xref: /openbsd-src/sys/kern/subr_hibernate.c (revision 908847d13969812b5bb06c2e9360f5331dcb5dab)
1 /*	$OpenBSD: subr_hibernate.c,v 1.73 2013/11/06 18:41:00 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <uvm/uvm.h>
32 #include <uvm/uvm_swap.h>
33 #include <machine/hibernate.h>
34 
35 /*
36  * Hibernate piglet layout information
37  *
38  * The piglet is a scratch area of memory allocated by the suspending kernel.
39  * Its phys and virt addrs are recorded in the signature block. The piglet is
40  * used to guarantee an unused area of memory that can be used by the resuming
41  * kernel for various things. The piglet is excluded during unpack operations.
42  * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB).
43  *
44  * Offset from piglet_base	Purpose
45  * ----------------------------------------------------------------------------
46  * 0				I/O page used during resume
47  * 1*PAGE_SIZE		 	I/O page used during hibernate suspend
48  * 2*PAGE_SIZE		 	I/O page used during hibernate suspend
49  * 3*PAGE_SIZE			copy page used during hibernate suspend
50  * 4*PAGE_SIZE			final chunk ordering list (8 pages)
51  * 12*PAGE_SIZE			piglet chunk ordering list (8 pages)
52  * 20*PAGE_SIZE			temp chunk ordering list (8 pages)
53  * 28*PAGE_SIZE			start of hiballoc area
54  * 108*PAGE_SIZE		end of hiballoc area (80 pages)
55  * ...				unused
56  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
57  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
58  * 3*HIBERNATE_CHUNK_SIZE	end of piglet
59  */
60 
61 /* Temporary vaddr ranges used during hibernate */
62 vaddr_t hibernate_temp_page;
63 vaddr_t hibernate_copy_page;
64 
65 /* Hibernate info as read from disk during resume */
66 union hibernate_info disk_hib;
67 paddr_t global_pig_start;
68 vaddr_t global_piglet_va;
69 
70 /* #define HIB_DEBUG */
71 #ifdef HIB_DEBUG
72 int	hib_debug = 99;
73 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
74 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
75 #else
76 #define DPRINTF(x...)
77 #define DNPRINTF(n,x...)
78 #endif
79 
80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
81 
82 /*
83  * Hib alloc enforced alignment.
84  */
85 #define HIB_ALIGN		8 /* bytes alignment */
86 
87 /*
88  * sizeof builtin operation, but with alignment constraint.
89  */
90 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
91 
92 struct hiballoc_entry {
93 	size_t			hibe_use;
94 	size_t			hibe_space;
95 	RB_ENTRY(hiballoc_entry) hibe_entry;
96 };
97 
98 /*
99  * Compare hiballoc entries based on the address they manage.
100  *
101  * Since the address is fixed, relative to struct hiballoc_entry,
102  * we just compare the hiballoc_entry pointers.
103  */
104 static __inline int
105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
106 {
107 	return l < r ? -1 : (l > r);
108 }
109 
110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
111 
112 /*
113  * Given a hiballoc entry, return the address it manages.
114  */
115 static __inline void *
116 hib_entry_to_addr(struct hiballoc_entry *entry)
117 {
118 	caddr_t addr;
119 
120 	addr = (caddr_t)entry;
121 	addr += HIB_SIZEOF(struct hiballoc_entry);
122 	return addr;
123 }
124 
125 /*
126  * Given an address, find the hiballoc that corresponds.
127  */
128 static __inline struct hiballoc_entry*
129 hib_addr_to_entry(void *addr_param)
130 {
131 	caddr_t addr;
132 
133 	addr = (caddr_t)addr_param;
134 	addr -= HIB_SIZEOF(struct hiballoc_entry);
135 	return (struct hiballoc_entry*)addr;
136 }
137 
138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
139 
140 /*
141  * Allocate memory from the arena.
142  *
143  * Returns NULL if no memory is available.
144  */
145 void *
146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
147 {
148 	struct hiballoc_entry *entry, *new_entry;
149 	size_t find_sz;
150 
151 	/*
152 	 * Enforce alignment of HIB_ALIGN bytes.
153 	 *
154 	 * Note that, because the entry is put in front of the allocation,
155 	 * 0-byte allocations are guaranteed a unique address.
156 	 */
157 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
158 
159 	/*
160 	 * Find an entry with hibe_space >= find_sz.
161 	 *
162 	 * If the root node is not large enough, we switch to tree traversal.
163 	 * Because all entries are made at the bottom of the free space,
164 	 * traversal from the end has a slightly better chance of yielding
165 	 * a sufficiently large space.
166 	 */
167 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
168 	entry = RB_ROOT(&arena->hib_addrs);
169 	if (entry != NULL && entry->hibe_space < find_sz) {
170 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
171 			if (entry->hibe_space >= find_sz)
172 				break;
173 		}
174 	}
175 
176 	/*
177 	 * Insufficient or too fragmented memory.
178 	 */
179 	if (entry == NULL)
180 		return NULL;
181 
182 	/*
183 	 * Create new entry in allocated space.
184 	 */
185 	new_entry = (struct hiballoc_entry*)(
186 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
187 	new_entry->hibe_space = entry->hibe_space - find_sz;
188 	new_entry->hibe_use = alloc_sz;
189 
190 	/*
191 	 * Insert entry.
192 	 */
193 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
194 		panic("hib_alloc: insert failure");
195 	entry->hibe_space = 0;
196 
197 	/* Return address managed by entry. */
198 	return hib_entry_to_addr(new_entry);
199 }
200 
201 /*
202  * Free a pointer previously allocated from this arena.
203  *
204  * If addr is NULL, this will be silently accepted.
205  */
206 void
207 hib_free(struct hiballoc_arena *arena, void *addr)
208 {
209 	struct hiballoc_entry *entry, *prev;
210 
211 	if (addr == NULL)
212 		return;
213 
214 	/*
215 	 * Derive entry from addr and check it is really in this arena.
216 	 */
217 	entry = hib_addr_to_entry(addr);
218 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
219 		panic("hib_free: freed item %p not in hib arena", addr);
220 
221 	/*
222 	 * Give the space in entry to its predecessor.
223 	 *
224 	 * If entry has no predecessor, change its used space into free space
225 	 * instead.
226 	 */
227 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
228 	if (prev != NULL &&
229 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
230 	    prev->hibe_use + prev->hibe_space) == entry) {
231 		/* Merge entry. */
232 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
233 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
234 		    entry->hibe_use + entry->hibe_space;
235 	} else {
236 		/* Flip used memory to free space. */
237 		entry->hibe_space += entry->hibe_use;
238 		entry->hibe_use = 0;
239 	}
240 }
241 
242 /*
243  * Initialize hiballoc.
244  *
245  * The allocator will manage memmory at ptr, which is len bytes.
246  */
247 int
248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
249 {
250 	struct hiballoc_entry *entry;
251 	caddr_t ptr;
252 	size_t len;
253 
254 	RB_INIT(&arena->hib_addrs);
255 
256 	/*
257 	 * Hib allocator enforces HIB_ALIGN alignment.
258 	 * Fixup ptr and len.
259 	 */
260 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
261 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
262 	len &= ~((size_t)HIB_ALIGN - 1);
263 
264 	/*
265 	 * Insufficient memory to be able to allocate and also do bookkeeping.
266 	 */
267 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
268 		return ENOMEM;
269 
270 	/*
271 	 * Create entry describing space.
272 	 */
273 	entry = (struct hiballoc_entry*)ptr;
274 	entry->hibe_use = 0;
275 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
276 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
277 
278 	return 0;
279 }
280 
281 /*
282  * Zero all free memory.
