1 /* $OpenBSD: subr_hibernate.c,v 1.36 2012/06/21 12:46:30 jmatthew Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 /* Temporary vaddr ranges used during hibernate */ 36 vaddr_t hibernate_temp_page; 37 vaddr_t hibernate_copy_page; 38 39 /* Hibernate info as read from disk during resume */ 40 union hibernate_info disk_hiber_info; 41 paddr_t global_pig_start; 42 vaddr_t global_piglet_va; 43 44 /* 45 * Hib alloc enforced alignment. 46 */ 47 #define HIB_ALIGN 8 /* bytes alignment */ 48 49 /* 50 * sizeof builtin operation, but with alignment constraint. 51 */ 52 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 53 54 struct hiballoc_entry { 55 size_t hibe_use; 56 size_t hibe_space; 57 RB_ENTRY(hiballoc_entry) hibe_entry; 58 }; 59 60 /* 61 * Compare hiballoc entries based on the address they manage. 62 * 63 * Since the address is fixed, relative to struct hiballoc_entry, 64 * we just compare the hiballoc_entry pointers. 65 */ 66 static __inline int 67 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 68 { 69 return l < r ? -1 : (l > r); 70 } 71 72 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 73 74 /* 75 * Given a hiballoc entry, return the address it manages. 76 */ 77 static __inline void * 78 hib_entry_to_addr(struct hiballoc_entry *entry) 79 { 80 caddr_t addr; 81 82 addr = (caddr_t)entry; 83 addr += HIB_SIZEOF(struct hiballoc_entry); 84 return addr; 85 } 86 87 /* 88 * Given an address, find the hiballoc that corresponds. 89 */ 90 static __inline struct hiballoc_entry* 91 hib_addr_to_entry(void *addr_param) 92 { 93 caddr_t addr; 94 95 addr = (caddr_t)addr_param; 96 addr -= HIB_SIZEOF(struct hiballoc_entry); 97 return (struct hiballoc_entry*)addr; 98 } 99 100 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 101 102 /* 103 * Allocate memory from the arena. 104 * 105 * Returns NULL if no memory is available. 106 */ 107 void * 108 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 109 { 110 struct hiballoc_entry *entry, *new_entry; 111 size_t find_sz; 112 113 /* 114 * Enforce alignment of HIB_ALIGN bytes. 115 * 116 * Note that, because the entry is put in front of the allocation, 117 * 0-byte allocations are guaranteed a unique address. 118 */ 119 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 120 121 /* 122 * Find an entry with hibe_space >= find_sz. 123 * 124 * If the root node is not large enough, we switch to tree traversal. 125 * Because all entries are made at the bottom of the free space, 126 * traversal from the end has a slightly better chance of yielding 127 * a sufficiently large space. 128 */ 129 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 130 entry = RB_ROOT(&arena->hib_addrs); 131 if (entry != NULL && entry->hibe_space < find_sz) { 132 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 133 if (entry->hibe_space >= find_sz) 134 break; 135 } 136 } 137 138 /* 139 * Insufficient or too fragmented memory. 140 */ 141 if (entry == NULL) 142 return NULL; 143 144 /* 145 * Create new entry in allocated space. 146 */ 147 new_entry = (struct hiballoc_entry*)( 148 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 149 new_entry->hibe_space = entry->hibe_space - find_sz; 150 new_entry->hibe_use = alloc_sz; 151 152 /* 153 * Insert entry. 154 */ 155 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 156 panic("hib_alloc: insert failure"); 157 entry->hibe_space = 0; 158 159 /* Return address managed by entry. */ 160 return hib_entry_to_addr(new_entry); 161 } 162 163 /* 164 * Free a pointer previously allocated from this arena. 165 * 166 * If addr is NULL, this will be silently accepted. 167 */ 168 void 169 hib_free(struct hiballoc_arena *arena, void *addr) 170 { 171 struct hiballoc_entry *entry, *prev; 172 173 if (addr == NULL) 174 return; 175 176 /* 177 * Derive entry from addr and check it is really in this arena. 178 */ 179 entry = hib_addr_to_entry(addr); 180 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 181 panic("hib_free: freed item %p not in hib arena", addr); 182 183 /* 184 * Give the space in entry to its predecessor. 185 * 186 * If entry has no predecessor, change its used space into free space 187 * instead. 188 */ 189 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 190 if (prev != NULL && 191 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 192 prev->hibe_use + prev->hibe_space) == entry) { 193 /* Merge entry. */ 194 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 195 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 196 entry->hibe_use + entry->hibe_space; 197 } else { 198 /* Flip used memory to free space. */ 199 entry->hibe_space += entry->hibe_use; 200 entry->hibe_use = 0; 201 } 202 } 203 204 /* 205 * Initialize hiballoc. 206 * 207 * The allocator will manage memmory at ptr, which is len bytes. 208 */ 209 int 210 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 211 { 212 struct hiballoc_entry *entry; 213 caddr_t ptr; 214 size_t len; 215 216 RB_INIT(&arena->hib_addrs); 217 218 /* 219 * Hib allocator enforces HIB_ALIGN alignment. 220 * Fixup ptr and len. 221 */ 222 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 223 len = p_len - ((size_t)ptr - (size_t)p_ptr); 224 len &= ~((size_t)HIB_ALIGN - 1); 225 226 /* 227 * Insufficient memory to be able to allocate and also do bookkeeping. 228 */ 229 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 230 return ENOMEM; 231 232 /* 233 * Create entry describing space. 234 */ 235 entry = (struct hiballoc_entry*)ptr; 236 entry->hibe_use = 0; 237 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 238 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 239 240 return 0; 241 } 242 243 /* 244 * Zero all free memory. 245 */ 246 void 247 uvm_pmr_zero_everything(void) 248 { 249 struct uvm_pmemrange *pmr; 250 struct vm_page *pg; 251 int i; 252 253 uvm_lock_fpageq(); 254 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 255 /* Zero single pages. */ 256 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 257 != NULL) { 258 uvm_pmr_remove(pmr, pg); 259 uvm_pagezero(pg); 260 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 261 uvmexp.zeropages++; 262 uvm_pmr_insert(pmr, pg, 0); 263 } 264 265 /* Zero multi page ranges. */ 266 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 267 != NULL) { 268 pg--; /* Size tree always has second page. */ 269 uvm_pmr_remove(pmr, pg); 270 for (i = 0; i < pg->fpgsz; i++) { 271 uvm_pagezero(&pg[i]); 272 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 273 uvmexp.zeropages++; 274 } 275 uvm_pmr_insert(pmr, pg, 0); 276 } 277 } 278 uvm_unlock_fpageq(); 279 } 280 281 /* 282 * Mark all memory as dirty. 