1 /* $OpenBSD: subr_hibernate.c,v 1.54 2013/04/09 18:58:03 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE unused 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hiber_info; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 71 72 /* 73 * Hib alloc enforced alignment. 74 */ 75 #define HIB_ALIGN 8 /* bytes alignment */ 76 77 /* 78 * sizeof builtin operation, but with alignment constraint. 79 */ 80 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 81 82 struct hiballoc_entry { 83 size_t hibe_use; 84 size_t hibe_space; 85 RB_ENTRY(hiballoc_entry) hibe_entry; 86 }; 87 88 /* 89 * Compare hiballoc entries based on the address they manage. 90 * 91 * Since the address is fixed, relative to struct hiballoc_entry, 92 * we just compare the hiballoc_entry pointers. 93 */ 94 static __inline int 95 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 96 { 97 return l < r ? -1 : (l > r); 98 } 99 100 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 101 102 /* 103 * Given a hiballoc entry, return the address it manages. 104 */ 105 static __inline void * 106 hib_entry_to_addr(struct hiballoc_entry *entry) 107 { 108 caddr_t addr; 109 110 addr = (caddr_t)entry; 111 addr += HIB_SIZEOF(struct hiballoc_entry); 112 return addr; 113 } 114 115 /* 116 * Given an address, find the hiballoc that corresponds. 117 */ 118 static __inline struct hiballoc_entry* 119 hib_addr_to_entry(void *addr_param) 120 { 121 caddr_t addr; 122 123 addr = (caddr_t)addr_param; 124 addr -= HIB_SIZEOF(struct hiballoc_entry); 125 return (struct hiballoc_entry*)addr; 126 } 127 128 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 129 130 /* 131 * Allocate memory from the arena. 132 * 133 * Returns NULL if no memory is available. 134 */ 135 void * 136 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 137 { 138 struct hiballoc_entry *entry, *new_entry; 139 size_t find_sz; 140 141 /* 142 * Enforce alignment of HIB_ALIGN bytes. 143 * 144 * Note that, because the entry is put in front of the allocation, 145 * 0-byte allocations are guaranteed a unique address. 146 */ 147 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 148 149 /* 150 * Find an entry with hibe_space >= find_sz. 151 * 152 * If the root node is not large enough, we switch to tree traversal. 153 * Because all entries are made at the bottom of the free space, 154 * traversal from the end has a slightly better chance of yielding 155 * a sufficiently large space. 156 */ 157 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 158 entry = RB_ROOT(&arena->hib_addrs); 159 if (entry != NULL && entry->hibe_space < find_sz) { 160 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 161 if (entry->hibe_space >= find_sz) 162 break; 163 } 164 } 165 166 /* 167 * Insufficient or too fragmented memory. 168 */ 169 if (entry == NULL) 170 return NULL; 171 172 /* 173 * Create new entry in allocated space. 174 */ 175 new_entry = (struct hiballoc_entry*)( 176 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 177 new_entry->hibe_space = entry->hibe_space - find_sz; 178 new_entry->hibe_use = alloc_sz; 179 180 /* 181 * Insert entry. 182 */ 183 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 184 panic("hib_alloc: insert failure"); 185 entry->hibe_space = 0; 186 187 /* Return address managed by entry. */ 188 return hib_entry_to_addr(new_entry); 189 } 190 191 /* 192 * Free a pointer previously allocated from this arena. 193 * 194 * If addr is NULL, this will be silently accepted. 195 */ 196 void 197 hib_free(struct hiballoc_arena *arena, void *addr) 198 { 199 struct hiballoc_entry *entry, *prev; 200 201 if (addr == NULL) 202 return; 203 204 /* 205 * Derive entry from addr and check it is really in this arena. 206 */ 207 entry = hib_addr_to_entry(addr); 208 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 209 panic("hib_free: freed item %p not in hib arena", addr); 210 211 /* 212 * Give the space in entry to its predecessor. 213 * 214 * If entry has no predecessor, change its used space into free space 215 * instead. 