 0; i < nfchunks; i++) { 1866 blkctr = chunks[fchunks[i]].offset; 1867 processed = 0; 1868 compressed_size = chunks[fchunks[i]].compressed_size; 1869 1870 while (processed < compressed_size) { 1871 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1872 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1873 VM_PROT_ALL); 1874 pmap_update(pmap_kernel()); 1875 1876 if (compressed_size - processed >= PAGE_SIZE) 1877 read_size = PAGE_SIZE; 1878 else 1879 read_size = compressed_size - processed; 1880 1881 hibernate_block_io(hib, blkctr, read_size, 1882 tempva + (img_cur & PAGE_MASK), 0); 1883 1884 blkctr += (read_size / DEV_BSIZE); 1885 1886 pmap_kremove(tempva, PAGE_SIZE); 1887 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1888 processed += read_size; 1889 img_cur += read_size; 1890 } 1891 } 1892 1893 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1894 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1895 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1896 pmap_update(pmap_kernel()); 1897 1898 return (0); 1899 } 1900 1901 /* 1902 * Hibernating a machine comprises the following operations: 1903 * 1. Calculating this machine's hibernate_info information 1904 * 2. Allocating a piglet and saving the piglet's physaddr 1905 * 3. Calculating the memory chunks 1906 * 4. Writing the compressed chunks to disk 1907 * 5. Writing the chunk table 1908 * 6. Writing the signature block (hibernate_info) 1909 * 1910 * On most architectures, the function calling hibernate_suspend would 1911 * then power off the machine using some MD-specific implementation. 1912 */ 1913 int 1914 hibernate_suspend(void) 1915 { 1916 union hibernate_info hib; 1917 u_long start, end; 1918 1919 /* 1920 * Calculate memory ranges, swap offsets, etc. 1921 * This also allocates a piglet whose physaddr is stored in 1922 * hib->piglet_pa and vaddr stored in hib->piglet_va 1923 */ 1924 if (get_hibernate_info(&hib, 1)) { 1925 DPRINTF("failed to obtain hibernate info\n"); 1926 return (1); 1927 } 1928 1929 /* Find a page-addressed region in swap [start,end] */ 1930 if (uvm_hibswap(hib.device, &start, &end)) { 1931 printf("cannot find any swap\n"); 1932 return (1); 1933 } 1934 1935 if (end - start < 1000) { 1936 printf("%lu\n is too small", end - start); 1937 return (1); 1938 } 1939 1940 /* Calculate block offsets in swap */ 1941 hib.image_offset = ctod(start); 1942 1943 /* XXX side effect */ 1944 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1945 hib.image_offset, ctod(end) - ctod(start)); 1946 1947 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1948 VM_PROT_ALL); 1949 pmap_activate(curproc); 1950 1951 /* Stash the piglet VA so we can free it in the resuming kernel */ 1952 global_piglet_va = hib.piglet_va; 1953 1954 DPRINTF("hibernate: writing chunks\n"); 1955 if (hibernate_write_chunks(&hib)) { 1956 DPRINTF("hibernate_write_chunks failed\n"); 1957 return (1); 1958 } 1959 1960 DPRINTF("hibernate: writing chunktable\n"); 1961 if (hibernate_write_chunktable(&hib)) { 1962 DPRINTF("hibernate_write_chunktable failed\n"); 1963 return (1); 1964 } 1965 1966 DPRINTF("hibernate: writing signature\n"); 1967 if (hibernate_write_signature(&hib)) { 1968 DPRINTF("hibernate_write_signature failed\n"); 1969 return (1); 1970 } 1971 1972 /* Allow the disk to settle */ 1973 delay(500000); 1974 1975 /* 1976 * Give the device-specific I/O function a notification that we're 1977 * done, and that it can clean up or shutdown as needed. 1978 */ 1979 hib.io_func(hib.device, 0, (vaddr_t)NULL, 0, 1980 HIB_DONE, hib.io_page); 1981 1982 return (0); 1983 } 1984 1985 /* 1986 * Free items allocated by hibernate_suspend() 1987 */ 1988 void 1989 hibernate_free(void) 1990 { 1991 if (global_piglet_va) 1992 uvm_pmr_free_piglet(global_piglet_va, 1993 3*HIBERNATE_CHUNK_SIZE); 1994 1995 if (hibernate_copy_page) 1996 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1997 if (hibernate_temp_page) 1998 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1999 2000 pmap_update(pmap_kernel()); 2001 2002 if (hibernate_copy_page) 2003 km_free((void *)hibernate_copy_page, PAGE_SIZE, 2004 &kv_any, &kp_none); 2005 if (hibernate_temp_page) 2006 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2007 &kv_any, &kp_none); 2008 2009 global_piglet_va = 0; 2010 hibernate_copy_page = 0; 2011 hibernate_temp_page = 0; 2012 } 2013