283  */
284 void
285 uvm_pmr_zero_everything(void)
286 {
287 	struct uvm_pmemrange	*pmr;
288 	struct vm_page		*pg;
289 	int			 i;
290 
291 	uvm_lock_fpageq();
292 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
293 		/* Zero single pages. */
294 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
295 		    != NULL) {
296 			uvm_pmr_remove(pmr, pg);
297 			uvm_pagezero(pg);
298 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
299 			uvmexp.zeropages++;
300 			uvm_pmr_insert(pmr, pg, 0);
301 		}
302 
303 		/* Zero multi page ranges. */
304 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
305 		    != NULL) {
306 			pg--; /* Size tree always has second page. */
307 			uvm_pmr_remove(pmr, pg);
308 			for (i = 0; i < pg->fpgsz; i++) {
309 				uvm_pagezero(&pg[i]);
310 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
311 				uvmexp.zeropages++;
312 			}
313 			uvm_pmr_insert(pmr, pg, 0);
314 		}
315 	}
316 	uvm_unlock_fpageq();
317 }
318 
319 /*
320  * Mark all memory as dirty.
321  *
322  * Used to inform the system that the clean memory isn't clean for some
323  * reason, for example because we just came back from hibernate.
324  */
325 void
326 uvm_pmr_dirty_everything(void)
327 {
328 	struct uvm_pmemrange	*pmr;
329 	struct vm_page		*pg;
330 	int			 i;
331 
332 	uvm_lock_fpageq();
333 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
334 		/* Dirty single pages. */
335 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
336 		    != NULL) {
337 			uvm_pmr_remove(pmr, pg);
338 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
339 			uvm_pmr_insert(pmr, pg, 0);
340 		}
341 
342 		/* Dirty multi page ranges. */
343 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
344 		    != NULL) {
345 			pg--; /* Size tree always has second page. */
346 			uvm_pmr_remove(pmr, pg);
347 			for (i = 0; i < pg->fpgsz; i++)
348 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
349 			uvm_pmr_insert(pmr, pg, 0);
350 		}
351 	}
352 
353 	uvmexp.zeropages = 0;
354 	uvm_unlock_fpageq();
355 }
356 
357 /*
358  * Allocate the highest address that can hold sz.
359  *
360  * sz in bytes.
361  */
362 int
363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
364 {
365 	struct uvm_pmemrange	*pmr;
366 	struct vm_page		*pig_pg, *pg;
367 
368 	/*
369 	 * Convert sz to pages, since that is what pmemrange uses internally.
370 	 */
371 	sz = atop(round_page(sz));
372 
373 	uvm_lock_fpageq();
374 
375 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
376 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
377 			if (pig_pg->fpgsz >= sz) {
378 				goto found;
379 			}
380 		}
381 	}
382 
383 	/*
384 	 * Allocation failure.
385 	 */
386 	uvm_unlock_fpageq();
387 	return ENOMEM;
388 
389 found:
390 	/* Remove page from freelist. */
391 	uvm_pmr_remove_size(pmr, pig_pg);
392 	pig_pg->fpgsz -= sz;
393 	pg = pig_pg + pig_pg->fpgsz;
394 	if (pig_pg->fpgsz == 0)
395 		uvm_pmr_remove_addr(pmr, pig_pg);
396 	else
397 		uvm_pmr_insert_size(pmr, pig_pg);
398 
399 	uvmexp.free -= sz;
400 	*addr = VM_PAGE_TO_PHYS(pg);
401 
402 	/*
403 	 * Update pg flags.
404 	 *
405 	 * Note that we trash the sz argument now.
406 	 */
407 	while (sz > 0) {
408 		KASSERT(pg->pg_flags & PQ_FREE);
409 
410 		atomic_clearbits_int(&pg->pg_flags,
411 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
412 
413 		if (pg->pg_flags & PG_ZERO)
414 			uvmexp.zeropages -= sz;
415 		atomic_clearbits_int(&pg->pg_flags,
416 		    PG_ZERO|PQ_FREE);
417 
418 		pg->uobject = NULL;
419 		pg->uanon = NULL;
420 		pg->pg_version++;
421 
422 		/*
423 		 * Next.
424 		 */
425 		pg++;
426 		sz--;
427 	}
428 
429 	/* Return. */
430 	uvm_unlock_fpageq();
431 	return 0;
432 }
433 
434 /*
435  * Allocate a piglet area.
436  *
437  * This is as low as possible.
438  * Piglets are aligned.
439  *
440  * sz and align in bytes.
441  *
442  * The call will sleep for the pagedaemon to attempt to free memory.
443  * The pagedaemon may decide its not possible to free enough memory, causing
444  * the allocation to fail.
445  */
446 int
447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
448 {
449 	paddr_t			 pg_addr, piglet_addr;
450 	struct uvm_pmemrange	*pmr;
451 	struct vm_page		*pig_pg, *pg;
452 	struct pglist		 pageq;
453 	int			 pdaemon_woken;
454 	vaddr_t			 piglet_va;
455 
456 	/* Ensure align is a power of 2 */
457 	KASSERT((align & (align - 1)) == 0);
458 
459 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
460 
461 	/*
462 	 * Fixup arguments: align must be at least PAGE_SIZE,
463 	 * sz will be converted to pagecount, since that is what
464 	 * pmemrange uses internally.
465 	 */
466 	if (align < PAGE_SIZE)
467 		align = PAGE_SIZE;
468 	sz = round_page(sz);
469 
470 	uvm_lock_fpageq();
471 
472 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
473 	    pmr_use) {
474 retry:
475 		/*
476 		 * Search for a range with enough space.
477 		 * Use the address tree, to ensure the range is as low as
478 		 * possible.
479 		 */
480 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
481 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
482 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
483 
484 			if (atop(pg_addr) + pig_pg->fpgsz >=
485 			    atop(piglet_addr) + atop(sz))
486 				goto found;
487 		}
488 	}
489 
490 	/*
491 	 * Try to coerce the pagedaemon into freeing memory
492 	 * for the piglet.
493 	 *
494 	 * pdaemon_woken is set to prevent the code from
495 	 * falling into an endless loop.
496 	 */
497 	if (!pdaemon_woken) {
498 		pdaemon_woken = 1;
499 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
500 		    sz, UVM_PLA_FAILOK) == 0)
501 			goto retry;
502 	}
503 
504 	/* Return failure. */
505 	uvm_unlock_fpageq();
506 	return ENOMEM;
507 
508 found:
509 	/*
510 	 * Extract piglet from pigpen.
511 	 */
512 	TAILQ_INIT(&pageq);
513 	uvm_pmr_extract_range(pmr, pig_pg,
514 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
515 
516 	*pa = piglet_addr;
517 	uvmexp.free -= atop(sz);
518 
519 	/*
520 	 * Update pg flags.
521 	 *
522 	 * Note that we trash the sz argument now.
523 	 */
524 	TAILQ_FOREACH(pg, &pageq, pageq) {
525 		KASSERT(pg->pg_flags & PQ_FREE);
526 
527 		atomic_clearbits_int(&pg->pg_flags,
528 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
529 
530 		if (pg->pg_flags & PG_ZERO)
531 			uvmexp.zeropages--;
532 		atomic_clearbits_int(&pg->pg_flags,
533 		    PG_ZERO|PQ_FREE);
534 
535 		pg->uobject = NULL;
536 		pg->uanon = NULL;
537 		pg->pg_version++;
538 	}
539 
540 	uvm_unlock_fpageq();
541 
542 	/*
543 	 * Now allocate a va.
544 	 * Use direct mappings for the pages.
545 	 */
546 
547 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
548 	if (!piglet_va) {
549 		uvm_pglistfree(&pageq);
550 		return ENOMEM;
551 	}
552 
553 	/*
554 	 * Map piglet to va.