216 */ 217 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 218 if (prev != NULL && 219 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 220 prev->hibe_use + prev->hibe_space) == entry) { 221 /* Merge entry. */ 222 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 223 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 224 entry->hibe_use + entry->hibe_space; 225 } else { 226 /* Flip used memory to free space. */ 227 entry->hibe_space += entry->hibe_use; 228 entry->hibe_use = 0; 229 } 230 } 231 232 /* 233 * Initialize hiballoc. 234 * 235 * The allocator will manage memmory at ptr, which is len bytes. 236 */ 237 int 238 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 239 { 240 struct hiballoc_entry *entry; 241 caddr_t ptr; 242 size_t len; 243 244 RB_INIT(&arena->hib_addrs); 245 246 /* 247 * Hib allocator enforces HIB_ALIGN alignment. 248 * Fixup ptr and len. 249 */ 250 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 251 len = p_len - ((size_t)ptr - (size_t)p_ptr); 252 len &= ~((size_t)HIB_ALIGN - 1); 253 254 /* 255 * Insufficient memory to be able to allocate and also do bookkeeping. 256 */ 257 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 258 return ENOMEM; 259 260 /* 261 * Create entry describing space. 262 */ 263 entry = (struct hiballoc_entry*)ptr; 264 entry->hibe_use = 0; 265 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 266 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 267 268 return 0; 269 } 270 271 /* 272 * Zero all free memory. 273 */ 274 void 275 uvm_pmr_zero_everything(void) 276 { 277 struct uvm_pmemrange *pmr; 278 struct vm_page *pg; 279 int i; 280 281 uvm_lock_fpageq(); 282 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 283 /* Zero single pages. */ 284 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 285 != NULL) { 286 uvm_pmr_remove(pmr, pg); 287 uvm_pagezero(pg); 288 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 289 uvmexp.zeropages++; 290 uvm_pmr_insert(pmr, pg, 0); 291 } 292 293 /* Zero multi page ranges. */ 294 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 pg--; /* Size tree always has second page. */ 297 uvm_pmr_remove(pmr, pg); 298 for (i = 0; i < pg->fpgsz; i++) { 299 uvm_pagezero(&pg[i]); 300 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 301 uvmexp.zeropages++; 302 } 303 uvm_pmr_insert(pmr, pg, 0); 304 } 305 } 306 uvm_unlock_fpageq(); 307 } 308 309 /* 310 * Mark all memory as dirty. 311 * 312 * Used to inform the system that the clean memory isn't clean for some 313 * reason, for example because we just came back from hibernate. 314 */ 315 void 316 uvm_pmr_dirty_everything(void) 317 { 318 struct uvm_pmemrange *pmr; 319 struct vm_page *pg; 320 int i; 321 322 uvm_lock_fpageq(); 323 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 324 /* Dirty single pages. */ 325 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 326 != NULL) { 327 uvm_pmr_remove(pmr, pg); 328 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 329 uvm_pmr_insert(pmr, pg, 0); 330 } 331 332 /* Dirty multi page ranges. */ 333 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 334 != NULL) { 335 pg--; /* Size tree always has second page. */ 336 uvm_pmr_remove(pmr, pg); 337 for (i = 0; i < pg->fpgsz; i++) 338 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 } 342 343 uvmexp.zeropages = 0; 344 uvm_unlock_fpageq(); 345 } 346 347 /* 348 * Allocate the highest address that can hold sz. 349 * 350 * sz in bytes. 351 */ 352 int 353 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 354 { 355 struct uvm_pmemrange *pmr; 356 struct vm_page *pig_pg, *pg; 357 358 /* 359 * Convert sz to pages, since that is what pmemrange uses internally. 360 */ 361 sz = atop(round_page(sz)); 362 363 uvm_lock_fpageq(); 364 365 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 366 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 367 if (pig_pg->fpgsz >= sz) { 368 goto found; 369 } 370 } 371 } 372 373 /* 374 * Allocation failure. 375 */ 376 uvm_unlock_fpageq(); 377 return ENOMEM; 378 379 found: 380 /* Remove page from freelist. */ 381 uvm_pmr_remove_size(pmr, pig_pg); 382 pig_pg->fpgsz -= sz; 383 pg = pig_pg + pig_pg->fpgsz; 384 if (pig_pg->fpgsz == 0) 385 uvm_pmr_remove_addr(pmr, pig_pg); 386 else 387 uvm_pmr_insert_size(pmr, pig_pg); 388 389 uvmexp.free -= sz; 390 *addr = VM_PAGE_TO_PHYS(pg); 391 392 /* 393 * Update pg flags. 