1 /* $OpenBSD: subr_hibernate.c,v 1.114 2015/02/07 01:19:40 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* 39 * Hibernate piglet layout information 40 * 41 * The piglet is a scratch area of memory allocated by the suspending kernel. 42 * Its phys and virt addrs are recorded in the signature block. The piglet is 43 * used to guarantee an unused area of memory that can be used by the resuming 44 * kernel for various things. The piglet is excluded during unpack operations. 45 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 46 * 47 * Offset from piglet_base Purpose 48 * ---------------------------------------------------------------------------- 49 * 0 Private page for suspend I/O write functions 50 * 1*PAGE_SIZE I/O page used during hibernate suspend 51 * 2*PAGE_SIZE I/O page used during hibernate suspend 52 * 3*PAGE_SIZE copy page used during hibernate suspend 53 * 4*PAGE_SIZE final chunk ordering list (24 pages) 54 * 28*PAGE_SIZE RLE utility page 55 * 29*PAGE_SIZE start of hiballoc area 56 * 109*PAGE_SIZE end of hiballoc area (80 pages) 57 * ... unused 58 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 59 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 60 * 4*HIBERNATE_CHUNK_SIZE end of piglet 61 */ 62 63 /* Temporary vaddr ranges used during hibernate */ 64 vaddr_t hibernate_temp_page; 65 vaddr_t hibernate_copy_page; 66 vaddr_t hibernate_rle_page; 67 68 /* Hibernate info as read from disk during resume */ 69 union hibernate_info disk_hib; 70 71 /* 72 * Global copy of the pig start address. This needs to be a global as we 73 * switch stacks after computing it - it can't be stored on the stack. 74 */ 75 paddr_t global_pig_start; 76 77 /* 78 * Global copies of the piglet start addresses (PA/VA). We store these 79 * as globals to avoid having to carry them around as parameters, as the 80 * piglet is allocated early and freed late - its lifecycle extends beyond 81 * that of the hibernate info union which is calculated on suspend/resume. 82 */ 83 vaddr_t global_piglet_va; 84 paddr_t global_piglet_pa; 85 86 /* #define HIB_DEBUG */ 87 #ifdef HIB_DEBUG 88 int hib_debug = 99; 89 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 90 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 91 #else 92 #define DPRINTF(x...) 93 #define DNPRINTF(n,x...) 94 #endif 95 96 #ifndef NO_PROPOLICE 97 extern long __guard_local; 98 #endif /* ! NO_PROPOLICE */ 99 100 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 101 int hibernate_calc_rle(paddr_t, paddr_t); 102 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 103 size_t *); 104 105 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 106 107 /* 108 * Hib alloc enforced alignment. 109 */ 110 #define HIB_ALIGN 8 /* bytes alignment */ 111 112 /* 113 * sizeof builtin operation, but with alignment constraint. 114 */ 115 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 116 117 struct hiballoc_entry { 118 size_t hibe_use; 119 size_t hibe_space; 120 RB_ENTRY(hiballoc_entry) hibe_entry; 121 }; 122 123 /* 124 * Sort hibernate memory ranges by ascending PA 125 */ 126 void 127 hibernate_sort_ranges(union hibernate_info *hib_info) 128 { 129 int i, j; 130 struct hibernate_memory_range *ranges; 131 paddr_t base, end; 132 133 ranges = hib_info->ranges; 134 135 for (i = 1; i < hib_info->nranges; i++) { 136 j = i; 137 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 138 base = ranges[j].base; 139 end = ranges[j].end; 140 ranges[j].base = ranges[j - 1].base; 141 ranges[j].end = ranges[j - 1].end; 142 ranges[j - 1].base = base; 143 ranges[j - 1].end = end; 144 j--; 145 } 146 } 147 } 148 149 /* 150 * Compare hiballoc entries based on the address they manage. 151 * 152 * Since the address is fixed, relative to struct hiballoc_entry, 153 * we just compare the hiballoc_entry pointers. 154 */ 155 static __inline int 156 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 157 { 158 return l < r ? -1 : (l > r); 159 } 160 161 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 162 163 /* 164 * Given a hiballoc entry, return the address it manages. 165 */ 166 static __inline void * 167 hib_entry_to_addr(struct hiballoc_entry *entry) 168 { 169 caddr_t addr; 170 171 addr = (caddr_t)entry; 172 addr += HIB_SIZEOF(struct hiballoc_entry); 173 return addr; 174 } 175 176 /* 177 * Given an address, find the hiballoc that corresponds. 178 */ 179 static __inline struct hiballoc_entry* 180 hib_addr_to_entry(void *addr_param) 181 { 182 caddr_t addr; 183 184 addr = (caddr_t)addr_param; 185 addr -= HIB_SIZEOF(struct hiballoc_entry); 186 return (struct hiballoc_entry*)addr; 187 } 188 189 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 190 191 /* 192 * Allocate memory from the arena. 193 * 194 * Returns NULL if no memory is available. 195 */ 196 void * 197 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 198 { 199 struct hiballoc_entry *entry, *new_entry; 200 size_t find_sz; 201 202 /* 203 * Enforce alignment of HIB_ALIGN bytes. 204 * 205 * Note that, because the entry is put in front of the allocation, 206 * 0-byte allocations are guaranteed a unique address. 207 */ 208 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 209 210 /* 211 * Find an entry with hibe_space >= find_sz. 212 * 213 * If the root node is not large enough, we switch to tree traversal. 214 * Because all entries are made at the bottom of the free space, 215 * traversal from the end has a slightly better chance of yielding 216 * a sufficiently large space. 217 */ 218 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 219 entry = RB_ROOT(&arena->hib_addrs); 220 if (entry != NULL && entry->hibe_space < find_sz) { 221 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 222 if (entry->hibe_space >= find_sz) 223 break; 224 } 225 } 226 227 /* 228 * Insufficient or too fragmented memory. 229 */ 230 if (entry == NULL) 231 return NULL; 232 233 /* 234 * Create new entry in allocated space. 235 */ 236 new_entry = (struct hiballoc_entry*)( 237 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 238 new_entry->hibe_space = entry->hibe_space - find_sz; 239 new_entry->hibe_use = alloc_sz; 240 241 /* 242 * Insert entry. 243 */ 244 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 245 panic("hib_alloc: insert failure"); 246 entry->hibe_space = 0; 247 248 /* Return address managed by entry. */ 249 return hib_entry_to_addr(new_entry); 250 } 251 252 void 253 hib_getentropy(char **bufp, size_t *bufplen) 254 { 255 /* fill in */ 256 } 257 258 /* 259 * Free a pointer previously allocated from this arena. 260 * 261 * If addr is NULL, this will be silently accepted. 262 */ 263 void 264 hib_free(struct hiballoc_arena *arena, void *addr) 265 { 266 struct hiballoc_entry *entry, *prev; 267 268 if (addr == NULL) 269 return; 270 271 /* 272 * Derive entry from addr and check it is really in this arena. 