555 	 */
556 	TAILQ_FOREACH(pg, &pageq, pageq) {
557 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
558 		piglet_va += PAGE_SIZE;
559 	}
560 	pmap_update(pmap_kernel());
561 
562 	return 0;
563 }
564 
565 /*
566  * Free a piglet area.
567  */
568 void
569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
570 {
571 	paddr_t			 pa;
572 	struct vm_page		*pg;
573 
574 	/*
575 	 * Fix parameters.
576 	 */
577 	sz = round_page(sz);
578 
579 	/*
580 	 * Find the first page in piglet.
581 	 * Since piglets are contiguous, the first pg is all we need.
582 	 */
583 	if (!pmap_extract(pmap_kernel(), va, &pa))
584 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
585 	pg = PHYS_TO_VM_PAGE(pa);
586 	if (pg == NULL)
587 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
588 
589 	/*
590 	 * Unmap.
591 	 */
592 	pmap_kremove(va, sz);
593 	pmap_update(pmap_kernel());
594 
595 	/*
596 	 * Free the physical and virtual memory.
597 	 */
598 	uvm_pmr_freepages(pg, atop(sz));
599 	km_free((void *)va, sz, &kv_any, &kp_none);
600 }
601 
602 /*
603  * Physmem RLE compression support.
604  *
605  * Given a physical page address, return the number of pages starting at the
606  * address that are free.  Clamps to the number of pages in
607  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
608  */
609 int
610 uvm_page_rle(paddr_t addr)
611 {
612 	struct vm_page		*pg, *pg_end;
613 	struct vm_physseg	*vmp;
614 	int			 pseg_idx, off_idx;
615 
616 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
617 	if (pseg_idx == -1)
618 		return 0;
619 
620 	vmp = &vm_physmem[pseg_idx];
621 	pg = &vmp->pgs[off_idx];
622 	if (!(pg->pg_flags & PQ_FREE))
623 		return 0;
624 
625 	/*
626 	 * Search for the first non-free page after pg.
627 	 * Note that the page may not be the first page in a free pmemrange,
628 	 * therefore pg->fpgsz cannot be used.
629 	 */
630 	for (pg_end = pg; pg_end <= vmp->lastpg &&
631 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
632 		;
633 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
634 }
635 
636 /*
637  * Fills out the hibernate_info union pointed to by hiber_info
638  * with information about this machine (swap signature block
639  * offsets, number of memory ranges, kernel in use, etc)
640  */
641 int
642 get_hibernate_info(union hibernate_info *hib, int suspend)
643 {
644 	int chunktable_size;
645 	struct disklabel dl;
646 	char err_string[128], *dl_ret;
647 
648 	/* Determine I/O function to use */
649 	hib->io_func = get_hibernate_io_function();
650 	if (hib->io_func == NULL)
651 		return (1);
652 
653 	/* Calculate hibernate device */
654 	hib->device = swdevt[0].sw_dev;
655 
656 	/* Read disklabel (used to calculate signature and image offsets) */
657 	dl_ret = disk_readlabel(&dl, hib->device, err_string, 128);
658 
659 	if (dl_ret) {
660 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
661 		return (1);
662 	}
663 
664 	/* Make sure we have a swap partition. */
665 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
666 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
667 		return (1);
668 
669 	/* Make sure the signature can fit in one block */
670 	if(sizeof(union hibernate_info) > DEV_BSIZE)
671 		return (1);
672 
673 	/* Magic number */
674 	hib->magic = HIBERNATE_MAGIC;
675 
676 	/* Calculate signature block location */
677 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
678 	    sizeof(union hibernate_info)/DEV_BSIZE;
679 
680 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
681 
682 	/* Stash kernel version information */
683 	bzero(&hib->kernel_version, 128);
684 	bcopy(version, &hib->kernel_version,
685 	    min(strlen(version), sizeof(hib->kernel_version)-1));
686 
687 	if (suspend) {
688 		/* Allocate piglet region */
689 		if (uvm_pmr_alloc_piglet(&hib->piglet_va,
690 		    &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
691 		    HIBERNATE_CHUNK_SIZE)) {
692 			printf("Hibernate failed to allocate the piglet\n");
693 			return (1);
694 		}
695 		hib->io_page = (void *)hib->piglet_va;
696 
697 		/*
698 		 * Initialization of the hibernate IO function for drivers
699 		 * that need to do prep work (such as allocating memory or
700 		 * setting up data structures that cannot safely be done
701 		 * during suspend without causing side effects). There is
702 		 * a matching HIB_DONE call performed after the write is
703 		 * completed.
704 		 */
705 		if (hib->io_func(hib->device,
706 		    DL_GETPOFFSET(&dl.d_partitions[1]),
707 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
708 		    HIB_INIT, hib->io_page))
709 			goto fail;
710 
711 	} else {
712 		/*
713 		 * Resuming kernels use a regular I/O page since we won't
714 		 * have access to the suspended kernel's piglet VA at this
715 		 * point. No need to free this I/O page as it will vanish
716 		 * as part of the resume.
717 		 */
718 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
719 		if (!hib->io_page)
720 			return (1);
721 	}
722 
723 
724 	if (get_hibernate_info_md(hib))
725 		goto fail;
726 
727 
728 	return (0);
729 fail:
730 	if (suspend)
731 		uvm_pmr_free_piglet(hib->piglet_va,
732 		    HIBERNATE_CHUNK_SIZE * 3);
733 
734 	return (1);
735 }
736 
737 /*
738  * Allocate nitems*size bytes from the hiballoc area presently in use
739  */
740 void *
741 hibernate_zlib_alloc(void *unused, int nitems, int size)
742 {
743 	struct hibernate_zlib_state *hibernate_state;
744 
745 	hibernate_state =
746 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
747 
748 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
749 }
750 
751 /*
752  * Free the memory pointed to by addr in the hiballoc area presently in
753  * use
754  */
755 void
756 hibernate_zlib_free(void *unused, void *addr)
757 {
758 	struct hibernate_zlib_state *hibernate_state;
759 
760 	hibernate_state =
761 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
762 
763 	hib_free(&hibernate_state->hiballoc_arena, addr);
764 }
765 
766 /*
767  * Gets the next RLE value from the image stream
768  */
769 int
770 hibernate_get_next_rle(void)
771 {
772 	int rle, i;
773 	struct hibernate_zlib_state *hibernate_state;
774 
775 	hibernate_state =
776 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
777 
778 	/* Read RLE code */
779 	hibernate_state->hib_stream.next_out = (char *)&rle;
780 	hibernate_state->hib_stream.avail_out = sizeof(rle);
781 
782 	i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH);
783 	if (i != Z_OK && i != Z_STREAM_END) {
784 		/*
785 		 * XXX - this will likely reboot/hang most machines
786 		 *       since the console output buffer will be unmapped,
787 		 *       but there's not much else we can do here.
788 		 */
789 		panic("inflate rle error");
790 	}
791 
792 	/* Sanity check what RLE value we got */
793 	if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0)
794 		panic("invalid RLE code");
795 
796 	if (i == Z_STREAM_END)
797 		rle = -1;
798 
799 	return rle;
800 }
801 
802 /*
803  * Inflate next page of data from the image stream
804  */
805 int
806 hibernate_inflate_page(void)
807 {
808 	struct hibernate_zlib_state *hibernate_state;
809 	int i;
810 
811 	hibernate_state =
812 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
813 
814 	/* Set up the stream for inflate */
815 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
816 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
817 
818 	/* Process next block of data */
819 	i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
820 	if (i != Z_OK && i != Z_STREAM_END) {
821 		/*
822 		 * XXX - this will likely reboot/hang most machines
823 		 *       since the console output buffer will be unmapped,
824 		 *       but there's not much else we can do here.