283 * 284 * Used to inform the system that the clean memory isn't clean for some 285 * reason, for example because we just came back from hibernate. 286 */ 287 void 288 uvm_pmr_dirty_everything(void) 289 { 290 struct uvm_pmemrange *pmr; 291 struct vm_page *pg; 292 int i; 293 294 uvm_lock_fpageq(); 295 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 296 /* Dirty single pages. */ 297 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 298 != NULL) { 299 uvm_pmr_remove(pmr, pg); 300 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 301 uvm_pmr_insert(pmr, pg, 0); 302 } 303 304 /* Dirty multi page ranges. */ 305 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 306 != NULL) { 307 pg--; /* Size tree always has second page. */ 308 uvm_pmr_remove(pmr, pg); 309 for (i = 0; i < pg->fpgsz; i++) 310 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvm_pmr_insert(pmr, pg, 0); 312 } 313 } 314 315 uvmexp.zeropages = 0; 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Allocate the highest address that can hold sz. 321 * 322 * sz in bytes. 323 */ 324 int 325 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 326 { 327 struct uvm_pmemrange *pmr; 328 struct vm_page *pig_pg, *pg; 329 330 /* 331 * Convert sz to pages, since that is what pmemrange uses internally. 332 */ 333 sz = atop(round_page(sz)); 334 335 uvm_lock_fpageq(); 336 337 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 338 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 339 if (pig_pg->fpgsz >= sz) { 340 goto found; 341 } 342 } 343 } 344 345 /* 346 * Allocation failure. 347 */ 348 uvm_unlock_fpageq(); 349 return ENOMEM; 350 351 found: 352 /* Remove page from freelist. */ 353 uvm_pmr_remove_size(pmr, pig_pg); 354 pig_pg->fpgsz -= sz; 355 pg = pig_pg + pig_pg->fpgsz; 356 if (pig_pg->fpgsz == 0) 357 uvm_pmr_remove_addr(pmr, pig_pg); 358 else 359 uvm_pmr_insert_size(pmr, pig_pg); 360 361 uvmexp.free -= sz; 362 *addr = VM_PAGE_TO_PHYS(pg); 363 364 /* 365 * Update pg flags. 366 * 367 * Note that we trash the sz argument now. 368 */ 369 while (sz > 0) { 370 KASSERT(pg->pg_flags & PQ_FREE); 371 372 atomic_clearbits_int(&pg->pg_flags, 373 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 374 375 if (pg->pg_flags & PG_ZERO) 376 uvmexp.zeropages -= sz; 377 atomic_clearbits_int(&pg->pg_flags, 378 PG_ZERO|PQ_FREE); 379 380 pg->uobject = NULL; 381 pg->uanon = NULL; 382 pg->pg_version++; 383 384 /* 385 * Next. 386 */ 387 pg++; 388 sz--; 389 } 390 391 /* Return. */ 392 uvm_unlock_fpageq(); 393 return 0; 394 } 395 396 /* 397 * Allocate a piglet area. 398 * 399 * This is as low as possible. 400 * Piglets are aligned. 401 * 402 * sz and align in bytes. 403 * 404 * The call will sleep for the pagedaemon to attempt to free memory. 405 * The pagedaemon may decide its not possible to free enough memory, causing 406 * the allocation to fail. 407 */ 408 int 409 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 410 { 411 paddr_t pg_addr, piglet_addr; 412 struct uvm_pmemrange *pmr; 413 struct vm_page *pig_pg, *pg; 414 struct pglist pageq; 415 int pdaemon_woken; 416 vaddr_t piglet_va; 417 418 KASSERT((align & (align - 1)) == 0); 419 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 420 421 /* 422 * Fixup arguments: align must be at least PAGE_SIZE, 423 * sz will be converted to pagecount, since that is what 424 * pmemrange uses internally. 425 */ 426 if (align < PAGE_SIZE) 427 align = PAGE_SIZE; 428 sz = round_page(sz); 429 430 uvm_lock_fpageq(); 431 432 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 433 pmr_use) { 434 retry: 435 /* 436 * Search for a range with enough space. 437 * Use the address tree, to ensure the range is as low as 438 * possible. 439 */ 440 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 441 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 442 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 443 444 if (atop(pg_addr) + pig_pg->fpgsz >= 445 atop(piglet_addr) + atop(sz)) 446 goto found; 447 } 448 } 449 450 /* 451 * Try to coerse the pagedaemon into freeing memory 452 * for the piglet. 453 * 454 * pdaemon_woken is set to prevent the code from 455 * falling into an endless loop. 456 */ 457 if (!pdaemon_woken) { 458 pdaemon_woken = 1; 459 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 460 sz, UVM_PLA_FAILOK) == 0) 461 goto retry; 462 } 463 464 /* Return failure. */ 465 uvm_unlock_fpageq(); 466 return ENOMEM; 467 468 found: 469 /* 470 * Extract piglet from pigpen. 471 */ 472 TAILQ_INIT(&pageq); 473 uvm_pmr_extract_range(pmr, pig_pg, 474 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 475 476 *pa = piglet_addr; 477 uvmexp.free -= atop(sz); 478 479 /* 480 * Update pg flags. 481 * 482 * Note that we trash the sz argument now. 483 */ 484 TAILQ_FOREACH(pg, &pageq, pageq) { 485 KASSERT(pg->pg_flags & PQ_FREE); 486 487 atomic_clearbits_int(&pg->pg_flags, 488 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 489 490 if (pg->pg_flags & PG_ZERO) 491 uvmexp.zeropages--; 492 atomic_clearbits_int(&pg->pg_flags, 493 PG_ZERO|PQ_FREE); 494 495 pg->uobject = NULL; 496 pg->uanon = NULL; 497 pg->pg_version++; 498 } 499 500 uvm_unlock_fpageq(); 501 502 /* 503 * Now allocate a va. 504 * Use direct mappings for the pages. 505 */ 506 507 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 508 if (!piglet_va) { 509 uvm_pglistfree(&pageq); 510 return ENOMEM; 511 } 512 513 /* 514 * Map piglet to va. 515 */ 516 TAILQ_FOREACH(pg, &pageq, pageq) { 517 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 518 piglet_va += PAGE_SIZE; 519 } 520 pmap_update(pmap_kernel()); 521 522 return 0; 523 } 524 525 /* 526 * Free a piglet area. 527 */ 528 void 529 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 530 { 531 paddr_t pa; 532 struct vm_page *pg; 533 534 /* 535 * Fix parameters. 536 */ 537 sz = round_page(sz); 538 539 /* 540 * Find the first page in piglet. 541 * Since piglets are contiguous, the first pg is all we need. 542 */ 543 if (!pmap_extract(pmap_kernel(), va, &pa)) 544 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 545 pg = PHYS_TO_VM_PAGE(pa); 546 if (pg == NULL) 547 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 548 549 /* 550 * Unmap. 551 */ 552 pmap_kremove(va, sz); 553 pmap_update(pmap_kernel()); 554 555 /* 556 * Free the physical and virtual memory. 557 */ 558 uvm_pmr_freepages(pg, atop(sz)); 559 km_free((void *)va, sz, &kv_any, &kp_none); 560 } 561 562 /* 563 * Physmem RLE compression support. 