273 */ 274 entry = hib_addr_to_entry(addr); 275 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 276 panic("hib_free: freed item %p not in hib arena", addr); 277 278 /* 279 * Give the space in entry to its predecessor. 280 * 281 * If entry has no predecessor, change its used space into free space 282 * instead. 283 */ 284 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 285 if (prev != NULL && 286 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 287 prev->hibe_use + prev->hibe_space) == entry) { 288 /* Merge entry. */ 289 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 290 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 291 entry->hibe_use + entry->hibe_space; 292 } else { 293 /* Flip used memory to free space. */ 294 entry->hibe_space += entry->hibe_use; 295 entry->hibe_use = 0; 296 } 297 } 298 299 /* 300 * Initialize hiballoc. 301 * 302 * The allocator will manage memmory at ptr, which is len bytes. 303 */ 304 int 305 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 306 { 307 struct hiballoc_entry *entry; 308 caddr_t ptr; 309 size_t len; 310 311 RB_INIT(&arena->hib_addrs); 312 313 /* 314 * Hib allocator enforces HIB_ALIGN alignment. 315 * Fixup ptr and len. 316 */ 317 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 318 len = p_len - ((size_t)ptr - (size_t)p_ptr); 319 len &= ~((size_t)HIB_ALIGN - 1); 320 321 /* 322 * Insufficient memory to be able to allocate and also do bookkeeping. 323 */ 324 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 325 return ENOMEM; 326 327 /* 328 * Create entry describing space. 329 */ 330 entry = (struct hiballoc_entry*)ptr; 331 entry->hibe_use = 0; 332 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 333 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 334 335 return 0; 336 } 337 338 /* 339 * Zero all free memory. 340 */ 341 void 342 uvm_pmr_zero_everything(void) 343 { 344 struct uvm_pmemrange *pmr; 345 struct vm_page *pg; 346 int i; 347 348 uvm_lock_fpageq(); 349 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 350 /* Zero single pages. */ 351 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 352 != NULL) { 353 uvm_pmr_remove(pmr, pg); 354 uvm_pagezero(pg); 355 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 356 uvmexp.zeropages++; 357 uvm_pmr_insert(pmr, pg, 0); 358 } 359 360 /* Zero multi page ranges. */ 361 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 362 != NULL) { 363 pg--; /* Size tree always has second page. */ 364 uvm_pmr_remove(pmr, pg); 365 for (i = 0; i < pg->fpgsz; i++) { 366 uvm_pagezero(&pg[i]); 367 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 368 uvmexp.zeropages++; 369 } 370 uvm_pmr_insert(pmr, pg, 0); 371 } 372 } 373 uvm_unlock_fpageq(); 374 } 375 376 /* 377 * Mark all memory as dirty. 378 * 379 * Used to inform the system that the clean memory isn't clean for some 380 * reason, for example because we just came back from hibernate. 381 */ 382 void 383 uvm_pmr_dirty_everything(void) 384 { 385 struct uvm_pmemrange *pmr; 386 struct vm_page *pg; 387 int i; 388 389 uvm_lock_fpageq(); 390 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 391 /* Dirty single pages. */ 392 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 393 != NULL) { 394 uvm_pmr_remove(pmr, pg); 395 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 396 uvm_pmr_insert(pmr, pg, 0); 397 } 398 399 /* Dirty multi page ranges. */ 400 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 401 != NULL) { 402 pg--; /* Size tree always has second page. */ 403 uvm_pmr_remove(pmr, pg); 404 for (i = 0; i < pg->fpgsz; i++) 405 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 406 uvm_pmr_insert(pmr, pg, 0); 407 } 408 } 409 410 uvmexp.zeropages = 0; 411 uvm_unlock_fpageq(); 412 } 413 414 /* 415 * Allocate an area that can hold sz bytes and doesn't overlap with 416 * the piglet at piglet_pa. 417 */ 418 int 419 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 420 { 421 struct uvm_constraint_range pig_constraint; 422 struct kmem_pa_mode kp_pig = { 423 .kp_constraint = &pig_constraint, 424 .kp_maxseg = 1 425 }; 426 vaddr_t va; 427 428 sz = round_page(sz); 429 430 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 431 pig_constraint.ucr_high = -1; 432 433 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 434 if (va == 0) { 435 pig_constraint.ucr_low = 0; 436 pig_constraint.ucr_high = piglet_pa - 1; 437 438 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 439 if (va == 0) 440 return ENOMEM; 441 } 442 443 pmap_extract(pmap_kernel(), va, pa); 444 return 0; 445 } 446 447 /* 448 * Allocate a piglet area. 449 * 450 * This needs to be in DMA-safe memory. 451 * Piglets are aligned. 452 * 453 * sz and align in bytes. 454 * 455 * The call will sleep for the pagedaemon to attempt to free memory. 456 * The pagedaemon may decide its not possible to free enough memory, causing 457 * the allocation to fail. 458 */ 459 int 460 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 461 { 462 struct kmem_pa_mode kp_piglet = { 463 .kp_constraint = &dma_constraint, 464 .kp_align = align, 465 .kp_maxseg = 1 466 }; 467 468 /* Ensure align is a power of 2 */ 469 KASSERT((align & (align - 1)) == 0); 470 471 /* 472 * Fixup arguments: align must be at least PAGE_SIZE, 473 * sz will be converted to pagecount, since that is what 474 * pmemrange uses internally. 475 */ 476 if (align < PAGE_SIZE) 477 kp_piglet.kp_align = PAGE_SIZE; 478 479 sz = round_page(sz); 480 481 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 482 if (*va == 0) 483 return ENOMEM; 484 485 pmap_extract(pmap_kernel(), *va, pa); 486 return 0; 487 } 488 489 /* 490 * Free a piglet area. 491 */ 492 void 493 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 494 { 495 /* 496 * Fix parameters. 497 */ 498 sz = round_page(sz); 499 500 /* 501 * Free the physical and virtual memory. 502 */ 503 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 504 } 505 506 /* 507 * Physmem RLE compression support. 508 * 509 * Given a physical page address, return the number of pages starting at the 510 * address that are free. Clamps to the number of pages in 511 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 512 */ 513 int 514 uvm_page_rle(paddr_t addr) 515 { 516 struct vm_page *pg, *pg_end; 517 struct vm_physseg *vmp; 518 int pseg_idx, off_idx; 519 520 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 521 if (pseg_idx == -1) 522 return 0; 523 524 vmp = &vm_physmem[pseg_idx]; 525 pg = &vmp->pgs[off_idx]; 526 if (!