394 * 395 * Note that we trash the sz argument now. 396 */ 397 while (sz > 0) { 398 KASSERT(pg->pg_flags & PQ_FREE); 399 400 atomic_clearbits_int(&pg->pg_flags, 401 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 402 403 if (pg->pg_flags & PG_ZERO) 404 uvmexp.zeropages -= sz; 405 atomic_clearbits_int(&pg->pg_flags, 406 PG_ZERO|PQ_FREE); 407 408 pg->uobject = NULL; 409 pg->uanon = NULL; 410 pg->pg_version++; 411 412 /* 413 * Next. 414 */ 415 pg++; 416 sz--; 417 } 418 419 /* Return. */ 420 uvm_unlock_fpageq(); 421 return 0; 422 } 423 424 /* 425 * Allocate a piglet area. 426 * 427 * This is as low as possible. 428 * Piglets are aligned. 429 * 430 * sz and align in bytes. 431 * 432 * The call will sleep for the pagedaemon to attempt to free memory. 433 * The pagedaemon may decide its not possible to free enough memory, causing 434 * the allocation to fail. 435 */ 436 int 437 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 438 { 439 paddr_t pg_addr, piglet_addr; 440 struct uvm_pmemrange *pmr; 441 struct vm_page *pig_pg, *pg; 442 struct pglist pageq; 443 int pdaemon_woken; 444 vaddr_t piglet_va; 445 446 KASSERT((align & (align - 1)) == 0); 447 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 448 449 /* 450 * Fixup arguments: align must be at least PAGE_SIZE, 451 * sz will be converted to pagecount, since that is what 452 * pmemrange uses internally. 453 */ 454 if (align < PAGE_SIZE) 455 align = PAGE_SIZE; 456 sz = round_page(sz); 457 458 uvm_lock_fpageq(); 459 460 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 461 pmr_use) { 462 retry: 463 /* 464 * Search for a range with enough space. 465 * Use the address tree, to ensure the range is as low as 466 * possible. 467 */ 468 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 469 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 470 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 471 472 if (atop(pg_addr) + pig_pg->fpgsz >= 473 atop(piglet_addr) + atop(sz)) 474 goto found; 475 } 476 } 477 478 /* 479 * Try to coerce the pagedaemon into freeing memory 480 * for the piglet. 481 * 482 * pdaemon_woken is set to prevent the code from 483 * falling into an endless loop. 484 */ 485 if (!pdaemon_woken) { 486 pdaemon_woken = 1; 487 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 488 sz, UVM_PLA_FAILOK) == 0) 489 goto retry; 490 } 491 492 /* Return failure. */ 493 uvm_unlock_fpageq(); 494 return ENOMEM; 495 496 found: 497 /* 498 * Extract piglet from pigpen. 499 */ 500 TAILQ_INIT(&pageq); 501 uvm_pmr_extract_range(pmr, pig_pg, 502 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 503 504 *pa = piglet_addr; 505 uvmexp.free -= atop(sz); 506 507 /* 508 * Update pg flags. 509 * 510 * Note that we trash the sz argument now. 511 */ 512 TAILQ_FOREACH(pg, &pageq, pageq) { 513 KASSERT(pg->pg_flags & PQ_FREE); 514 515 atomic_clearbits_int(&pg->pg_flags, 516 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 517 518 if (pg->pg_flags & PG_ZERO) 519 uvmexp.zeropages--; 520 atomic_clearbits_int(&pg->pg_flags, 521 PG_ZERO|PQ_FREE); 522 523 pg->uobject = NULL; 524 pg->uanon = NULL; 525 pg->pg_version++; 526 } 527 528 uvm_unlock_fpageq(); 529 530 /* 531 * Now allocate a va. 532 * Use direct mappings for the pages. 533 */ 534 535 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 536 if (!piglet_va) { 537 uvm_pglistfree(&pageq); 538 return ENOMEM; 539 } 540 541 /* 542 * Map piglet to va. 543 */ 544 TAILQ_FOREACH(pg, &pageq, pageq) { 545 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 546 piglet_va += PAGE_SIZE; 547 } 548 pmap_update(pmap_kernel()); 549 550 return 0; 551 } 552 553 /* 554 * Free a piglet area. 555 */ 556 void 557 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 558 { 559 paddr_t pa; 560 struct vm_page *pg; 561 562 /* 563 * Fix parameters. 564 */ 565 sz = round_page(sz); 566 567 /* 568 * Find the first page in piglet. 569 * Since piglets are contiguous, the first pg is all we need. 570 */ 571 if (!pmap_extract(pmap_kernel(), va, &pa)) 572 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 573 pg = PHYS_TO_VM_PAGE(pa); 574 if (pg == NULL) 575 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 576 577 /* 578 * Unmap. 