564 * 565 * Given a physical page address, it will return the number of pages 566 * starting at the address, that are free. Clamps to the number of pages in 567 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 568 */ 569 int 570 uvm_page_rle(paddr_t addr) 571 { 572 struct vm_page *pg, *pg_end; 573 struct vm_physseg *vmp; 574 int pseg_idx, off_idx; 575 576 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 577 if (pseg_idx == -1) 578 return 0; 579 580 vmp = &vm_physmem[pseg_idx]; 581 pg = &vmp->pgs[off_idx]; 582 if (!(pg->pg_flags & PQ_FREE)) 583 return 0; 584 585 /* 586 * Search for the first non-free page after pg. 587 * Note that the page may not be the first page in a free pmemrange, 588 * therefore pg->fpgsz cannot be used. 589 */ 590 for (pg_end = pg; pg_end <= vmp->lastpg && 591 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 592 ; 593 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 594 } 595 596 /* 597 * Fills out the hibernate_info union pointed to by hiber_info 598 * with information about this machine (swap signature block 599 * offsets, number of memory ranges, kernel in use, etc) 600 */ 601 int 602 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 603 { 604 int chunktable_size; 605 struct disklabel dl; 606 char err_string[128], *dl_ret; 607 608 /* Determine I/O function to use */ 609 hiber_info->io_func = get_hibernate_io_function(); 610 if (hiber_info->io_func == NULL) 611 return (1); 612 613 /* Calculate hibernate device */ 614 hiber_info->device = swdevt[0].sw_dev; 615 616 /* Read disklabel (used to calculate signature and image offsets) */ 617 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 618 619 if (dl_ret) { 620 printf("Hibernate error reading disklabel: %s\n", dl_ret); 621 return (1); 622 } 623 624 hiber_info->secsize = dl.d_secsize; 625 626 /* Make sure the signature can fit in one block */ 627 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 628 629 /* Calculate swap offset from start of disk */ 630 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 631 632 /* Calculate signature block location */ 633 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 634 dl.d_partitions[1].p_size - 635 sizeof(union hibernate_info)/hiber_info->secsize; 636 637 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 638 639 /* Stash kernel version information */ 640 bzero(&hiber_info->kernel_version, 128); 641 bcopy(version, &hiber_info->kernel_version, 642 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 643 644 if (suspend) { 645 /* Allocate piglet region */ 646 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 647 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 648 HIBERNATE_CHUNK_SIZE)) { 649 printf("Hibernate failed to allocate the piglet\n"); 650 return (1); 651 } 652 hiber_info->io_page = (void *)hiber_info->piglet_va; 653 654 /* 655 * Initialize of the hibernate IO function (for drivers which 656 * need that) 657 */ 658 if (hiber_info->io_func(hiber_info->device, 0, 659 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 660 goto fail; 661 662 } else { 663 /* 664 * Resuming kernels use a regular I/O page since we won't 665 * have access to the suspended kernel's piglet VA at this 666 * point. No need to free this I/O page as it will vanish 667 * as part of the resume. 668 */ 669 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 670 if (!hiber_info->io_page) 671 return (1); 672 } 673 674 675 if (get_hibernate_info_md(hiber_info)) 676 goto fail; 677 678 /* Calculate memory image location */ 679 hiber_info->image_offset = dl.d_partitions[1].p_offset + 680 dl.d_partitions[1].p_size - 681 (hiber_info->image_size / hiber_info->secsize) - 682 sizeof(union hibernate_info)/hiber_info->secsize - 683 chunktable_size; 684 685 return (0); 686 fail: 687 if (suspend) 688 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 689 690 return (1); 691 } 692 693 /* 694 * Allocate nitems*size bytes from the hiballoc area presently in use 695 */ 696 void 697 *hibernate_zlib_alloc(void *unused, int nitems, int size) 698 { 699 struct hibernate_zlib_state *hibernate_state; 700 701 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 702 703 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 704 } 705 706 /* 707 * Free the memory pointed to by addr in the hiballoc area presently in 708 * use 709 */ 710 void 711 hibernate_zlib_free(void *unused, void *addr) 712 { 713 struct hibernate_zlib_state *hibernate_state; 714 715 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 716 717 hib_free(&hibernate_state->hiballoc_arena, addr); 718 } 719 720 /* 721 * Inflate size bytes from src into dest, skipping any pages in 722 * [src..dest] that are special (see hibernate_inflate_skip) 723 * 724 * This function executes while using the resume-time stack 725 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 726 * will likely hang or reset the machine. 727 */ 728 void 729 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest, 730 paddr_t src, size_t size) 731 { 732 int i, rle; 733 struct hibernate_zlib_state *hibernate_state; 734 735 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 736 737 hibernate_state->hib_stream.next_in = (char *)src; 738 hibernate_state->hib_stream.avail_in = size; 739 740 do { 741 /* Flush cache and TLB */ 742 hibernate_flush(); 743 744 do { 745 /* Read RLE code */ 746 hibernate_state->hib_stream.next_out = (char *)&rle; 747 hibernate_state->hib_stream.avail_out = sizeof(rle); 748 749 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 750 if (i != Z_OK && i != Z_STREAM_END) { 751 /* 752 * XXX - this will likely reboot/hang most machines, 753 * but there's not much else we can do here. 754 */ 755 panic("inflate rle error"); 756 } 757 758 /* Sanity check what RLE value we got */ 759 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 760 panic("inflate rle error 3"); 761 762 if (rle != 0) 763 dest += (rle * PAGE_SIZE); 764 if (i == Z_STREAM_END) 765 goto next_page; 766 767 } while (rle != 0); 768 769 /* 770 * Is this a special page? If yes, redirect the 771 * inflate output to a scratch page (eg, discard it) 772 */ 773 if (hibernate_inflate_skip(hiber_info, dest)) { 774 hibernate_enter_resume_mapping( 775 HIBERNATE_INFLATE_PAGE, 776 HIBERNATE_INFLATE_PAGE, 0); 777 } else { 778 hibernate_enter_resume_mapping( 779 HIBERNATE_INFLATE_PAGE, dest, 0); 780 } 781 782 hibernate_flush(); 783 784 /* Set up the stream for inflate */ 785 hibernate_state->hib_stream.next_out = 786 (char *)HIBERNATE_INFLATE_PAGE; 787 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 788 789 /* Process next block of data */ 790 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 791 if (i != Z_OK && i != Z_STREAM_END) { 792 /* 793 * XXX - this will likely reboot/hang most machines, 794 * but there's not much else we can do here. 795 */ 796 797 panic("inflate error"); 798 } 799 800 next_page: 801 dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out; 802 } while (i != Z_STREAM_END); 803 } 804 805 /* 806 * deflate from src into the I/O page, up to 'remaining' bytes 807 * 808 * Returns number of input bytes consumed, and may reset 809 * the 'remaining' parameter if not all the output space was consumed 810 * (this information is needed to know how much to write to disk 811 */ 812 size_t 813 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 814 size_t *remaining) 815 { 816 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 817 struct hibernate_zlib_state *hibernate_state; 818 819 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 820 821 /* Set up the stream for deflate */ 822 hibernate_state->hib_stream.next_in = (caddr_t)src; 823 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 824 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 825 (PAGE_SIZE - *remaining); 826 hibernate_state->hib_stream.avail_out = *remaining; 827 828 /* Process next block of data */ 829 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 830 panic("hibernate zlib deflate error"); 831 832 /* Update pointers and return number of bytes consumed */ 833 *remaining = hibernate_state->hib_stream.avail_out; 834 return (PAGE_SIZE - (src & PAGE_MASK)) - 835 hibernate_state->hib_stream.avail_in; 836 } 837 838 /* 839 * Write the hibernation information specified in hiber_info 840 * to the location in swap previously calculated (last block of 841 * swap), called the "signature block". 842 * 843 * Write the memory chunk table to the area in swap immediately 844 * preceding the signature block. 845 */ 846 int 847 hibernate_write_signature(union hibernate_info *hiber_info) 848 { 849 /* Write hibernate info to disk */ 850 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 851 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 852 hiber_info->io_page)); 853 } 854 855 /* 856 * Write the memory chunk table to the area in swap immediately 857 * preceding the signature block. The chunk table is stored 858 * in the piglet when this function is called. 859 */ 860 int 861 hibernate_write_chunktable(union hibernate_info *hiber_info) 862 { 863 struct hibernate_disk_chunk *chunks; 864 vaddr_t hibernate_chunk_table_start; 865 size_t hibernate_chunk_table_size; 866 daddr_t chunkbase; 867 int i; 868 869 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 870 871 chunkbase = hiber_info->sig_offset - 872 (hibernate_chunk_table_size / hiber_info->secsize); 873 874 hibernate_chunk_table_start = hiber_info->piglet_va + 875 HIBERNATE_CHUNK_SIZE; 876 877 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 878 HIBERNATE_CHUNK_SIZE); 879 880 /* Write chunk table */ 881 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 882 if (hiber_info->io_func(hiber_info->device, 883 chunkbase + (i/hiber_info->secsize), 884 (vaddr_t)(hibernate_chunk_table_start + i), 885 MAXPHYS, HIB_W, hiber_info->io_page)) 886 return (1); 887 } 888 889 return (0); 890 } 891 892 /* 893 * Write an empty hiber_info to the swap signature block, which is 894 * guaranteed to not match any valid hiber_info. 895 */ 896 int 897 hibernate_clear_signature(void) 898 { 899 union hibernate_info blank_hiber_info; 900 union hibernate_info hiber_info; 901 902 /* Zero out a blank hiber_info */ 903 bzero(&blank_hiber_info, sizeof(hiber_info)); 904 905 if (get_hibernate_info(&hiber_info, 0)) 906 return (1); 907 908 /* Write (zeroed) hibernate info to disk */ 909 if (hibernate_block_io(&hiber_info, 910 hiber_info.sig_offset - hiber_info.swap_offset, 911 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 912 panic("error hibernate write 6"); 913 914 return (0); 915 } 916 917 /* 918 * Check chunk range overlap when calculating whether or not to copy a 919 * compressed chunk to the piglet area before decompressing. 920 * 921 * returns zero if the ranges do not overlap, non-zero otherwise. 922 */ 923 int 924 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 925 { 926 /* case A : end of r1 overlaps start of r2 */ 927 if (r1s < r2s && r1e > r2s) 928 return (1); 929 930 /* case B : r1 entirely inside r2 */ 931 if (r1s >= r2s && r1e <= r2e) 932 return (1); 933 934 /* case C : r2 entirely inside r1 */ 935 if (r2s >= r1s && r2e <= r1e) 936 return (1); 937 938 /* case D : end of r2 overlaps start of r1 */ 939 if (r2s < r1s && r2e > r1s) 940 return (1); 941 942 return (0); 943 } 944 945 /* 946 * Compare two hibernate_infos to determine if they are the same (eg, 947 * we should be performing a hibernate resume on this machine. 948 * Not all fields are checked - just enough to verify that the machine 949 * has the same memory configuration and kernel as the one that 950 * wrote the signature previously. 951 */ 952 int 953 hibernate_compare_signature(union hibernate_info *mine, 954 union hibernate_info *disk) 955 { 956 u_int i; 957 958 if (mine->nranges != disk->nranges) 959 return (1); 960 961 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 962 return (1); 963 964 for (i = 0; i < mine->nranges; i++) { 965 if ((mine->ranges[i].base != disk->ranges[i].base) || 966 (mine->ranges[i].end != disk->ranges[i].end) ) 967 return (1); 968 } 969 970 return (0); 971 } 972 973 /* 974 * Transfers xfer_size bytes between the hibernate device specified in 975 * hib_info at offset blkctr and the vaddr specified at dest. 976 * 977 * Separate offsets and pages are used to handle misaligned reads (reads 978 * that span a page boundary). 979 * 980 * blkctr specifies a relative offset (relative to the start of swap), 981 * not an absolute disk offset 982 * 983 */ 984 int 985 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 986 size_t xfer_size, vaddr_t dest, int iswrite) 987 { 988 struct buf *bp; 989 struct bdevsw *bdsw; 990 int error; 991 992 bp = geteblk(xfer_size); 993 bdsw = &bdevsw[major(hib_info->device)]; 994 995 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 996 if (error) { 997 printf("hibernate_block_io open failed\n"); 998 return (1); 999 } 1000 1001 if (iswrite) 1002 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1003 1004 bp->b_bcount = xfer_size; 1005 bp->b_blkno = blkctr; 1006 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1007 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1008 bp->b_dev = hib_info->device; 1009 bp->b_cylinder = 0; 1010 (*bdsw->d_strategy)(bp); 1011 1012 error = biowait(bp); 1013 if (error) { 1014 printf("hibernate_block_io biowait failed %d\n", error); 1015 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1016 curproc); 1017 if (error) 1018 printf("hibernate_block_io error close failed\n"); 1019 return (1); 1020 } 1021 1022 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1023 if (error) { 1024 printf("hibernate_block_io close failed\n"); 1025 return (1); 1026 } 1027 1028 if (!iswrite) 1029 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1030 1031 bp->b_flags |= B_INVAL; 1032 brelse(bp); 1033 1034 return (0); 1035 } 1036 1037 /* 1038 * Reads the signature block from swap, checks against the current machine's 1039 * information. If the information matches, perform a resume by reading the 1040 * saved image into the pig area, and unpacking. 