(pg->pg_flags & PQ_FREE)) 527 return 0; 528 529 /* 530 * Search for the first non-free page after pg. 531 * Note that the page may not be the first page in a free pmemrange, 532 * therefore pg->fpgsz cannot be used. 533 */ 534 for (pg_end = pg; pg_end <= vmp->lastpg && 535 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 536 ; 537 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 538 } 539 540 /* 541 * Fills out the hibernate_info union pointed to by hib 542 * with information about this machine (swap signature block 543 * offsets, number of memory ranges, kernel in use, etc) 544 */ 545 int 546 get_hibernate_info(union hibernate_info *hib, int suspend) 547 { 548 struct disklabel dl; 549 char err_string[128], *dl_ret; 550 551 #ifndef NO_PROPOLICE 552 /* Save propolice guard */ 553 hib->guard = __guard_local; 554 #endif /* ! NO_PROPOLICE */ 555 556 /* Determine I/O function to use */ 557 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 558 if (hib->io_func == NULL) 559 return (1); 560 561 /* Calculate hibernate device */ 562 hib->dev = swdevt[0].sw_dev; 563 564 /* Read disklabel (used to calculate signature and image offsets) */ 565 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 566 567 if (dl_ret) { 568 printf("Hibernate error reading disklabel: %s\n", dl_ret); 569 return (1); 570 } 571 572 /* Make sure we have a swap partition. */ 573 if (dl.d_partitions[1].p_fstype != FS_SWAP || 574 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 575 return (1); 576 577 /* Make sure the signature can fit in one block */ 578 if (sizeof(union hibernate_info) > DEV_BSIZE) 579 return (1); 580 581 /* Magic number */ 582 hib->magic = HIBERNATE_MAGIC; 583 584 /* Calculate signature block location */ 585 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 586 sizeof(union hibernate_info)/DEV_BSIZE; 587 588 /* Stash kernel version information */ 589 memset(&hib->kernel_version, 0, 128); 590 bcopy(version, &hib->kernel_version, 591 min(strlen(version), sizeof(hib->kernel_version)-1)); 592 593 if (suspend) { 594 /* Grab the previously-allocated piglet addresses */ 595 hib->piglet_va = global_piglet_va; 596 hib->piglet_pa = global_piglet_pa; 597 hib->io_page = (void *)hib->piglet_va; 598 599 /* 600 * Initialization of the hibernate IO function for drivers 601 * that need to do prep work (such as allocating memory or 602 * setting up data structures that cannot safely be done 603 * during suspend without causing side effects). There is 604 * a matching HIB_DONE call performed after the write is 605 * completed. 606 */ 607 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 608 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 609 HIB_INIT, hib->io_page)) 610 goto fail; 611 612 } else { 613 /* 614 * Resuming kernels use a regular private page for the driver 615 * No need to free this I/O page as it will vanish as part of 616 * the resume. 617 */ 618 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 619 if (!hib->io_page) 620 goto fail; 621 } 622 623 if (get_hibernate_info_md(hib)) 624 goto fail; 625 626 return (0); 627 628 fail: 629 return (1); 630 } 631 632 /* 633 * Allocate nitems*size bytes from the hiballoc area presently in use 634 */ 635 void * 636 hibernate_zlib_alloc(void *unused, int nitems, int size) 637 { 638 struct hibernate_zlib_state *hibernate_state; 639 640 hibernate_state = 641 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 642 643 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 644 } 645 646 /* 647 * Free the memory pointed to by addr in the hiballoc area presently in 648 * use 649 */ 650 void 651 hibernate_zlib_free(void *unused, void *addr) 652 { 653 struct hibernate_zlib_state *hibernate_state; 654 655 hibernate_state = 656 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 657 658 hib_free(&hibernate_state->hiballoc_arena, addr); 659 } 660 661 /* 662 * Inflate next page of data from the image stream. 663 * The rle parameter is modified on exit to contain the number of pages to 664 * skip in the output stream (or 0 if this page was inflated into). 665 * 666 * Returns 0 if the stream contains additional data, or 1 if the stream is 667 * finished. 668 */ 669 int 670 hibernate_inflate_page(int *rle) 671 { 672 struct hibernate_zlib_state *hibernate_state; 673 int i; 674 675 hibernate_state = 676 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 677 678 /* Set up the stream for RLE code inflate */ 679 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 680 hibernate_state->hib_stream.avail_out = sizeof(*rle); 681 682 /* Inflate RLE code */ 683 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 684 if (i != Z_OK && i != Z_STREAM_END) { 685 /* 686 * XXX - this will likely reboot/hang most machines 687 * since the console output buffer will be unmapped, 688 * but there's not much else we can do here. 689 */ 690 panic("rle inflate stream error"); 691 } 692 693 if (hibernate_state->hib_stream.avail_out != 0) { 694 /* 695 * XXX - this will likely reboot/hang most machines 696 * since the console output buffer will be unmapped, 697 * but there's not much else we can do here. 698 */ 699 panic("rle short inflate error"); 700 } 701 702 if (*rle < 0 || *rle > 1024) { 703 /* 704 * XXX - this will likely reboot/hang most machines 705 * since the console output buffer will be unmapped, 706 * but there's not much else we can do here. 707 */ 708 panic("invalid rle count"); 709 } 710 711 if (i == Z_STREAM_END) 712 return (1); 713 714 if (*rle != 0) 715 return (0); 716 717 /* Set up the stream for page inflate */ 718 hibernate_state->hib_stream.next_out = 719 (unsigned char *)HIBERNATE_INFLATE_PAGE; 720 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 721 722 /* Process next block of data */ 723 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 724 if (i != Z_OK && i != Z_STREAM_END) { 725 /* 726 * XXX - this will likely reboot/hang most machines 727 * since the console output buffer will be unmapped, 728 * but there's not much else we can do here. 729 */ 730 panic("inflate error"); 731 } 732 733 /* We should always have extracted a full page ... */ 734 if (hibernate_state->hib_stream.avail_out != 0) { 735 /* 736 * XXX - this will likely reboot/hang most machines 737 * since the console output buffer will be unmapped, 738 * but there's not much else we can do here. 739 */ 740 panic("incomplete page"); 741 } 742 743 return (i == Z_STREAM_END); 744 } 745 746 /* 747 * Inflate size bytes from src into dest, skipping any pages in 748 * [src..dest] that are special (see hibernate_inflate_skip) 749 * 750 * This function executes while using the resume-time stack 751 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 752 * will likely hang or reset the machine since the console output buffer 753 * will be unmapped. 