825 		 */
826 		panic("inflate error");
827 	}
828 
829 	/* We should always have extracted a full page ... */
830 	if (hibernate_state->hib_stream.avail_out != 0) {
831 		/*
832 		 * XXX - this will likely reboot/hang most machines
833 		 *       since the console output buffer will be unmapped,
834 		 *       but there's not much else we can do here.
835 		 */
836 		panic("incomplete page");
837 	}
838 
839 	return (i == Z_STREAM_END);
840 }
841 
842 /*
843  * Inflate size bytes from src into dest, skipping any pages in
844  * [src..dest] that are special (see hibernate_inflate_skip)
845  *
846  * This function executes while using the resume-time stack
847  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
848  * will likely hang or reset the machine since the console output buffer
849  * will be unmapped.
850  */
851 void
852 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
853     paddr_t src, size_t size)
854 {
855 	int end_stream = 0 ;
856 	struct hibernate_zlib_state *hibernate_state;
857 
858 	hibernate_state =
859 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
860 
861 	hibernate_state->hib_stream.next_in = (char *)src;
862 	hibernate_state->hib_stream.avail_in = size;
863 
864 	do {
865 		/* Flush cache and TLB */
866 		hibernate_flush();
867 
868 		/*
869 		 * Is this a special page? If yes, redirect the
870 		 * inflate output to a scratch page (eg, discard it)
871 		 */
872 		if (hibernate_inflate_skip(hib, dest)) {
873 			hibernate_enter_resume_mapping(
874 			    HIBERNATE_INFLATE_PAGE,
875 			    HIBERNATE_INFLATE_PAGE, 0);
876 		} else {
877 			hibernate_enter_resume_mapping(
878 			    HIBERNATE_INFLATE_PAGE, dest, 0);
879 		}
880 
881 		hibernate_flush();
882 		end_stream = hibernate_inflate_page();
883 
884 		dest += PAGE_SIZE;
885 	} while (!end_stream);
886 }
887 
888 /*
889  * deflate from src into the I/O page, up to 'remaining' bytes
890  *
891  * Returns number of input bytes consumed, and may reset
892  * the 'remaining' parameter if not all the output space was consumed
893  * (this information is needed to know how much to write to disk
894  */
895 size_t
896 hibernate_deflate(union hibernate_info *hib, paddr_t src,
897     size_t *remaining)
898 {
899 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
900 	struct hibernate_zlib_state *hibernate_state;
901 
902 	hibernate_state =
903 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
904 
905 	/* Set up the stream for deflate */
906 	hibernate_state->hib_stream.next_in = (caddr_t)src;
907 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
908 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
909 	    (PAGE_SIZE - *remaining);
910 	hibernate_state->hib_stream.avail_out = *remaining;
911 
912 	/* Process next block of data */
913 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
914 		panic("hibernate zlib deflate error");
915 
916 	/* Update pointers and return number of bytes consumed */
917 	*remaining = hibernate_state->hib_stream.avail_out;
918 	return (PAGE_SIZE - (src & PAGE_MASK)) -
919 	    hibernate_state->hib_stream.avail_in;
920 }
921 
922 /*
923  * Write the hibernation information specified in hiber_info
924  * to the location in swap previously calculated (last block of
925  * swap), called the "signature block".
926  */
927 int
928 hibernate_write_signature(union hibernate_info *hib)
929 {
930 	/* Write hibernate info to disk */
931 	return (hib->io_func(hib->device, hib->sig_offset,
932 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
933 	    hib->io_page));
934 }
935 
936 /*
937  * Write the memory chunk table to the area in swap immediately
938  * preceding the signature block. The chunk table is stored
939  * in the piglet when this function is called.
940  *
941  * Return values:
942  *
943  * 0   -  success
944  * EIO -  I/O error writing the chunktable
945  */
946 int
947 hibernate_write_chunktable(union hibernate_info *hib)
948 {
949 	struct hibernate_disk_chunk *chunks;
950 	vaddr_t hibernate_chunk_table_start;
951 	size_t hibernate_chunk_table_size;
952 	daddr_t chunkbase;
953 	int i, err;
954 
955 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
956 
957 	chunkbase = hib->sig_offset -
958 	    (hibernate_chunk_table_size / DEV_BSIZE);
959 
960 	hibernate_chunk_table_start = hib->piglet_va +
961 	    HIBERNATE_CHUNK_SIZE;
962 
963 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
964 	    HIBERNATE_CHUNK_SIZE);
965 
966 	/* Write chunk table */
967 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
968 		if ((err = hib->io_func(hib->device,
969 		    chunkbase + (i/DEV_BSIZE),
970 		    (vaddr_t)(hibernate_chunk_table_start + i),
971 		    MAXPHYS, HIB_W, hib->io_page))) {
972 			DPRINTF("chunktable write error: %d\n", err);
973 			return (EIO);
974 		}
975 	}
976 
977 	return (0);
978 }
979 
980 /*
981  * Write an empty hiber_info to the swap signature block, which is
982  * guaranteed to not match any valid hib.
983  */
984 int
985 hibernate_clear_signature(void)
986 {
987 	union hibernate_info blank_hiber_info;
988 	union hibernate_info hib;
989 
990 	/* Zero out a blank hiber_info */
991 	bzero(&blank_hiber_info, sizeof(union hibernate_info));
992 
993 	/* Get the signature block location */
994 	if (get_hibernate_info(&hib, 0))
995 		return (1);
996 
997 	/* Write (zeroed) hibernate info to disk */
998 	DPRINTF("clearing hibernate signature block location: %lld\n",
999 		hib.sig_offset);
1000 	if (hibernate_block_io(&hib,
1001 	    hib.sig_offset,
1002 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
1003 		printf("Warning: could not clear hibernate signature\n");
1004 
1005 	return (0);
1006 }
1007 
1008 /*
1009  * Check chunk range overlap when calculating whether or not to copy a
1010  * compressed chunk to the piglet area before decompressing.
1011  *
1012  * returns zero if the ranges do not overlap, non-zero otherwise.
1013  */
1014 int
1015 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
1016 {
1017 	/* case A : end of r1 overlaps start of r2 */
1018 	if (r1s < r2s && r1e > r2s)
1019 		return (1);
1020 
1021 	/* case B : r1 entirely inside r2 */
1022 	if (r1s >= r2s && r1e <= r2e)
1023 		return (1);
1024 
1025 	/* case C : r2 entirely inside r1 */
1026 	if (r2s >= r1s && r2e <= r1e)
1027 		return (1);
1028 
1029 	/* case D : end of r2 overlaps start of r1 */
1030 	if (r2s < r1s && r2e > r1s)
1031 		return (1);
1032 
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Compare two hibernate_infos to determine if they are the same (eg,
1038  * we should be performing a hibernate resume on this machine.
1039  * Not all fields are checked - just enough to verify that the machine
1040  * has the same memory configuration and kernel as the one that
1041  * wrote the signature previously.
1042  */
1043 int
1044 hibernate_compare_signature(union hibernate_info *mine,
1045     union hibernate_info *disk)
1046 {
1047 	u_int i;
1048 
1049 	if (mine->nranges != disk->nranges) {
1050 		DPRINTF("hibernate memory range count mismatch\n");
1051 		return (1);
1052 	}
1053 
1054 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
1055 		DPRINTF("hibernate kernel version mismatch\n");
1056 		return (1);
1057 	}
1058 
1059 	for (i = 0; i < mine->nranges; i++) {
1060 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
1061 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
1062 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
1063 				i, mine->ranges[i].base, mine->ranges[i].end,
1064 				disk->ranges[i].base, disk->ranges[i].end);
1065 			return (1);
1066 		}
1067 	}
1068 
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Transfers xfer_size bytes between the hibernate device specified in
1074  * hib_info at offset blkctr and the vaddr specified at dest.