1041 */ 1042 void 1043 hibernate_resume(void) 1044 { 1045 union hibernate_info hiber_info; 1046 int s; 1047 1048 /* Get current running machine's hibernate info */ 1049 bzero(&hiber_info, sizeof(hiber_info)); 1050 if (get_hibernate_info(&hiber_info, 0)) 1051 return; 1052 1053 /* Read hibernate info from disk */ 1054 s = splbio(); 1055 1056 if (hibernate_block_io(&hiber_info, 1057 hiber_info.sig_offset - hiber_info.swap_offset, 1058 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1059 panic("error in hibernate read"); 1060 1061 /* 1062 * If on-disk and in-memory hibernate signatures match, 1063 * this means we should do a resume from hibernate. 1064 */ 1065 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1066 return; 1067 1068 uvm_pmr_zero_everything(); 1069 1070 /* Read the image from disk into the image (pig) area */ 1071 if (hibernate_read_image(&disk_hiber_info)) 1072 goto fail; 1073 1074 /* Point of no return ... */ 1075 1076 disable_intr(); 1077 cold = 1; 1078 1079 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); 1080 pmap_activate(curproc); 1081 1082 /* Switch stacks */ 1083 hibernate_switch_stack_machdep(); 1084 1085 /* 1086 * Image is now in high memory (pig area), copy to correct location 1087 * in memory. We'll eventually end up copying on top of ourself, but 1088 * we are assured the kernel code here is the same between the 1089 * hibernated and resuming kernel, and we are running on our own 1090 * stack, so the overwrite is ok. 1091 */ 1092 hibernate_unpack_image(&disk_hiber_info); 1093 1094 /* 1095 * Resume the loaded kernel by jumping to the MD resume vector. 1096 * We won't be returning from this call. 1097 */ 1098 hibernate_resume_machdep(); 1099 1100 fail: 1101 printf("Unable to resume hibernated image\n"); 1102 } 1103 1104 /* 1105 * Unpack image from pig area to original location by looping through the 1106 * list of output chunks in the order they should be restored (fchunks). 1107 * This ordering is used to avoid having inflate overwrite a chunk in the 1108 * middle of processing that chunk. This will, of course, happen during the 1109 * final output chunk, where we copy the chunk to the piglet area first, 1110 * before inflating. 1111 */ 1112 void 1113 hibernate_unpack_image(union hibernate_info *hiber_info) 1114 { 1115 struct hibernate_disk_chunk *chunks; 1116 union hibernate_info local_hiber_info; 1117 paddr_t image_cur = global_pig_start; 1118 int *fchunks, i; 1119 char *pva = (char *)hiber_info->piglet_va; 1120 struct hibernate_zlib_state *hibernate_state; 1121 1122 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1123 1124 /* Mask off based on arch-specific piglet page size */ 1125 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1126 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1127 1128 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1129 1130 /* Can't use hiber_info that's passed in after here */ 1131 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1132 1133 hibernate_activate_resume_pt_machdep(); 1134 1135 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1136 /* Reset zlib for inflate */ 1137 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1138 panic("hibernate failed to reset zlib for inflate"); 1139 1140 /* 1141 * If there is a conflict, copy the chunk to the piglet area 1142 * before unpacking it to its original location. 1143 */ 1144 if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1145 hibernate_inflate(&local_hiber_info, 1146 chunks[fchunks[i]].base, image_cur, 1147 chunks[fchunks[i]].compressed_size); 1148 else { 1149 bcopy((caddr_t)image_cur, 1150 pva + (HIBERNATE_CHUNK_SIZE * 2), 1151 chunks[fchunks[i]].compressed_size); 1152 hibernate_inflate(&local_hiber_info, 1153 chunks[fchunks[i]].base, 1154 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1155 chunks[fchunks[i]].compressed_size); 1156 } 1157 image_cur += chunks[fchunks[i]].compressed_size; 1158 } 1159 } 1160 1161 /* 1162 * Write a compressed version of this machine's memory to disk, at the 1163 * precalculated swap offset: 1164 * 1165 * end of swap - signature block size - chunk table size - memory size 1166 * 1167 * The function begins by looping through each phys mem range, cutting each 1168 * one into 4MB chunks. These chunks are then compressed individually 1169 * and written out to disk, in phys mem order. Some chunks might compress 1170 * more than others, and for this reason, each chunk's size is recorded 1171 * in the chunk table, which is written to disk after the image has 1172 * properly been compressed and written (in hibernate_write_chunktable). 1173 * 1174 * When this function is called, the machine is nearly suspended - most 1175 * devices are quiesced/suspended, interrupts are off, and cold has 1176 * been set. This means that there can be no side effects once the 1177 * write has started, and the write function itself can also have no 1178 * side effects. 1179 * 1180 * This function uses the piglet area during this process as follows: 1181 * 1182 * offset from piglet base use 1183 * ----------------------- -------------------- 1184 * 0 i/o allocation area 1185 * PAGE_SIZE i/o write area 1186 * 2*PAGE_SIZE temp/scratch page 1187 * 3*PAGE_SIZE temp/scratch page 1188 * 4*PAGE_SIZE hiballoc arena 1189 * 5*PAGE_SIZE to 85*PAGE_SIZE zlib deflate area 1190 * ... 1191 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1192 * 1193 * Some transient piglet content is saved as part of deflate, 1194 * but it is irrelevant during resume as it will be repurposed 1195 * at that time for other things. 