754 */ 755 void 756 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 757 paddr_t src, size_t size) 758 { 759 int end_stream = 0, rle; 760 struct hibernate_zlib_state *hibernate_state; 761 762 hibernate_state = 763 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 764 765 hibernate_state->hib_stream.next_in = (unsigned char *)src; 766 hibernate_state->hib_stream.avail_in = size; 767 768 do { 769 /* 770 * Is this a special page? If yes, redirect the 771 * inflate output to a scratch page (eg, discard it) 772 */ 773 if (hibernate_inflate_skip(hib, dest)) { 774 hibernate_enter_resume_mapping( 775 HIBERNATE_INFLATE_PAGE, 776 HIBERNATE_INFLATE_PAGE, 0); 777 } else { 778 hibernate_enter_resume_mapping( 779 HIBERNATE_INFLATE_PAGE, dest, 0); 780 } 781 782 hibernate_flush(); 783 end_stream = hibernate_inflate_page(&rle); 784 785 if (rle == 0) 786 dest += PAGE_SIZE; 787 else 788 dest += (rle * PAGE_SIZE); 789 } while (!end_stream); 790 } 791 792 /* 793 * deflate from src into the I/O page, up to 'remaining' bytes 794 * 795 * Returns number of input bytes consumed, and may reset 796 * the 'remaining' parameter if not all the output space was consumed 797 * (this information is needed to know how much to write to disk 798 */ 799 size_t 800 hibernate_deflate(union hibernate_info *hib, paddr_t src, 801 size_t *remaining) 802 { 803 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 804 struct hibernate_zlib_state *hibernate_state; 805 806 hibernate_state = 807 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 808 809 /* Set up the stream for deflate */ 810 hibernate_state->hib_stream.next_in = (unsigned char *)src; 811 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 812 hibernate_state->hib_stream.next_out = 813 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 814 hibernate_state->hib_stream.avail_out = *remaining; 815 816 /* Process next block of data */ 817 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 818 panic("hibernate zlib deflate error"); 819 820 /* Update pointers and return number of bytes consumed */ 821 *remaining = hibernate_state->hib_stream.avail_out; 822 return (PAGE_SIZE - (src & PAGE_MASK)) - 823 hibernate_state->hib_stream.avail_in; 824 } 825 826 /* 827 * Write the hibernation information specified in hiber_info 828 * to the location in swap previously calculated (last block of 829 * swap), called the "signature block". 830 */ 831 int 832 hibernate_write_signature(union hibernate_info *hib) 833 { 834 /* Write hibernate info to disk */ 835 return (hib->io_func(hib->dev, hib->sig_offset, 836 (vaddr_t)hib, DEV_BSIZE, HIB_W, 837 hib->io_page)); 838 } 839 840 /* 841 * Write the memory chunk table to the area in swap immediately 842 * preceding the signature block. The chunk table is stored 843 * in the piglet when this function is called. Returns errno. 844 */ 845 int 846 hibernate_write_chunktable(union hibernate_info *hib) 847 { 848 vaddr_t hibernate_chunk_table_start; 849 size_t hibernate_chunk_table_size; 850 int i, err; 851 852 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 853 854 hibernate_chunk_table_start = hib->piglet_va + 855 HIBERNATE_CHUNK_SIZE; 856 857 /* Write chunk table */ 858 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 859 if ((err = hib->io_func(hib->dev, 860 hib->chunktable_offset + (i/DEV_BSIZE), 861 (vaddr_t)(hibernate_chunk_table_start + i), 862 MAXPHYS, HIB_W, hib->io_page))) { 863 DPRINTF("chunktable write error: %d\n", err); 864 return (err); 865 } 866 } 867 868 return (0); 869 } 870 871 /* 872 * Write an empty hiber_info to the swap signature block, which is 873 * guaranteed to not match any valid hib. 874 */ 875 int 876 hibernate_clear_signature(void) 877 { 878 union hibernate_info blank_hiber_info; 879 union hibernate_info hib; 880 881 /* Zero out a blank hiber_info */ 882 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 883 884 /* Get the signature block location */ 885 if (get_hibernate_info(&hib, 0)) 886 return (1); 887 888 /* Write (zeroed) hibernate info to disk */ 889 DPRINTF("clearing hibernate signature block location: %lld\n", 890 hib.sig_offset); 891 if (hibernate_block_io(&hib, 892 hib.sig_offset, 893 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 894 printf("Warning: could not clear hibernate signature\n"); 895 896 return (0); 897 } 898 899 /* 900 * Compare two hibernate_infos to determine if they are the same (eg, 901 * we should be performing a hibernate resume on this machine. 902 * Not all fields are checked - just enough to verify that the machine 903 * has the same memory configuration and kernel as the one that 904 * wrote the signature previously. 905 */ 906 int 907 hibernate_compare_signature(union hibernate_info *mine, 908 union hibernate_info *disk) 909 { 910 u_int i; 911 912 if (mine->nranges != disk->nranges) { 913 DPRINTF("hibernate memory range count mismatch\n"); 914 return (1); 915 } 916 917 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 918 DPRINTF("hibernate kernel version mismatch\n"); 919 return (1); 920 } 921 922 for (i = 0; i < mine->nranges; i++) { 923 if ((mine->ranges[i].base != disk->ranges[i].base) || 924 (mine->ranges[i].end != disk->ranges[i].end) ) { 925 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 926 i, 927 (void *)mine->ranges[i].base, 928 (void *)mine->ranges[i].end, 929 (void *)disk->ranges[i].base, 930 (void *)disk->ranges[i].end); 931 return (1); 932 } 933 } 934 935 return (0); 936 } 937 938 /* 939 * Transfers xfer_size bytes between the hibernate device specified in 940 * hib_info at offset blkctr and the vaddr specified at dest. 941 * 942 * Separate offsets and pages are used to handle misaligned reads (reads 943 * that span a page boundary). 944 * 945 * blkctr specifies a relative offset (relative to the start of swap), 946 * not an absolute disk offset 947 * 948 */ 949 int 950 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 951 size_t xfer_size, vaddr_t dest, int iswrite) 952 { 953 struct buf *bp; 954 struct bdevsw *bdsw; 955 int error; 956 957 bp = geteblk(xfer_size); 958 bdsw = &bdevsw[major(hib->dev)]; 959 960 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 961 if (error) { 962 printf("hibernate_block_io open failed\n"); 963 return (1); 964 } 965 966 if (iswrite) 967 bcopy((caddr_t)dest, bp->b_data, xfer_size); 968 969 bp->b_bcount = xfer_size; 970 bp->b_blkno = blkctr; 971 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 972 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 973 bp->b_dev = hib->dev; 974 (*bdsw->d_strategy)(bp); 975 976 error = biowait(bp); 977 if (error) { 978 printf("hib block_io biowait error %d blk %lld size %zu\n", 979 error, (long long)blkctr, xfer_size); 980 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 981 curproc); 982 if (error) 983 printf("hibernate_block_io error close failed\n"); 984 return (1); 985 } 986 987 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 988 if (error) { 989 printf("hibernate_block_io close failed\n"); 990 return (1); 991 } 992 993 if (!iswrite) 994 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 995 996 bp->b_flags |= B_INVAL; 997 brelse(bp); 998 999 return (0); 1000 } 1001 1002 /* 1003 * Reads the signature block from swap, checks against the current machine's 1004 * information. If the information matches, perform a resume by reading the 1005 * saved image into the pig area, and unpacking. 