1075  *
1076  * Separate offsets and pages are used to handle misaligned reads (reads
1077  * that span a page boundary).
1078  *
1079  * blkctr specifies a relative offset (relative to the start of swap),
1080  * not an absolute disk offset
1081  *
1082  */
1083 int
1084 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
1085     size_t xfer_size, vaddr_t dest, int iswrite)
1086 {
1087 	struct buf *bp;
1088 	struct bdevsw *bdsw;
1089 	int error;
1090 
1091 	bp = geteblk(xfer_size);
1092 	bdsw = &bdevsw[major(hib->device)];
1093 
1094 	error = (*bdsw->d_open)(hib->device, FREAD, S_IFCHR, curproc);
1095 	if (error) {
1096 		printf("hibernate_block_io open failed\n");
1097 		return (1);
1098 	}
1099 
1100 	if (iswrite)
1101 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1102 
1103 	bp->b_bcount = xfer_size;
1104 	bp->b_blkno = blkctr;
1105 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1106 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1107 	bp->b_dev = hib->device;
1108 	bp->b_cylinder = 0;
1109 	(*bdsw->d_strategy)(bp);
1110 
1111 	error = biowait(bp);
1112 	if (error) {
1113 		printf("hib block_io biowait error %d blk %lld size %zu\n",
1114 			error, (long long)blkctr, xfer_size);
1115 		error = (*bdsw->d_close)(hib->device, 0, S_IFCHR,
1116 		    curproc);
1117 		if (error)
1118 			printf("hibernate_block_io error close failed\n");
1119 		return (1);
1120 	}
1121 
1122 	error = (*bdsw->d_close)(hib->device, FREAD, S_IFCHR, curproc);
1123 	if (error) {
1124 		printf("hibernate_block_io close failed\n");
1125 		return (1);
1126 	}
1127 
1128 	if (!iswrite)
1129 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1130 
1131 	bp->b_flags |= B_INVAL;
1132 	brelse(bp);
1133 
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Reads the signature block from swap, checks against the current machine's
1139  * information. If the information matches, perform a resume by reading the
1140  * saved image into the pig area, and unpacking.
1141  */
1142 void
1143 hibernate_resume(void)
1144 {
1145 	union hibernate_info hib;
1146 	int s;
1147 
1148 	/* Get current running machine's hibernate info */
1149 	bzero(&hib, sizeof(hib));
1150 	if (get_hibernate_info(&hib, 0)) {
1151 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1152 		return;
1153 	}
1154 
1155 	/* Read hibernate info from disk */
1156 	s = splbio();
1157 
1158 	DPRINTF("reading hibernate signature block location: %lld\n",
1159 		hib.sig_offset);
1160 
1161 	if (hibernate_block_io(&hib,
1162 	    hib.sig_offset,
1163 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1164 		DPRINTF("error in hibernate read");
1165 		splx(s);
1166 		return;
1167 	}
1168 
1169 	/* Check magic number */
1170 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1171 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1172 			disk_hib.magic);
1173 		splx(s);
1174 		return;
1175 	}
1176 
1177 	/*
1178 	 * We (possibly) found a hibernate signature. Clear signature first,
1179 	 * to prevent accidental resume or endless resume cycles later.
1180 	 */
1181 	if (hibernate_clear_signature()) {
1182 		DPRINTF("error clearing hibernate signature block\n");
1183 		splx(s);
1184 		return;
1185 	}
1186 
1187 	/*
1188 	 * If on-disk and in-memory hibernate signatures match,
1189 	 * this means we should do a resume from hibernate.
1190 	 */
1191 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1192 		DPRINTF("mismatched hibernate signature block\n");
1193 		splx(s);
1194 		return;
1195 	}
1196 
1197 #ifdef MULTIPROCESSOR
1198 	hibernate_quiesce_cpus();
1199 #endif /* MULTIPROCESSOR */
1200 
1201 	/* Read the image from disk into the image (pig) area */
1202 	if (hibernate_read_image(&disk_hib))
1203 		goto fail;
1204 
1205 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0)
1206 		goto fail;
1207 
1208 	(void) splhigh();
1209 	hibernate_disable_intr_machdep();
1210 	cold = 1;
1211 
1212 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) {
1213 		cold = 0;
1214 		hibernate_enable_intr_machdep();
1215 		goto fail;
1216 	}
1217 
1218 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1219 	    VM_PROT_ALL);
1220 	pmap_activate(curproc);
1221 
1222 	printf("Unpacking image...\n");
1223 
1224 	/* Switch stacks */
1225 	hibernate_switch_stack_machdep();
1226 
1227 	/* Unpack and resume */
1228 	hibernate_unpack_image(&disk_hib);
1229 
1230 fail:
1231 	splx(s);
1232 	printf("\nUnable to resume hibernated image\n");
1233 }
1234 
1235 /*
1236  * Unpack image from pig area to original location by looping through the
1237  * list of output chunks in the order they should be restored (fchunks).
1238  *
1239  * Note that due to the stack smash protector and the fact that we have
1240  * switched stacks, it is not permitted to return from this function.
1241  */
1242 void
1243 hibernate_unpack_image(union hibernate_info *hib)
1244 {
1245 	struct hibernate_disk_chunk *chunks;
1246 	union hibernate_info local_hib;
1247 	paddr_t image_cur = global_pig_start;
1248 	short i, *fchunks;
1249 	char *pva = (char *)hib->piglet_va;
1250 	struct hibernate_zlib_state *hibernate_state;
1251 
1252 	hibernate_state =
1253 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1254 
1255 	/* Mask off based on arch-specific piglet page size */
1256 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1257 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1258 
1259 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1260 
1261 	/* Can't use hiber_info that's passed in after this point */
1262 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1263 
1264 	/*
1265 	 * Point of no return. Once we pass this point, only kernel code can
1266 	 * be accessed. No global variables or other kernel data structures
1267 	 * are guaranteed to be coherent after unpack starts.
1268 	 *
1269 	 * The image is now in high memory (pig area), we unpack from the pig
1270 	 * to the correct location in memory. We'll eventually end up copying
1271 	 * on top of ourself, but we are assured the kernel code here is the
1272 	 * same between the hibernated and resuming kernel, and we are running
1273 	 * on our own stack, so the overwrite is ok.
1274 	 */
1275 	hibernate_activate_resume_pt_machdep();
1276 
1277 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1278 		/* Reset zlib for inflate */
1279 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1280 			panic("hibernate failed to reset zlib for inflate");
1281 
1282 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1283 		    image_cur);
1284 
1285 		image_cur += chunks[fchunks[i]].compressed_size;
1286 
1287 	}
1288 
1289 	/*
1290 	 * Resume the loaded kernel by jumping to the MD resume vector.
1291 	 * We won't be returning from this call.