1196 */ 1197 int 1198 hibernate_write_chunks(union hibernate_info *hiber_info) 1199 { 1200 paddr_t range_base, range_end, inaddr, temp_inaddr; 1201 size_t nblocks, out_remaining, used; 1202 struct hibernate_disk_chunk *chunks; 1203 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1204 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1205 int i, rle; 1206 struct hibernate_zlib_state *hibernate_state; 1207 1208 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1209 1210 hiber_info->chunk_ctr = 0; 1211 1212 /* 1213 * Allocate VA for the temp and copy page. 1214 * These will becomee part of the suspended kernel and will 1215 * be freed in hibernate_free, upon resume. 1216 */ 1217 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1218 &kp_none, &kd_nowait); 1219 if (!hibernate_temp_page) 1220 return (1); 1221 1222 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1223 &kp_none, &kd_nowait); 1224 if (!hibernate_copy_page) 1225 return (1); 1226 1227 pmap_kenter_pa(hibernate_copy_page, 1228 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1229 1230 /* XXX - not needed on all archs */ 1231 pmap_activate(curproc); 1232 1233 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1234 HIBERNATE_CHUNK_SIZE); 1235 1236 /* Calculate the chunk regions */ 1237 for (i = 0; i < hiber_info->nranges; i++) { 1238 range_base = hiber_info->ranges[i].base; 1239 range_end = hiber_info->ranges[i].end; 1240 1241 inaddr = range_base; 1242 1243 while (inaddr < range_end) { 1244 chunks[hiber_info->chunk_ctr].base = inaddr; 1245 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1246 chunks[hiber_info->chunk_ctr].end = inaddr + 1247 HIBERNATE_CHUNK_SIZE; 1248 else 1249 chunks[hiber_info->chunk_ctr].end = range_end; 1250 1251 inaddr += HIBERNATE_CHUNK_SIZE; 1252 hiber_info->chunk_ctr ++; 1253 } 1254 } 1255 1256 /* Compress and write the chunks in the chunktable */ 1257 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1258 range_base = chunks[i].base; 1259 range_end = chunks[i].end; 1260 1261 chunks[i].offset = blkctr; 1262 1263 /* Reset zlib for deflate */ 1264 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1265 return (1); 1266 1267 inaddr = range_base; 1268 1269 /* 1270 * For each range, loop through its phys mem region 1271 * and write out the chunks (the last chunk might be 1272 * smaller than the chunk size). 1273 */ 1274 while (inaddr < range_end) { 1275 out_remaining = PAGE_SIZE; 1276 while (out_remaining > 0 && inaddr < range_end) { 1277 1278 /* 1279 * Adjust for regions that are not evenly 1280 * divisible by PAGE_SIZE or overflowed 1281 * pages from the previous iteration. 1282 */ 1283 temp_inaddr = (inaddr & PAGE_MASK) + 1284 hibernate_copy_page; 1285 1286 if (hibernate_inflate_skip(hiber_info, inaddr)) 1287 rle = 1; 1288 else 1289 rle = uvm_page_rle(inaddr); 1290 1291 while (rle != 0 && inaddr < range_end) { 1292 hibernate_state->hib_stream.next_in = 1293 (char *)&rle; 1294 hibernate_state->hib_stream.avail_in = 1295 sizeof(rle); 1296 hibernate_state->hib_stream.next_out = 1297 (caddr_t)hibernate_io_page + 1298 (PAGE_SIZE - out_remaining); 1299 hibernate_state->hib_stream.avail_out = 1300 out_remaining; 1301 1302 if (deflate(&hibernate_state->hib_stream, 1303 Z_PARTIAL_FLUSH) != Z_OK) 1304 return (1); 1305 1306 out_remaining = 1307 hibernate_state->hib_stream.avail_out; 1308 inaddr += (rle * PAGE_SIZE); 1309 if (inaddr > range_end) 1310 inaddr = range_end; 1311 else 1312 rle = uvm_page_rle(inaddr); 1313 } 1314 1315 if (out_remaining == 0) { 1316 /* Filled up the page */ 1317 nblocks = PAGE_SIZE / hiber_info->secsize; 1318 1319 if (hiber_info->io_func(hiber_info->device, 1320 blkctr, (vaddr_t)hibernate_io_page, 1321 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1322 return (1); 1323 1324 blkctr += nblocks; 1325 out_remaining = PAGE_SIZE; 1326 } 1327 1328 /* Write '0' RLE code */ 1329 if (inaddr < range_end) { 1330 hibernate_state->hib_stream.next_in = 1331 (char *)&rle; 1332 hibernate_state->hib_stream.avail_in = 1333 sizeof(rle); 1334 hibernate_state->hib_stream.next_out = 1335 (caddr_t)hibernate_io_page + 1336 (PAGE_SIZE - out_remaining); 1337 hibernate_state->hib_stream.avail_out = 1338 out_remaining; 1339 1340 if (deflate(&hibernate_state->hib_stream, 1341 Z_PARTIAL_FLUSH) != Z_OK) 1342 return (1); 1343 1344 out_remaining = 1345 hibernate_state->hib_stream.avail_out; 1346 } 1347 1348 if (out_remaining == 0) { 1349 /* Filled up the page */ 1350 nblocks = PAGE_SIZE / hiber_info->secsize; 1351 1352 if (hiber_info->io_func(hiber_info->device, 1353 blkctr, (vaddr_t)hibernate_io_page, 1354 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1355 return (1); 1356 1357 blkctr += nblocks; 1358 out_remaining = PAGE_SIZE; 1359 } 1360 1361 /* Deflate from temp_inaddr to IO page */ 1362 if (inaddr != range_end) { 1363 pmap_kenter_pa(hibernate_temp_page, 1364 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1365 1366 /* XXX - not needed on all archs */ 1367 pmap_activate(curproc); 1368 1369 bcopy((caddr_t)hibernate_temp_page, 1370 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1371 inaddr += hibernate_deflate(hiber_info, 1372 temp_inaddr, &out_remaining); 1373 } 1374 } 1375 1376 if (out_remaining == 0) { 1377 /* Filled up the page */ 1378 nblocks = PAGE_SIZE / hiber_info->secsize; 1379 1380 if (hiber_info->io_func(hiber_info->device, 1381 blkctr, (vaddr_t)hibernate_io_page, 1382 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1383 return (1); 1384 1385 blkctr += nblocks; 1386 } 1387 } 1388 1389 if (inaddr != range_end) 1390 return (1); 1391 1392 /* 1393 * End of range. Round up to next secsize bytes 1394 * after finishing compress 1395 */ 1396 if (out_remaining == 0) 1397 out_remaining = PAGE_SIZE; 1398 1399 /* Finish compress */ 1400 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1401 hibernate_state->hib_stream.avail_in = 0; 1402 hibernate_state->hib_stream.next_out = 1403 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1404 hibernate_state->hib_stream.avail_out = out_remaining; 1405 1406 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1407 Z_STREAM_END) 1408 return (1); 1409 1410 out_remaining = hibernate_state->hib_stream.avail_out; 1411 1412 used = PAGE_SIZE - out_remaining; 1413 nblocks = used / hiber_info->secsize; 1414 1415 /* Round up to next block if needed */ 1416 if (used % hiber_info->secsize != 0) 1417 nblocks ++; 1418 1419 /* Write final block(s) for this chunk */ 1420 if (hiber_info->io_func(hiber_info->device, blkctr, 1421 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1422 HIB_W, hiber_info->io_page)) 1423 return (1); 1424 1425 blkctr += nblocks; 1426 1427 offset = blkctr; 1428 chunks[i].compressed_size = (offset - chunks[i].offset) * 1429 hiber_info->secsize; 1430 } 1431 1432 return (0); 1433 } 1434 1435 /* 1436 * Reset the zlib stream state and allocate a new hiballoc area for either 1437 * inflate or deflate. This function is called once for each hibernate chunk. 