1006 */ 1007 void 1008 hibernate_resume(void) 1009 { 1010 union hibernate_info hib; 1011 int s; 1012 1013 /* Get current running machine's hibernate info */ 1014 memset(&hib, 0, sizeof(hib)); 1015 if (get_hibernate_info(&hib, 0)) { 1016 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1017 return; 1018 } 1019 1020 /* Read hibernate info from disk */ 1021 s = splbio(); 1022 1023 DPRINTF("reading hibernate signature block location: %lld\n", 1024 hib.sig_offset); 1025 1026 if (hibernate_block_io(&hib, 1027 hib.sig_offset, 1028 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1029 DPRINTF("error in hibernate read"); 1030 splx(s); 1031 return; 1032 } 1033 1034 /* Check magic number */ 1035 if (disk_hib.magic != HIBERNATE_MAGIC) { 1036 DPRINTF("wrong magic number in hibernate signature: %x\n", 1037 disk_hib.magic); 1038 splx(s); 1039 return; 1040 } 1041 1042 /* 1043 * We (possibly) found a hibernate signature. Clear signature first, 1044 * to prevent accidental resume or endless resume cycles later. 1045 */ 1046 if (hibernate_clear_signature()) { 1047 DPRINTF("error clearing hibernate signature block\n"); 1048 splx(s); 1049 return; 1050 } 1051 1052 /* 1053 * If on-disk and in-memory hibernate signatures match, 1054 * this means we should do a resume from hibernate. 1055 */ 1056 if (hibernate_compare_signature(&hib, &disk_hib)) { 1057 DPRINTF("mismatched hibernate signature block\n"); 1058 splx(s); 1059 return; 1060 } 1061 1062 #ifdef MULTIPROCESSOR 1063 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1064 DPRINTF("hibernate: quiescing APs\n"); 1065 hibernate_quiesce_cpus(); 1066 #endif /* MULTIPROCESSOR */ 1067 1068 /* Read the image from disk into the image (pig) area */ 1069 if (hibernate_read_image(&disk_hib)) 1070 goto fail; 1071 1072 DPRINTF("hibernate: quiescing devices\n"); 1073 if (config_suspend_all(DVACT_QUIESCE) != 0) 1074 goto fail; 1075 1076 (void) splhigh(); 1077 hibernate_disable_intr_machdep(); 1078 cold = 1; 1079 1080 DPRINTF("hibernate: suspending devices\n"); 1081 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1082 cold = 0; 1083 hibernate_enable_intr_machdep(); 1084 goto fail; 1085 } 1086 1087 printf("Unpacking image...\n"); 1088 1089 /* Switch stacks */ 1090 DPRINTF("hibernate: switching stacks\n"); 1091 hibernate_switch_stack_machdep(); 1092 1093 #ifndef NO_PROPOLICE 1094 /* Start using suspended kernel's propolice guard */ 1095 __guard_local = disk_hib.guard; 1096 #endif /* ! NO_PROPOLICE */ 1097 1098 /* Unpack and resume */ 1099 hibernate_unpack_image(&disk_hib); 1100 1101 fail: 1102 splx(s); 1103 printf("\nUnable to resume hibernated image\n"); 1104 } 1105 1106 /* 1107 * Unpack image from pig area to original location by looping through the 1108 * list of output chunks in the order they should be restored (fchunks). 1109 * 1110 * Note that due to the stack smash protector and the fact that we have 1111 * switched stacks, it is not permitted to return from this function. 1112 */ 1113 void 1114 hibernate_unpack_image(union hibernate_info *hib) 1115 { 1116 struct hibernate_disk_chunk *chunks; 1117 union hibernate_info local_hib; 1118 paddr_t image_cur = global_pig_start; 1119 short i, *fchunks; 1120 char *pva; 1121 1122 /* Piglet will be identity mapped (VA == PA) */ 1123 pva = (char *)hib->piglet_pa; 1124 1125 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1126 1127 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1128 1129 /* Can't use hiber_info that's passed in after this point */ 1130 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1131 1132 /* VA == PA */ 1133 local_hib.piglet_va = local_hib.piglet_pa; 1134 1135 /* 1136 * Point of no return. Once we pass this point, only kernel code can 1137 * be accessed. No global variables or other kernel data structures 1138 * are guaranteed to be coherent after unpack starts. 1139 * 1140 * The image is now in high memory (pig area), we unpack from the pig 1141 * to the correct location in memory. We'll eventually end up copying 1142 * on top of ourself, but we are assured the kernel code here is the 1143 * same between the hibernated and resuming kernel, and we are running 1144 * on our own stack, so the overwrite is ok. 1145 */ 1146 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1147 hibernate_activate_resume_pt_machdep(); 1148 1149 for (i = 0; i < local_hib.chunk_ctr; i++) { 1150 /* Reset zlib for inflate */ 1151 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1152 panic("hibernate failed to reset zlib for inflate"); 1153 1154 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1155 image_cur); 1156 1157 image_cur += chunks[fchunks[i]].compressed_size; 1158 1159 } 1160 1161 /* 1162 * Resume the loaded kernel by jumping to the MD resume vector. 1163 * We won't be returning from this call. 1164 */ 1165 hibernate_resume_machdep(); 1166 } 1167 1168 /* 1169 * Bounce a compressed image chunk to the piglet, entering mappings for the 1170 * copied pages as needed 1171 */ 1172 void 1173 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1174 { 1175 size_t ct, ofs; 1176 paddr_t src = img_cur; 1177 vaddr_t dest = piglet; 1178 1179 /* Copy first partial page */ 1180 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1181 ofs = (src & PAGE_MASK); 1182 1183 if (ct < PAGE_SIZE) { 1184 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1185 (src - ofs), 0); 1186 hibernate_flush(); 1187 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1188 src += ct; 1189 dest += ct; 1190 } 1191 1192 /* Copy remaining pages */ 1193 while (src < size + img_cur) { 1194 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1195 hibernate_flush(); 1196 ct = PAGE_SIZE; 1197 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1198 hibernate_flush(); 1199 src += ct; 1200 dest += ct; 1201 } 1202 } 1203 1204 /* 1205 * Process a chunk by bouncing it to the piglet, followed by unpacking 1206 */ 1207 void 1208 hibernate_process_chunk(union hibernate_info *hib, 1209 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1210 { 1211 char *pva = (char *)hib->piglet_va; 1212 1213 hibernate_copy_chunk_to_piglet(img_cur, 1214 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1215 hibernate_inflate_region(hib, chunk->base, 1216 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1217 chunk->compressed_size); 1218 } 1219 1220 /* 1221 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1222 * inaddr and range_end. 1223 */ 1224 int 1225 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1226 { 1227 int rle; 1228 1229 rle = uvm_page_rle(inaddr); 1230 KASSERT(rle >= 0 && rle <= MAX_RLE); 1231 1232 /* Clamp RLE to range end */ 1233 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1234 rle = (range_end - inaddr) / PAGE_SIZE; 1235 1236 return (rle); 1237 } 1238 1239 /* 1240 * Write the RLE byte for page at 'inaddr' to the output stream. 