579 */ 580 pmap_kremove(va, sz); 581 pmap_update(pmap_kernel()); 582 583 /* 584 * Free the physical and virtual memory. 585 */ 586 uvm_pmr_freepages(pg, atop(sz)); 587 km_free((void *)va, sz, &kv_any, &kp_none); 588 } 589 590 /* 591 * Physmem RLE compression support. 592 * 593 * Given a physical page address, return the number of pages starting at the 594 * address that are free. Clamps to the number of pages in 595 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 596 */ 597 int 598 uvm_page_rle(paddr_t addr) 599 { 600 struct vm_page *pg, *pg_end; 601 struct vm_physseg *vmp; 602 int pseg_idx, off_idx; 603 604 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 605 if (pseg_idx == -1) 606 return 0; 607 608 vmp = &vm_physmem[pseg_idx]; 609 pg = &vmp->pgs[off_idx]; 610 if (!(pg->pg_flags & PQ_FREE)) 611 return 0; 612 613 /* 614 * Search for the first non-free page after pg. 615 * Note that the page may not be the first page in a free pmemrange, 616 * therefore pg->fpgsz cannot be used. 617 */ 618 for (pg_end = pg; pg_end <= vmp->lastpg && 619 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 620 ; 621 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 622 } 623 624 /* 625 * Fills out the hibernate_info union pointed to by hiber_info 626 * with information about this machine (swap signature block 627 * offsets, number of memory ranges, kernel in use, etc) 628 */ 629 int 630 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 631 { 632 int chunktable_size; 633 struct disklabel dl; 634 char err_string[128], *dl_ret; 635 636 /* Determine I/O function to use */ 637 hiber_info->io_func = get_hibernate_io_function(); 638 if (hiber_info->io_func == NULL) 639 return (1); 640 641 /* Calculate hibernate device */ 642 hiber_info->device = swdevt[0].sw_dev; 643 644 /* Read disklabel (used to calculate signature and image offsets) */ 645 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 646 647 if (dl_ret) { 648 printf("Hibernate error reading disklabel: %s\n", dl_ret); 649 return (1); 650 } 651 652 /* Make sure we have a swap partition. */ 653 if (dl.d_partitions[1].p_fstype != FS_SWAP || 654 dl.d_partitions[1].p_size == 0) 655 return (1); 656 657 hiber_info->secsize = dl.d_secsize; 658 659 /* Make sure the signature can fit in one block */ 660 if(sizeof(union hibernate_info) > hiber_info->secsize) 661 return (1); 662 663 /* Magic number */ 664 hiber_info->magic = HIBERNATE_MAGIC; 665 666 /* Calculate swap offset from start of disk */ 667 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 668 669 /* Calculate signature block location */ 670 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 671 dl.d_partitions[1].p_size - 672 sizeof(union hibernate_info)/hiber_info->secsize; 673 674 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 675 676 /* Stash kernel version information */ 677 bzero(&hiber_info->kernel_version, 128); 678 bcopy(version, &hiber_info->kernel_version, 679 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 680 681 if (suspend) { 682 /* Allocate piglet region */ 683 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 684 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 685 HIBERNATE_CHUNK_SIZE)) { 686 printf("Hibernate failed to allocate the piglet\n"); 687 return (1); 688 } 689 hiber_info->io_page = (void *)hiber_info->piglet_va; 690 691 /* 692 * Initialization of the hibernate IO function for drivers 693 * that need to do prep work (such as allocating memory or 694 * setting up data structures that cannot safely be done 695 * during suspend without causing side effects). There is 696 * a matching HIB_DONE call performed after the write is 697 * completed. 698 */ 699 if (hiber_info->io_func(hiber_info->device, 0, 700 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 701 goto fail; 702 703 } else { 704 /* 705 * Resuming kernels use a regular I/O page since we won't 706 * have access to the suspended kernel's piglet VA at this 707 * point. No need to free this I/O page as it will vanish 708 * as part of the resume. 