1292 	 */
1293 	hibernate_resume_machdep();
1294 }
1295 
1296 /*
1297  * Bounce a compressed image chunk to the piglet, entering mappings for the
1298  * copied pages as needed
1299  */
1300 void
1301 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1302 {
1303 	size_t ct, ofs;
1304 	paddr_t src = img_cur;
1305 	vaddr_t dest = piglet;
1306 
1307 	/* Copy first partial page */
1308 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1309 	ofs = (src & PAGE_MASK);
1310 
1311 	if (ct < PAGE_SIZE) {
1312 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1313 			(src - ofs), 0);
1314 		hibernate_flush();
1315 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1316 		src += ct;
1317 		dest += ct;
1318 	}
1319 	wbinvd();
1320 
1321 	/* Copy remaining pages */
1322 	while (src < size + img_cur) {
1323 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1324 		hibernate_flush();
1325 		ct = PAGE_SIZE;
1326 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1327 		hibernate_flush();
1328 		src += ct;
1329 		dest += ct;
1330 	}
1331 
1332 	hibernate_flush();
1333 	wbinvd();
1334 }
1335 
1336 /*
1337  * Process a chunk by bouncing it to the piglet, followed by unpacking
1338  */
1339 void
1340 hibernate_process_chunk(union hibernate_info *hib,
1341     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1342 {
1343 	char *pva = (char *)hib->piglet_va;
1344 
1345 	hibernate_copy_chunk_to_piglet(img_cur,
1346 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1347 
1348 	hibernate_inflate_region(hib, chunk->base,
1349 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1350 	    chunk->compressed_size);
1351 }
1352 
1353 /*
1354  * Write a compressed version of this machine's memory to disk, at the
1355  * precalculated swap offset:
1356  *
1357  * end of swap - signature block size - chunk table size - memory size
1358  *
1359  * The function begins by looping through each phys mem range, cutting each
1360  * one into MD sized chunks. These chunks are then compressed individually
1361  * and written out to disk, in phys mem order. Some chunks might compress
1362  * more than others, and for this reason, each chunk's size is recorded
1363  * in the chunk table, which is written to disk after the image has
1364  * properly been compressed and written (in hibernate_write_chunktable).
1365  *
1366  * When this function is called, the machine is nearly suspended - most
1367  * devices are quiesced/suspended, interrupts are off, and cold has
1368  * been set. This means that there can be no side effects once the
1369  * write has started, and the write function itself can also have no
1370  * side effects. This also means no printfs are permitted (since printf
1371  * has side effects.)
1372  *
1373  * Return values :
1374  *
1375  * 0      - success
1376  * EIO    - I/O error occurred writing the chunks
1377  * EINVAL - Failed to write a complete range
1378  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1379  */
1380 int
1381 hibernate_write_chunks(union hibernate_info *hib)
1382 {
1383 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1384 	size_t nblocks, out_remaining, used;
1385 	struct hibernate_disk_chunk *chunks;
1386 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1387 	daddr_t blkctr = hib->image_offset, offset = 0;
1388 	int i, err;
1389 	struct hibernate_zlib_state *hibernate_state;
1390 
1391 	hibernate_state =
1392 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1393 
1394 	hib->chunk_ctr = 0;
1395 
1396 	/*
1397 	 * Allocate VA for the temp and copy page.
1398 	 *
1399 	 * These will become part of the suspended kernel and will
1400 	 * be freed in hibernate_free, upon resume.
1401 	 */
1402 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1403 	    &kp_none, &kd_nowait);
1404 	if (!hibernate_temp_page)
1405 		return (ENOMEM);
1406 
1407 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1408 	    &kp_none, &kd_nowait);
1409 	if (!hibernate_copy_page) {
1410 		DPRINTF("out of memory allocating hibernate_copy_page\n");
1411 		return (ENOMEM);
1412 	}
1413 
1414 	pmap_kenter_pa(hibernate_copy_page,
1415 	    (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1416 
1417 	pmap_activate(curproc);
1418 
1419 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1420 	    HIBERNATE_CHUNK_SIZE);
1421 
1422 	/* Calculate the chunk regions */
1423 	for (i = 0; i < hib->nranges; i++) {
1424 		range_base = hib->ranges[i].base;
1425 		range_end = hib->ranges[i].end;
1426 
1427 		inaddr = range_base;
1428 
1429 		while (inaddr < range_end) {
1430 			chunks[hib->chunk_ctr].base = inaddr;
1431 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1432 				chunks[hib->chunk_ctr].end = inaddr +
1433 				    HIBERNATE_CHUNK_SIZE;
1434 			else
1435 				chunks[hib->chunk_ctr].end = range_end;
1436 
1437 			inaddr += HIBERNATE_CHUNK_SIZE;
1438 			hib->chunk_ctr ++;
1439 		}
1440 	}
1441 
1442 	/* Compress and write the chunks in the chunktable */
1443 	for (i = 0; i < hib->chunk_ctr; i++) {
1444 		range_base = chunks[i].base;
1445 		range_end = chunks[i].end;
1446 
1447 		chunks[i].offset = blkctr;
1448 
1449 		/* Reset zlib for deflate */
1450 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1451 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1452 			return (ENOMEM);
1453 		}
1454 
1455 		inaddr = range_base;
1456 
1457 		/*
1458 		 * For each range, loop through its phys mem region
1459 		 * and write out the chunks (the last chunk might be
1460 		 * smaller than the chunk size).
1461 		 */
1462 		while (inaddr < range_end) {
1463 			out_remaining = PAGE_SIZE;
1464 			while (out_remaining > 0 && inaddr < range_end) {
1465 
1466 				/*
1467 				 * Adjust for regions that are not evenly
1468 				 * divisible by PAGE_SIZE or overflowed
1469 				 * pages from the previous iteration.
1470 				 */
1471 				temp_inaddr = (inaddr & PAGE_MASK) +
1472 				    hibernate_copy_page;
1473 
1474 				/* Deflate from temp_inaddr to IO page */
1475 				if (inaddr != range_end) {
1476 					pmap_kenter_pa(hibernate_temp_page,
1477 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1478 
1479 					pmap_activate(curproc);
1480 
1481 					bcopy((caddr_t)hibernate_temp_page,
1482 					    (caddr_t)hibernate_copy_page,
1483 					    PAGE_SIZE);
1484 					inaddr += hibernate_deflate(hib,
1485 					    temp_inaddr, &out_remaining);
1486 				}
1487 
1488 				if (out_remaining == 0) {
1489 					/* Filled up the page */
1490 					nblocks =
1491 					    PAGE_SIZE / DEV_BSIZE;
1492 
1493 					if ((err = hib->io_func(
1494 					    hib->device,
1495 					    blkctr, (vaddr_t)hibernate_io_page,
1496 					    PAGE_SIZE, HIB_W,
1497 					    hib->io_page))) {
1498 						DPRINTF("hib write error %d\n",
1499 							err);
1500 						return (EIO);
1501 					}
1502 
1503 					blkctr += nblocks;
1504 				}
1505 			}
1506 		}
1507 
1508 		if (inaddr != range_end) {
1509 			DPRINTF("deflate range ended prematurely\n");
1510 			return (EINVAL);
1511 		}
1512 
1513 		/*
1514 		 * End of range. Round up to next secsize bytes
1515 		 * after finishing compress
1516 		 */
1517 		if (out_remaining == 0)
1518 			out_remaining = PAGE_SIZE;
1519 
1520 		/* Finish compress */
1521 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1522 		hibernate_state->hib_stream.avail_in = 0;
1523 		hibernate_state->hib_stream.next_out =
1524 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1525 
1526 		/* We have an extra output page available for finalize */
1527 		hibernate_state->hib_stream.avail_out =
1528 			out_remaining + PAGE_SIZE;
1529 
1530 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1531 		    Z_STREAM_END) {
1532 			DPRINTF("deflate error in output stream: %d\n", err);
1533 			return (EIO);
1534 		}
1535 
1536 		out_remaining = hibernate_state->hib_stream.avail_out;
1537 
1538 		used = 2*PAGE_SIZE - out_remaining;
1539 		nblocks = used / DEV_BSIZE;
1540 
1541 		/* Round up to next block if needed */
1542 		if (used % DEV_BSIZE != 0)
1543 			nblocks ++;
1544 
1545 		/* Write final block(s) for this chunk */
1546 		if ((err = hib->io_func(hib->device, blkctr,
1547 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1548 		    HIB_W, hib->io_page))) {
1549 			DPRINTF("hib final write error %d\n", err);
1550 			return (EIO);
1551 		}
1552 
1553 		blkctr += nblocks;
1554 
1555 		offset = blkctr;
1556 		chunks[i].compressed_size = (offset - chunks[i].offset) *
1557 		    DEV_BSIZE;
1558 	}
1559 
1560 	return (0);
1561 }
1562 
1563 /*
1564  * Reset the zlib stream state and allocate a new hiballoc area for either
1565  * inflate or deflate. This function is called once for each hibernate chunk.