1241 * Returns the number of pages to be skipped at 'inaddr'. 1242 */ 1243 int 1244 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1245 paddr_t range_end, daddr_t *blkctr, 1246 size_t *out_remaining) 1247 { 1248 int rle, err, *rleloc; 1249 struct hibernate_zlib_state *hibernate_state; 1250 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1251 1252 hibernate_state = 1253 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1254 1255 rle = hibernate_calc_rle(inaddr, range_end); 1256 1257 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1258 *rleloc = rle; 1259 1260 /* Deflate the RLE byte into the stream */ 1261 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1262 1263 /* Did we fill the output page? If so, flush to disk */ 1264 if (*out_remaining == 0) { 1265 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1266 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1267 hib->io_page))) { 1268 DPRINTF("hib write error %d\n", err); 1269 return (err); 1270 } 1271 1272 *blkctr += PAGE_SIZE / DEV_BSIZE; 1273 *out_remaining = PAGE_SIZE; 1274 1275 /* If we didn't deflate the entire RLE byte, finish it now */ 1276 if (hibernate_state->hib_stream.avail_in != 0) 1277 hibernate_deflate(hib, 1278 (vaddr_t)hibernate_state->hib_stream.next_in, 1279 out_remaining); 1280 } 1281 1282 return (rle); 1283 } 1284 1285 /* 1286 * Write a compressed version of this machine's memory to disk, at the 1287 * precalculated swap offset: 1288 * 1289 * end of swap - signature block size - chunk table size - memory size 1290 * 1291 * The function begins by looping through each phys mem range, cutting each 1292 * one into MD sized chunks. These chunks are then compressed individually 1293 * and written out to disk, in phys mem order. Some chunks might compress 1294 * more than others, and for this reason, each chunk's size is recorded 1295 * in the chunk table, which is written to disk after the image has 1296 * properly been compressed and written (in hibernate_write_chunktable). 1297 * 1298 * When this function is called, the machine is nearly suspended - most 1299 * devices are quiesced/suspended, interrupts are off, and cold has 1300 * been set. This means that there can be no side effects once the 1301 * write has started, and the write function itself can also have no 1302 * side effects. This also means no printfs are permitted (since printf 1303 * has side effects.) 1304 * 1305 * Return values : 1306 * 1307 * 0 - success 1308 * EIO - I/O error occurred writing the chunks 1309 * EINVAL - Failed to write a complete range 1310 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1311 */ 1312 int 1313 hibernate_write_chunks(union hibernate_info *hib) 1314 { 1315 paddr_t range_base, range_end, inaddr, temp_inaddr; 1316 size_t nblocks, out_remaining, used; 1317 struct hibernate_disk_chunk *chunks; 1318 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1319 daddr_t blkctr = 0; 1320 int i, rle, err; 1321 struct hibernate_zlib_state *hibernate_state; 1322 1323 hibernate_state = 1324 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1325 1326 hib->chunk_ctr = 0; 1327 1328 /* 1329 * Map the utility VAs to the piglet. See the piglet map at the 1330 * top of this file for piglet layout information. 1331 */ 1332 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1333 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1334 1335 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1336 HIBERNATE_CHUNK_SIZE); 1337 1338 /* Calculate the chunk regions */ 1339 for (i = 0; i < hib->nranges; i++) { 1340 range_base = hib->ranges[i].base; 1341 range_end = hib->ranges[i].end; 1342 1343 inaddr = range_base; 1344 1345 while (inaddr < range_end) { 1346 chunks[hib->chunk_ctr].base = inaddr; 1347 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1348 chunks[hib->chunk_ctr].end = inaddr + 1349 HIBERNATE_CHUNK_SIZE; 1350 else 1351 chunks[hib->chunk_ctr].end = range_end; 1352 1353 inaddr += HIBERNATE_CHUNK_SIZE; 1354 hib->chunk_ctr ++; 1355 } 1356 } 1357 1358 uvm_pmr_dirty_everything(); 1359 uvm_pmr_zero_everything(); 1360 1361 /* Compress and write the chunks in the chunktable */ 1362 for (i = 0; i < hib->chunk_ctr; i++) { 1363 range_base = chunks[i].base; 1364 range_end = chunks[i].end; 1365 1366 chunks[i].offset = blkctr + hib->image_offset; 1367 1368 /* Reset zlib for deflate */ 1369 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1370 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1371 return (ENOMEM); 1372 } 1373 1374 inaddr = range_base; 1375 1376 /* 1377 * For each range, loop through its phys mem region 1378 * and write out the chunks (the last chunk might be 1379 * smaller than the chunk size). 1380 */ 1381 while (inaddr < range_end) { 1382 out_remaining = PAGE_SIZE; 1383 while (out_remaining > 0 && inaddr < range_end) { 1384 /* 1385 * Adjust for regions that are not evenly 1386 * divisible by PAGE_SIZE or overflowed 1387 * pages from the previous iteration. 1388 */ 1389 temp_inaddr = (inaddr & PAGE_MASK) + 1390 hibernate_copy_page; 1391 1392 /* Deflate from temp_inaddr to IO page */ 1393 if (inaddr != range_end) { 1394 if (inaddr % PAGE_SIZE == 0) { 1395 rle = hibernate_write_rle(hib, 1396 inaddr, 1397 range_end, 1398 &blkctr, 1399 &out_remaining); 1400 } 1401 1402 if (rle == 0) { 1403 pmap_kenter_pa(hibernate_temp_page, 1404 inaddr & PMAP_PA_MASK, 1405 PROT_READ); 1406 1407 bcopy((caddr_t)hibernate_temp_page, 1408 (caddr_t)hibernate_copy_page, 1409 PAGE_SIZE); 1410 inaddr += hibernate_deflate(hib, 1411 temp_inaddr, 1412 &out_remaining); 1413 } else { 1414 inaddr += rle * PAGE_SIZE; 1415 if (inaddr > range_end) 1416 inaddr = range_end; 1417 } 1418 1419 } 1420 1421 if (out_remaining == 0) { 1422 /* Filled up the page */ 1423 nblocks = PAGE_SIZE / DEV_BSIZE; 1424 1425 if ((err = hib->io_func(hib->dev, 1426 blkctr + hib->image_offset, 1427 (vaddr_t)hibernate_io_page, 1428 PAGE_SIZE, HIB_W, hib->io_page))) { 1429 DPRINTF("hib write error %d\n", 1430 err); 1431 return (err); 1432 } 1433 1434 blkctr += nblocks; 1435 } 1436 } 1437 } 1438 1439 if (inaddr != range_end) { 1440 DPRINTF("deflate range ended prematurely\n"); 1441 return (EINVAL); 1442 } 1443 1444 /* 1445 * End of range. Round up to next secsize bytes 1446 * after finishing compress 1447 */ 1448 if (out_remaining == 0) 1449 out_remaining = PAGE_SIZE; 1450 1451 /* Finish compress */ 1452 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1453 hibernate_state->hib_stream.avail_in = 0; 