1438 * Calling hiballoc_init multiple times is acceptable since the memory it is 1439 * provided is unmanaged memory (stolen). We use the memory provided to us 1440 * by the piglet allocated via the supplied hiber_info. 1441 */ 1442 int 1443 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1444 { 1445 vaddr_t hibernate_zlib_start; 1446 size_t hibernate_zlib_size; 1447 char *pva = (char *)hiber_info->piglet_va; 1448 struct hibernate_zlib_state *hibernate_state; 1449 1450 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1451 1452 if(!deflate) 1453 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1454 1455 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1456 hibernate_zlib_size = 80 * PAGE_SIZE; 1457 1458 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1459 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1460 1461 /* Set up stream structure */ 1462 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1463 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1464 1465 /* Initialize the hiballoc arena for zlib allocs/frees */ 1466 hiballoc_init(&hibernate_state->hiballoc_arena, 1467 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1468 1469 if (deflate) { 1470 return deflateInit(&hibernate_state->hib_stream, 1471 Z_BEST_SPEED); 1472 } else 1473 return inflateInit(&hibernate_state->hib_stream); 1474 } 1475 1476 /* 1477 * Reads the hibernated memory image from disk, whose location and 1478 * size are recorded in hiber_info. Begin by reading the persisted 1479 * chunk table, which records the original chunk placement location 1480 * and compressed size for each. Next, allocate a pig region of 1481 * sufficient size to hold the compressed image. Next, read the 1482 * chunks into the pig area (calling hibernate_read_chunks to do this), 1483 * and finally, if all of the above succeeds, clear the hibernate signature. 1484 * The function will then return to hibernate_resume, which will proceed 1485 * to unpack the pig image to the correct place in memory. 1486 */ 1487 int 1488 hibernate_read_image(union hibernate_info *hiber_info) 1489 { 1490 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1491 paddr_t image_start, image_end, pig_start, pig_end; 1492 struct hibernate_disk_chunk *chunks; 1493 daddr_t blkctr; 1494 vaddr_t chunktable = (vaddr_t)NULL; 1495 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1496 HIBERNATE_CHUNK_SIZE; 1497 int i; 1498 1499 pmap_activate(curproc); 1500 1501 /* Calculate total chunk table size in disk blocks */ 1502 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1503 1504 blkctr = hiber_info->sig_offset - chunktable_size - 1505 hiber_info->swap_offset; 1506 1507 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1508 &kp_none, &kd_nowait); 1509 1510 if (!chunktable) 1511 return (1); 1512 1513 /* Read the chunktable from disk into the piglet chunktable */ 1514 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1515 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1516 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1517 pmap_update(pmap_kernel()); 1518 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1519 chunktable + i, 0); 1520 } 1521 1522 blkctr = hiber_info->image_offset; 1523 compressed_size = 0; 1524 1525 chunks = (struct hibernate_disk_chunk *)chunktable; 1526 1527 for (i = 0; i < hiber_info->chunk_ctr; i++) 1528 compressed_size += chunks[i].compressed_size; 1529 1530 disk_size = compressed_size; 1531 1532 /* Allocate the pig area */ 1533 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1534 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1535 return (1); 1536 1537 pig_end = pig_start + pig_sz; 1538 1539 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1540 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1541 image_start = pig_start; 1542 1543 image_start = image_end - disk_size; 1544 1545 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1546 chunks); 1547 1548 pmap_kremove(chunktable, PAGE_SIZE); 1549 pmap_update(pmap_kernel()); 1550 1551 /* Prepare the resume time pmap/page table */ 1552 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1553 1554 /* Read complete, clear the signature and return */ 1555 return hibernate_clear_signature(); 1556 } 1557 1558 /* 1559 * Read the hibernated memory chunks from disk (chunk information at this 1560 * point is stored in the piglet) into the pig area specified by 1561 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1562 * only chunk with overlap possibilities. 1563 * 1564 * This function uses the piglet area during this process as follows: 1565 * 1566 * offset from piglet base use 1567 * ----------------------- -------------------- 1568 * 0 i/o allocation area 1569 * PAGE_SIZE i/o write area 1570 * 2*PAGE_SIZE temp/scratch page 1571 * 3*PAGE_SIZE temp/scratch page 1572 * 4*PAGE_SIZE to 6*PAGE_SIZE chunk ordering area 1573 * 7*PAGE_SIZE hiballoc arena 1574 * 8*PAGE_SIZE to 88*PAGE_SIZE zlib deflate area 1575 * ... 1576 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1577 */ 1578 int 1579 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1580 paddr_t pig_end, size_t image_compr_size, 1581 struct hibernate_disk_chunk *chunks) 1582 { 1583 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1584 paddr_t copy_start, copy_end, piglet_cur; 1585 paddr_t piglet_base = hib_info->piglet_pa; 1586 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1587 daddr_t blkctr; 1588 size_t processed, compressed_size, read_size; 1589 int i, j, overlap, found, nchunks; 1590 int nochunks = 0, nfchunks = 0, npchunks = 0; 1591 int *ochunks, *pchunks, *fchunks; 1592 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1593 1594 global_pig_start = pig_start; 1595 1596 /* XXX - dont need this on all archs */ 1597 pmap_activate(curproc); 1598 1599 /* 1600 * These mappings go into the resuming kernel's page table, and are 1601 * used only during image read. They dissappear from existence 1602 * when the suspended kernel is unpacked on top of us. 1603 */ 1604 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1605 if (!tempva) 1606 return (1); 1607 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1608 &kp_none, &kd_nowait); 1609 if (!hibernate_fchunk_area) 1610 return (1); 1611 1612 /* Temporary output chunk ordering VA */ 1613 ochunks = (int *)hibernate_fchunk_area; 1614 1615 /* Piglet chunk ordering VA */ 1616 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1617 1618 /* Final chunk ordering VA */ 1619 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1620 