1566  * Calling hiballoc_init multiple times is acceptable since the memory it is
1567  * provided is unmanaged memory (stolen). We use the memory provided to us
1568  * by the piglet allocated via the supplied hib.
1569  */
1570 int
1571 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1572 {
1573 	vaddr_t hibernate_zlib_start;
1574 	size_t hibernate_zlib_size;
1575 	char *pva = (char *)hib->piglet_va;
1576 	struct hibernate_zlib_state *hibernate_state;
1577 
1578 	hibernate_state =
1579 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1580 
1581 	if(!deflate)
1582 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1583 
1584 	hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE));
1585 	hibernate_zlib_size = 80 * PAGE_SIZE;
1586 
1587 	bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1588 	bzero((caddr_t)hibernate_state, PAGE_SIZE);
1589 
1590 	/* Set up stream structure */
1591 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1592 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1593 
1594 	/* Initialize the hiballoc arena for zlib allocs/frees */
1595 	hiballoc_init(&hibernate_state->hiballoc_arena,
1596 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1597 
1598 	if (deflate) {
1599 		return deflateInit(&hibernate_state->hib_stream,
1600 		    Z_BEST_SPEED);
1601 	} else
1602 		return inflateInit(&hibernate_state->hib_stream);
1603 }
1604 
1605 /*
1606  * Reads the hibernated memory image from disk, whose location and
1607  * size are recorded in hib. Begin by reading the persisted
1608  * chunk table, which records the original chunk placement location
1609  * and compressed size for each. Next, allocate a pig region of
1610  * sufficient size to hold the compressed image. Next, read the
1611  * chunks into the pig area (calling hibernate_read_chunks to do this),
1612  * and finally, if all of the above succeeds, clear the hibernate signature.
1613  * The function will then return to hibernate_resume, which will proceed
1614  * to unpack the pig image to the correct place in memory.
1615  */
1616 int
1617 hibernate_read_image(union hibernate_info *hib)
1618 {
1619 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1620 	paddr_t image_start, image_end, pig_start, pig_end;
1621 	struct hibernate_disk_chunk *chunks;
1622 	daddr_t blkctr;
1623 	vaddr_t chunktable = (vaddr_t)NULL;
1624 	paddr_t piglet_chunktable = hib->piglet_pa +
1625 	    HIBERNATE_CHUNK_SIZE;
1626 	int i;
1627 
1628 	pmap_activate(curproc);
1629 
1630 	/* Calculate total chunk table size in disk blocks */
1631 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1632 
1633 	blkctr = hib->sig_offset - chunktable_size;
1634 
1635 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1636 	    &kp_none, &kd_nowait);
1637 
1638 	if (!chunktable)
1639 		return (1);
1640 
1641 	/* Read the chunktable from disk into the piglet chunktable */
1642 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1643 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) {
1644 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1645 		    VM_PROT_ALL);
1646 		pmap_update(pmap_kernel());
1647 		hibernate_block_io(hib, blkctr, PAGE_SIZE,
1648 		    chunktable + i, 0);
1649 	}
1650 
1651 	blkctr = hib->image_offset;
1652 	compressed_size = 0;
1653 
1654 	chunks = (struct hibernate_disk_chunk *)chunktable;
1655 
1656 	for (i = 0; i < hib->chunk_ctr; i++)
1657 		compressed_size += chunks[i].compressed_size;
1658 
1659 	disk_size = compressed_size;
1660 
1661 	printf("unhibernating @ block %lld length %lu blocks\n",
1662 	    hib->sig_offset - chunktable_size,
1663 	    compressed_size);
1664 
1665 	/* Allocate the pig area */
1666 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1667 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1668 		return (1);
1669 
1670 	pig_end = pig_start + pig_sz;
1671 
1672 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1673 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1674 	image_start = image_end - disk_size;
1675 
1676 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1677 	    chunks);
1678 
1679 	pmap_kremove(chunktable, PAGE_SIZE);
1680 	pmap_update(pmap_kernel());
1681 
1682 	/* Prepare the resume time pmap/page table */
1683 	hibernate_populate_resume_pt(hib, image_start, image_end);
1684 
1685 	return (0);
1686 }
1687 
1688 /*
1689  * Read the hibernated memory chunks from disk (chunk information at this
1690  * point is stored in the piglet) into the pig area specified by
1691  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1692  * only chunk with overlap possibilities.
1693  */
1694 int
1695 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1696     paddr_t pig_end, size_t image_compr_size,
1697     struct hibernate_disk_chunk *chunks)
1698 {
1699 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1700 	paddr_t copy_start, copy_end, piglet_cur;
1701 	paddr_t piglet_base = hib->piglet_pa;
1702 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1703 	daddr_t blkctr;
1704 	size_t processed, compressed_size, read_size;
1705 	int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0;
1706 	short *ochunks, *pchunks, *fchunks, i, j;
1707 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1708 
1709 	global_pig_start = pig_start;
1710 
1711 	pmap_activate(curproc);
1712 
1713 	/*
1714 	 * These mappings go into the resuming kernel's page table, and are
1715 	 * used only during image read. They dissappear from existence
1716 	 * when the suspended kernel is unpacked on top of us.
1717 	 */
1718 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1719 	if (!tempva)
1720 		return (1);
1721 	hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any,
1722 	    &kp_none, &kd_nowait);
1723 	if (!hibernate_fchunk_area)
1724 		return (1);
1725 
1726 	/* Final output chunk ordering VA */
1727 	fchunks = (short *)hibernate_fchunk_area;
1728 
1729 	/* Piglet chunk ordering VA */
1730 	pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE));
1731 
1732 	/* Final chunk ordering VA */
1733 	ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE));
1734 
1735 	/* Map the chunk ordering region */
1736 	for(i=0; i<24 ; i++) {
1737 		pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE),
1738 			piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL);
1739 		pmap_update(pmap_kernel());
1740 	}
1741 
1742 	nchunks = hib->chunk_ctr;
1743 
1744 	/* Initially start all chunks as unplaced */
1745 	for (i = 0; i < nchunks; i++)
1746 		chunks[i].flags = 0;
1747 
1748 	/*
1749 	 * Search the list for chunks that are outside the pig area. These
1750 	 * can be placed first in the final output list.
1751 	 */
1752 	for (i = 0; i < nchunks; i++) {
1753 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1754 			ochunks[nochunks] = i;
1755 			fchunks[nfchunks] = i;
1756 			nochunks++;
1757 			nfchunks++;
1758 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1759 		}
1760 	}
1761 
1762 	/*
1763 	 * Walk the ordering, place the chunks in ascending memory order.
1764 	 * Conflicts might arise, these are handled next.
1765 	 */
1766 	do {
1767 		img_index = -1;
1768 		found = 0;
1769 		j = -1;
1770 		for (i = 0; i < nchunks; i++)
1771 			if (chunks[i].base < img_index &&
1772 			    chunks[i].flags == 0 ) {
1773 				j = i;
1774 				img_index = chunks[i].base;
1775 			}
1776 
1777 		if (j != -1) {
1778 			found = 1;
1779 			ochunks[nochunks] = j;
1780 			nochunks++;
1781 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1782 		}
1783 	} while (found);
1784 
1785 	img_index = pig_start;
1786 
1787 	/*
1788 	 * Identify chunk output conflicts (chunks whose pig load area
1789 	 * corresponds to their original memory placement location)
1790 	 */
1791 	for (i = 0; i < nochunks ; i++) {
1792 		overlap = 0;
1793 		r1s = img_index;
1794 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1795 		r2s = chunks[ochunks[i]].base;
1796 		r2e = chunks[ochunks[i]].end;
1797 
1798 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1799 		if (overlap)
1800 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1801 		img_index += chunks[ochunks[i]].compressed_size;
1802 	}
1803 
1804 	/*
1805 	 * Prepare the final output chunk list. Calculate an output
1806 	 * inflate strategy for overlapping chunks if needed.