1454 hibernate_state->hib_stream.next_out = 1455 (unsigned char *)hibernate_io_page + 1456 (PAGE_SIZE - out_remaining); 1457 1458 /* We have an extra output page available for finalize */ 1459 hibernate_state->hib_stream.avail_out = 1460 out_remaining + PAGE_SIZE; 1461 1462 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1463 Z_STREAM_END) { 1464 DPRINTF("deflate error in output stream: %d\n", err); 1465 return (err); 1466 } 1467 1468 out_remaining = hibernate_state->hib_stream.avail_out; 1469 1470 used = 2 * PAGE_SIZE - out_remaining; 1471 nblocks = used / DEV_BSIZE; 1472 1473 /* Round up to next block if needed */ 1474 if (used % DEV_BSIZE != 0) 1475 nblocks ++; 1476 1477 /* Write final block(s) for this chunk */ 1478 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1479 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1480 HIB_W, hib->io_page))) { 1481 DPRINTF("hib final write error %d\n", err); 1482 return (err); 1483 } 1484 1485 blkctr += nblocks; 1486 1487 chunks[i].compressed_size = (blkctr + hib->image_offset - 1488 chunks[i].offset) * DEV_BSIZE; 1489 } 1490 1491 hib->chunktable_offset = hib->image_offset + blkctr; 1492 return (0); 1493 } 1494 1495 /* 1496 * Reset the zlib stream state and allocate a new hiballoc area for either 1497 * inflate or deflate. This function is called once for each hibernate chunk. 1498 * Calling hiballoc_init multiple times is acceptable since the memory it is 1499 * provided is unmanaged memory (stolen). We use the memory provided to us 1500 * by the piglet allocated via the supplied hib. 1501 */ 1502 int 1503 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1504 { 1505 vaddr_t hibernate_zlib_start; 1506 size_t hibernate_zlib_size; 1507 char *pva = (char *)hib->piglet_va; 1508 struct hibernate_zlib_state *hibernate_state; 1509 1510 hibernate_state = 1511 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1512 1513 if (!deflate) 1514 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1515 1516 /* 1517 * See piglet layout information at the start of this file for 1518 * information on the zlib page assignments. 1519 */ 1520 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1521 hibernate_zlib_size = 80 * PAGE_SIZE; 1522 1523 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1524 memset(hibernate_state, 0, PAGE_SIZE); 1525 1526 /* Set up stream structure */ 1527 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1528 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1529 1530 /* Initialize the hiballoc arena for zlib allocs/frees */ 1531 hiballoc_init(&hibernate_state->hiballoc_arena, 1532 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1533 1534 if (deflate) { 1535 return deflateInit(&hibernate_state->hib_stream, 1536 Z_BEST_SPEED); 1537 } else 1538 return inflateInit(&hibernate_state->hib_stream); 1539 } 1540 1541 /* 1542 * Reads the hibernated memory image from disk, whose location and 1543 * size are recorded in hib. Begin by reading the persisted 1544 * chunk table, which records the original chunk placement location 1545 * and compressed size for each. Next, allocate a pig region of 1546 * sufficient size to hold the compressed image. Next, read the 1547 * chunks into the pig area (calling hibernate_read_chunks to do this), 1548 * and finally, if all of the above succeeds, clear the hibernate signature. 1549 * The function will then return to hibernate_resume, which will proceed 1550 * to unpack the pig image to the correct place in memory. 1551 */ 1552 int 1553 hibernate_read_image(union hibernate_info *hib) 1554 { 1555 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1556 paddr_t image_start, image_end, pig_start, pig_end; 1557 struct hibernate_disk_chunk *chunks; 1558 daddr_t blkctr; 1559 vaddr_t chunktable = (vaddr_t)NULL; 1560 paddr_t piglet_chunktable = hib->piglet_pa + 1561 HIBERNATE_CHUNK_SIZE; 1562 int i, status; 1563 1564 status = 0; 1565 pmap_activate(curproc); 1566 1567 /* Calculate total chunk table size in disk blocks */ 1568 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1569 1570 blkctr = hib->chunktable_offset; 1571 1572 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1573 &kp_none, &kd_nowait); 1574 1575 if (!chunktable) 1576 return (1); 1577 1578 /* Map chunktable pages */ 1579 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1580 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1581 PROT_READ | PROT_WRITE); 1582 pmap_update(pmap_kernel()); 1583 1584 /* Read the chunktable from disk into the piglet chunktable */ 1585 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1586 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1587 hibernate_block_io(hib, blkctr, MAXPHYS, 1588 chunktable + i, 0); 1589 1590 blkctr = hib->image_offset; 1591 compressed_size = 0; 1592 1593 chunks = (struct hibernate_disk_chunk *)chunktable; 1594 1595 for (i = 0; i < hib->chunk_ctr; i++) 1596 compressed_size += chunks[i].compressed_size; 1597 1598 disk_size = compressed_size; 1599 1600 printf("unhibernating @ block %lld length %lu bytes\n", 1601 hib->sig_offset - chunktable_size, 1602 compressed_size); 1603 1604 /* Allocate the pig area */ 1605 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1606 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1607 status = 1; 1608 goto unmap; 1609 } 1610 1611 pig_end = pig_start + pig_sz; 1612 1613 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1614 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1615 image_start = image_end - disk_size; 1616 1617 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1618 chunks); 1619 1620 /* Prepare the resume time pmap/page table */ 1621 hibernate_populate_resume_pt(hib, image_start, image_end); 1622 1623 unmap: 1624 /* Unmap chunktable pages */ 1625 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1626 pmap_update(pmap_kernel()); 1627 1628 return (status); 1629 } 1630 1631 /* 1632 * Read the hibernated memory chunks from disk (chunk information at this 1633 * point is stored in the piglet) into the pig area specified by 1634 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1635 * only chunk with overlap possibilities. 