1621 /* Map the chunk ordering region */ 1622 pmap_kenter_pa(hibernate_fchunk_area, 1623 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1624 pmap_update(pmap_kernel()); 1625 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1626 VM_PROT_ALL); 1627 pmap_update(pmap_kernel()); 1628 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1629 VM_PROT_ALL); 1630 pmap_update(pmap_kernel()); 1631 1632 nchunks = hib_info->chunk_ctr; 1633 1634 /* Initially start all chunks as unplaced */ 1635 for (i = 0; i < nchunks; i++) 1636 chunks[i].flags = 0; 1637 1638 /* 1639 * Search the list for chunks that are outside the pig area. These 1640 * can be placed first in the final output list. 1641 */ 1642 for (i = 0; i < nchunks; i++) { 1643 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1644 ochunks[nochunks] = i; 1645 fchunks[nfchunks] = i; 1646 nochunks++; 1647 nfchunks++; 1648 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1649 } 1650 } 1651 1652 /* 1653 * Walk the ordering, place the chunks in ascending memory order. 1654 * Conflicts might arise, these are handled next. 1655 */ 1656 do { 1657 img_index = -1; 1658 found = 0; 1659 j = -1; 1660 for (i = 0; i < nchunks; i++) 1661 if (chunks[i].base < img_index && 1662 chunks[i].flags == 0 ) { 1663 j = i; 1664 img_index = chunks[i].base; 1665 } 1666 1667 if (j != -1) { 1668 found = 1; 1669 ochunks[nochunks] = (short)j; 1670 nochunks++; 1671 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1672 } 1673 } while (found); 1674 1675 img_index = pig_start; 1676 1677 /* 1678 * Identify chunk output conflicts (chunks whose pig load area 1679 * corresponds to their original memory placement location) 1680 */ 1681 for (i = 0; i < nochunks ; i++) { 1682 overlap = 0; 1683 r1s = img_index; 1684 r1e = img_index + chunks[ochunks[i]].compressed_size; 1685 r2s = chunks[ochunks[i]].base; 1686 r2e = chunks[ochunks[i]].end; 1687 1688 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1689 if (overlap) 1690 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1691 img_index += chunks[ochunks[i]].compressed_size; 1692 } 1693 1694 /* 1695 * Prepare the final output chunk list. Calculate an output 1696 * inflate strategy for overlapping chunks if needed. 1697 */ 1698 img_index = pig_start; 1699 for (i = 0; i < nochunks ; i++) { 1700 /* 1701 * If a conflict is detected, consume enough compressed 1702 * output chunks to fill the piglet 1703 */ 1704 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1705 copy_start = piglet_base; 1706 copy_end = piglet_end; 1707 piglet_cur = piglet_base; 1708 npchunks = 0; 1709 j = i; 1710 1711 while (copy_start < copy_end && j < nochunks) { 1712 piglet_cur += chunks[ochunks[j]].compressed_size; 1713 pchunks[npchunks] = ochunks[j]; 1714 npchunks++; 1715 copy_start += chunks[ochunks[j]].compressed_size; 1716 img_index += chunks[ochunks[j]].compressed_size; 1717 i++; 1718 j++; 1719 } 1720 1721 piglet_cur = piglet_base; 1722 for (j = 0; j < npchunks; j++) { 1723 piglet_cur += chunks[pchunks[j]].compressed_size; 1724 fchunks[nfchunks] = pchunks[j]; 1725 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1726 nfchunks++; 1727 } 1728 } else { 1729 /* 1730 * No conflict, chunk can be added without copying 1731 */ 1732 if ((chunks[ochunks[i]].flags & 1733 HIBERNATE_CHUNK_USED) == 0) { 1734 fchunks[nfchunks] = ochunks[i]; 1735 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1736 nfchunks++; 1737 } 1738 img_index += chunks[ochunks[i]].compressed_size; 1739 } 1740 } 1741 1742 img_index = pig_start; 1743 for (i = 0; i < nfchunks; i++) { 1744 piglet_cur = piglet_base; 1745 img_index += chunks[fchunks[i]].compressed_size; 1746 } 1747 1748 img_cur = pig_start; 1749 1750 for (i = 0; i < nfchunks; i++) { 1751 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1752 processed = 0; 1753 compressed_size = chunks[fchunks[i]].compressed_size; 1754 1755 while (processed < compressed_size) { 1756 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1757 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1758 VM_PROT_ALL); 1759 pmap_update(pmap_kernel()); 1760 1761 if (compressed_size - processed >= PAGE_SIZE) 1762 read_size = PAGE_SIZE; 1763 else 1764 read_size = compressed_size - processed; 1765 1766 hibernate_block_io(hib_info, blkctr, read_size, 1767 tempva + (img_cur & PAGE_MASK), 0); 1768 1769 blkctr += (read_size / hib_info->secsize); 1770 1771 hibernate_flush(); 1772 pmap_kremove(tempva, PAGE_SIZE); 1773 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1774 processed += read_size; 1775 img_cur += read_size; 1776 } 1777 } 1778 1779 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1780 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1781 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1782 pmap_update(pmap_kernel()); 1783 1784 return (0); 1785 } 1786 1787 /* 1788 * Hibernating a machine comprises the following operations: 1789 * 1. Calculating this machine's hibernate_info information 1790 * 2. Allocating a piglet and saving the piglet's physaddr 1791 * 3. Calculating the memory chunks 1792 * 4. Writing the compressed chunks to disk 1793 * 5. Writing the chunk table 1794 * 6. Writing the signature block (hibernate_info) 1795 * 1796 * On most architectures, the function calling hibernate_suspend would 1797 * then power off the machine using some MD-specific implementation. 1798 */ 1799 int 1800 hibernate_suspend(void) 1801 { 1802 union hibernate_info hib_info; 1803 1804 /* 1805 * Calculate memory ranges, swap offsets, etc. 1806 * This also allocates a piglet whose physaddr is stored in 1807 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1808 */ 1809 if (get_hibernate_info(&hib_info, 1)) 1810 return (1); 1811 1812 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); 1813 pmap_activate(curproc); 1814 1815 global_piglet_va = hib_info.piglet_va; 1816 1817 if (hibernate_write_chunks(&hib_info)) 1818 return (1); 1819 1820 if (hibernate_write_chunktable(&hib_info)) 1821 return (1); 1822 1823 if (hibernate_write_signature(&hib_info)) 1824 return (1); 1825 1826 delay(500000); 1827 return (0); 1828 } 1829 1830 /* 1831 * Free items allocated during hibernate 1832 */ 1833 void 1834 hibernate_free(void) 1835 { 1836 uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE); 1837 1838 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1839 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1840 pmap_update(pmap_kernel()); 1841 1842 km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none); 1843 km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none); 1844 } 1845