1807 	 */
1808 	img_index = pig_start;
1809 	for (i = 0; i < nochunks ; i++) {
1810 		/*
1811 		 * If a conflict is detected, consume enough compressed
1812 		 * output chunks to fill the piglet
1813 		 */
1814 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1815 			copy_start = piglet_base;
1816 			copy_end = piglet_end;
1817 			piglet_cur = piglet_base;
1818 			npchunks = 0;
1819 			j = i;
1820 
1821 			while (copy_start < copy_end && j < nochunks) {
1822 				piglet_cur +=
1823 				    chunks[ochunks[j]].compressed_size;
1824 				pchunks[npchunks] = ochunks[j];
1825 				npchunks++;
1826 				copy_start +=
1827 				    chunks[ochunks[j]].compressed_size;
1828 				img_index += chunks[ochunks[j]].compressed_size;
1829 				i++;
1830 				j++;
1831 			}
1832 
1833 			piglet_cur = piglet_base;
1834 			for (j = 0; j < npchunks; j++) {
1835 				piglet_cur +=
1836 				    chunks[pchunks[j]].compressed_size;
1837 				fchunks[nfchunks] = pchunks[j];
1838 				chunks[pchunks[j]].flags |=
1839 				    HIBERNATE_CHUNK_USED;
1840 				nfchunks++;
1841 			}
1842 		} else {
1843 			/*
1844 			 * No conflict, chunk can be added without copying
1845 			 */
1846 			if ((chunks[ochunks[i]].flags &
1847 			    HIBERNATE_CHUNK_USED) == 0) {
1848 				fchunks[nfchunks] = ochunks[i];
1849 				chunks[ochunks[i]].flags |=
1850 				    HIBERNATE_CHUNK_USED;
1851 				nfchunks++;
1852 			}
1853 			img_index += chunks[ochunks[i]].compressed_size;
1854 		}
1855 	}
1856 
1857 	img_index = pig_start;
1858 	for (i = 0; i < nfchunks; i++) {
1859 		piglet_cur = piglet_base;
1860 		img_index += chunks[fchunks[i]].compressed_size;
1861 	}
1862 
1863 	img_cur = pig_start;
1864 
1865 	for (i = 0; i < nfchunks; i++) {
1866 		blkctr = chunks[fchunks[i]].offset;
1867 		processed = 0;
1868 		compressed_size = chunks[fchunks[i]].compressed_size;
1869 
1870 		while (processed < compressed_size) {
1871 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1872 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1873 			    VM_PROT_ALL);
1874 			pmap_update(pmap_kernel());
1875 
1876 			if (compressed_size - processed >= PAGE_SIZE)
1877 				read_size = PAGE_SIZE;
1878 			else
1879 				read_size = compressed_size - processed;
1880 
1881 			hibernate_block_io(hib, blkctr, read_size,
1882 			    tempva + (img_cur & PAGE_MASK), 0);
1883 
1884 			blkctr += (read_size / DEV_BSIZE);
1885 
1886 			pmap_kremove(tempva, PAGE_SIZE);
1887 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1888 			processed += read_size;
1889 			img_cur += read_size;
1890 		}
1891 	}
1892 
1893 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1894 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1895 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1896 	pmap_update(pmap_kernel());
1897 
1898 	return (0);
1899 }
1900 
1901 /*
1902  * Hibernating a machine comprises the following operations:
1903  *  1. Calculating this machine's hibernate_info information
1904  *  2. Allocating a piglet and saving the piglet's physaddr
1905  *  3. Calculating the memory chunks
1906  *  4. Writing the compressed chunks to disk
1907  *  5. Writing the chunk table
1908  *  6. Writing the signature block (hibernate_info)
1909  *
1910  * On most architectures, the function calling hibernate_suspend would
1911  * then power off the machine using some MD-specific implementation.
1912  */
1913 int
1914 hibernate_suspend(void)
1915 {
1916 	union hibernate_info hib;
1917 	u_long start, end;
1918 
1919 	/*
1920 	 * Calculate memory ranges, swap offsets, etc.
1921 	 * This also allocates a piglet whose physaddr is stored in
1922 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1923 	 */
1924 	if (get_hibernate_info(&hib, 1)) {
1925 		DPRINTF("failed to obtain hibernate info\n");
1926 		return (1);
1927 	}
1928 
1929 	/* Find a page-addressed region in swap [start,end] */
1930 	if (uvm_hibswap(hib.device, &start, &end)) {
1931 		printf("cannot find any swap\n");
1932 		return (1);
1933 	}
1934 
1935 	if (end - start < 1000) {
1936 		printf("%lu\n is too small", end - start);
1937 		return (1);
1938 	}
1939 
1940 	/* Calculate block offsets in swap */
1941 	hib.image_offset = ctod(start);
1942 
1943 	/* XXX side effect */
1944 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1945 	    hib.image_offset, ctod(end) - ctod(start));
1946 
1947 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1948 		VM_PROT_ALL);
1949 	pmap_activate(curproc);
1950 
1951 	/* Stash the piglet VA so we can free it in the resuming kernel */
1952 	global_piglet_va = hib.piglet_va;
1953 
1954 	DPRINTF("hibernate: writing chunks\n");
1955 	if (hibernate_write_chunks(&hib)) {
1956 		DPRINTF("hibernate_write_chunks failed\n");
1957 		return (1);
1958 	}
1959 
1960 	DPRINTF("hibernate: writing chunktable\n");
1961 	if (hibernate_write_chunktable(&hib)) {
1962 		DPRINTF("hibernate_write_chunktable failed\n");
1963 		return (1);
1964 	}
1965 
1966 	DPRINTF("hibernate: writing signature\n");
1967 	if (hibernate_write_signature(&hib)) {
1968 		DPRINTF("hibernate_write_signature failed\n");
1969 		return (1);
1970 	}
1971 
1972 	/* Allow the disk to settle */
1973 	delay(500000);
1974 
1975 	/*
1976 	 * Give the device-specific I/O function a notification that we're
1977 	 * done, and that it can clean up or shutdown as needed.
1978 	 */
1979 	hib.io_func(hib.device, 0, (vaddr_t)NULL, 0,
1980 	    HIB_DONE, hib.io_page);
1981 
1982 	return (0);
1983 }
1984 
1985 /*
1986  * Free items allocated by hibernate_suspend()
1987  */
1988 void
1989 hibernate_free(void)
1990 {
1991 	if (global_piglet_va)
1992 		uvm_pmr_free_piglet(global_piglet_va,
1993 		    3*HIBERNATE_CHUNK_SIZE);
1994 
1995 	if (hibernate_copy_page)
1996 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1997 	if (hibernate_temp_page)
1998 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1999 
2000 	pmap_update(pmap_kernel());
2001 
2002 	if (hibernate_copy_page)
2003 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
2004 		    &kv_any, &kp_none);
2005 	if (hibernate_temp_page)
2006 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
2007 		    &kv_any, &kp_none);
2008 
2009 	global_piglet_va = 0;
2010 	hibernate_copy_page = 0;
2011 	hibernate_temp_page = 0;
2012 }
2013