1636 */ 1637 int 1638 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1639 paddr_t pig_end, size_t image_compr_size, 1640 struct hibernate_disk_chunk *chunks) 1641 { 1642 paddr_t img_cur, piglet_base; 1643 daddr_t blkctr; 1644 size_t processed, compressed_size, read_size; 1645 int nchunks, nfchunks, num_io_pages; 1646 vaddr_t tempva, hibernate_fchunk_area; 1647 short *fchunks, i, j; 1648 1649 tempva = (vaddr_t)NULL; 1650 hibernate_fchunk_area = (vaddr_t)NULL; 1651 nfchunks = 0; 1652 piglet_base = hib->piglet_pa; 1653 global_pig_start = pig_start; 1654 1655 /* 1656 * These mappings go into the resuming kernel's page table, and are 1657 * used only during image read. They dissappear from existence 1658 * when the suspended kernel is unpacked on top of us. 1659 */ 1660 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1661 &kd_nowait); 1662 if (!tempva) 1663 return (1); 1664 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1665 &kp_none, &kd_nowait); 1666 if (!hibernate_fchunk_area) 1667 return (1); 1668 1669 /* Final output chunk ordering VA */ 1670 fchunks = (short *)hibernate_fchunk_area; 1671 1672 /* Map the chunk ordering region */ 1673 for(i = 0; i < 24 ; i++) 1674 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1675 piglet_base + ((4 + i) * PAGE_SIZE), 1676 PROT_READ | PROT_WRITE); 1677 pmap_update(pmap_kernel()); 1678 1679 nchunks = hib->chunk_ctr; 1680 1681 /* Initially start all chunks as unplaced */ 1682 for (i = 0; i < nchunks; i++) 1683 chunks[i].flags = 0; 1684 1685 /* 1686 * Search the list for chunks that are outside the pig area. These 1687 * can be placed first in the final output list. 1688 */ 1689 for (i = 0; i < nchunks; i++) { 1690 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1691 fchunks[nfchunks] = i; 1692 nfchunks++; 1693 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1694 } 1695 } 1696 1697 /* 1698 * Walk the ordering, place the chunks in ascending memory order. 1699 */ 1700 for (i = 0; i < nchunks; i++) { 1701 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1702 fchunks[nfchunks] = i; 1703 nfchunks++; 1704 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1705 } 1706 } 1707 1708 img_cur = pig_start; 1709 1710 for (i = 0; i < nfchunks; i++) { 1711 blkctr = chunks[fchunks[i]].offset; 1712 processed = 0; 1713 compressed_size = chunks[fchunks[i]].compressed_size; 1714 1715 while (processed < compressed_size) { 1716 if (compressed_size - processed >= MAXPHYS) 1717 read_size = MAXPHYS; 1718 else 1719 read_size = compressed_size - processed; 1720 1721 /* 1722 * We're reading read_size bytes, offset from the 1723 * start of a page by img_cur % PAGE_SIZE, so the 1724 * end will be read_size + (img_cur % PAGE_SIZE) 1725 * from the start of the first page. Round that 1726 * up to the next page size. 1727 */ 1728 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1729 + PAGE_SIZE - 1) / PAGE_SIZE; 1730 1731 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1732 1733 /* Map pages for this read */ 1734 for (j = 0; j < num_io_pages; j ++) 1735 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1736 img_cur + j * PAGE_SIZE, 1737 PROT_READ | PROT_WRITE); 1738 1739 pmap_update(pmap_kernel()); 1740 1741 hibernate_block_io(hib, blkctr, read_size, 1742 tempva + (img_cur & PAGE_MASK), 0); 1743 1744 blkctr += (read_size / DEV_BSIZE); 1745 1746 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1747 pmap_update(pmap_kernel()); 1748 1749 processed += read_size; 1750 img_cur += read_size; 1751 } 1752 } 1753 1754 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1755 pmap_update(pmap_kernel()); 1756 1757 return (0); 1758 } 1759 1760 /* 1761 * Hibernating a machine comprises the following operations: 1762 * 1. Calculating this machine's hibernate_info information 1763 * 2. Allocating a piglet and saving the piglet's physaddr 1764 * 3. Calculating the memory chunks 1765 * 4. Writing the compressed chunks to disk 1766 * 5. Writing the chunk table 1767 * 6. Writing the signature block (hibernate_info) 1768 * 1769 * On most architectures, the function calling hibernate_suspend would 1770 * then power off the machine using some MD-specific implementation. 1771 */ 1772 int 1773 hibernate_suspend(void) 1774 { 1775 union hibernate_info hib; 1776 u_long start, end; 1777 1778 /* 1779 * Calculate memory ranges, swap offsets, etc. 1780 * This also allocates a piglet whose physaddr is stored in 1781 * hib->piglet_pa and vaddr stored in hib->piglet_va 1782 */ 1783 if (get_hibernate_info(&hib, 1)) { 1784 DPRINTF("failed to obtain hibernate info\n"); 1785 return (1); 1786 } 1787 1788 /* Find a page-addressed region in swap [start,end] */ 1789 if (uvm_hibswap(hib.dev, &start, &end)) { 1790 printf("hibernate: cannot find any swap\n"); 1791 return (1); 1792 } 1793 1794 if (end - start < 1000) { 1795 printf("hibernate: insufficient swap (%lu is too small)\n", 1796 end - start); 1797 return (1); 1798 } 1799 1800 /* Calculate block offsets in swap */ 1801 hib.image_offset = ctod(start); 1802 1803 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1804 hib.image_offset, ctod(end) - ctod(start)); 1805 1806 pmap_activate(curproc); 1807 DPRINTF("hibernate: writing chunks\n"); 1808 if (hibernate_write_chunks(&hib)) { 1809 DPRINTF("hibernate_write_chunks failed\n"); 1810 return (1); 1811 } 1812 1813 DPRINTF("hibernate: writing chunktable\n"); 1814 if (hibernate_write_chunktable(&hib)) { 1815 DPRINTF("hibernate_write_chunktable failed\n"); 1816 return (1); 1817 } 1818 1819 DPRINTF("hibernate: writing signature\n"); 1820 if (hibernate_write_signature(&hib)) { 1821 DPRINTF("hibernate_write_signature failed\n"); 1822 return (1); 1823 } 1824 1825 /* Allow the disk to settle */ 1826 delay(500000); 1827 1828 /* 1829 * Give the device-specific I/O function a notification that we're 1830 * done, and that it can clean up or shutdown as needed. 1831 */ 1832 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1833 return (0); 1834 } 1835 1836 int 1837 hibernate_alloc(void) 1838 { 1839 KASSERT(global_piglet_va == 0); 1840 KASSERT(hibernate_temp_page == 0); 1841 1842 pmap_activate(curproc); 1843 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1844 PROT_READ | PROT_WRITE); 1845 1846 /* Allocate a piglet, store its addresses in the supplied globals */ 1847 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1848 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1849 return (ENOMEM); 1850 1851 /* 1852 * Allocate VA for the temp page. 1853 * 1854 * This will become part of the suspended kernel and will 1855 * be freed in hibernate_free, upon resume (or hibernate 1856 * failure) 1857 */ 1858 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1859 &kp_none, &kd_nowait); 1860 if (!hibernate_temp_page) { 1861 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1862 return (ENOMEM); 1863 } 1864 1865 return (0); 1866 } 1867 1868 /* 1869 * Free items allocated by hibernate_alloc() 1870 */ 1871 void 1872 hibernate_free(void) 1873 { 1874 pmap_activate(curproc); 1875 1876 if (global_piglet_va) 1877 uvm_pmr_free_piglet(global_piglet_va, 1878 4 * HIBERNATE_CHUNK_SIZE); 1879 1880 if (hibernate_temp_page) { 1881 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1882 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1883 &kv_any, &kp_none); 1884 } 1885 1886 global_piglet_va = 0; 1887 hibernate_temp_page = 0; 1888 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 1889 pmap_update(pmap_kernel()); 1890 } 1891