709 */ 710 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 711 if (!hiber_info->io_page) 712 return (1); 713 } 714 715 716 if (get_hibernate_info_md(hiber_info)) 717 goto fail; 718 719 /* Calculate memory image location in swap */ 720 hiber_info->image_offset = dl.d_partitions[1].p_offset + 721 dl.d_partitions[1].p_size - 722 (hiber_info->image_size / hiber_info->secsize) - 723 sizeof(union hibernate_info)/hiber_info->secsize - 724 chunktable_size; 725 726 return (0); 727 fail: 728 if (suspend) 729 uvm_pmr_free_piglet(hiber_info->piglet_va, 730 HIBERNATE_CHUNK_SIZE * 3); 731 732 return (1); 733 } 734 735 /* 736 * Allocate nitems*size bytes from the hiballoc area presently in use 737 */ 738 void * 739 hibernate_zlib_alloc(void *unused, int nitems, int size) 740 { 741 struct hibernate_zlib_state *hibernate_state; 742 743 hibernate_state = 744 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 745 746 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 747 } 748 749 /* 750 * Free the memory pointed to by addr in the hiballoc area presently in 751 * use 752 */ 753 void 754 hibernate_zlib_free(void *unused, void *addr) 755 { 756 struct hibernate_zlib_state *hibernate_state; 757 758 hibernate_state = 759 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 760 761 hib_free(&hibernate_state->hiballoc_arena, addr); 762 } 763 764 /* 765 * Gets the next RLE value from the image stream 766 */ 767 int 768 hibernate_get_next_rle(void) 769 { 770 int rle, i; 771 struct hibernate_zlib_state *hibernate_state; 772 773 hibernate_state = 774 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 775 776 /* Read RLE code */ 777 hibernate_state->hib_stream.next_out = (char *)&rle; 778 hibernate_state->hib_stream.avail_out = sizeof(rle); 779 780 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 781 if (i != Z_OK && i != Z_STREAM_END) { 782 /* 783 * XXX - this will likely reboot/hang most machines 784 * since the console output buffer will be unmapped, 785 * but there's not much else we can do here. 786 */ 787 panic("inflate rle error"); 788 } 789 790 /* Sanity check what RLE value we got */ 791 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 792 panic("invalid RLE code"); 793 794 if (i == Z_STREAM_END) 795 rle = -1; 796 797 return rle; 798 } 799 800 /* 801 * Inflate next page of data from the image stream 802 */ 803 int 804 hibernate_inflate_page(void) 805 { 806 struct hibernate_zlib_state *hibernate_state; 807 int i; 808 809 hibernate_state = 810 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 811 812 /* Set up the stream for inflate */ 813 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 814 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 815 816 /* Process next block of data */ 817 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 818 if (i != Z_OK && i != Z_STREAM_END) { 819 /* 820 * XXX - this will likely reboot/hang most machines 821 * since the console output buffer will be unmapped, 822 * but there's not much else we can do here. 823 */ 824 panic("inflate error"); 825 } 826 827 /* We should always have extracted a full page ... */ 828 if (hibernate_state->hib_stream.avail_out != 0) { 829 /* 830 * XXX - this will likely reboot/hang most machines 831 * since the console output buffer will be unmapped, 832 * but there's not much else we can do here. 833 */ 834 panic("incomplete page"); 835 } 836 837 return (i == Z_STREAM_END); 838 } 839 840 /* 841 * Inflate size bytes from src into dest, skipping any pages in 842 * [src..dest] that are special (see hibernate_inflate_skip) 843 * 844 * This function executes while using the resume-time stack 845 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 846 * will likely hang or reset the machine since the console output buffer 847 * will be unmapped. 848 */ 849 void 850 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 851 paddr_t src, size_t size) 852 { 853 int end_stream = 0 ; 854 struct hibernate_zlib_state *hibernate_state; 855 856 hibernate_state = 857 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 858 859 hibernate_state->hib_stream.next_in = (char *)src; 860 hibernate_state->hib_stream.avail_in = size; 861 862 do { 863 /* Flush cache and TLB */ 864 hibernate_flush(); 865 866 /* 867 * Is this a special page? If yes, redirect the 868 * inflate output to a scratch page (eg, discard it) 869 */ 870 if (hibernate_inflate_skip(hiber_info, dest)) { 871 hibernate_enter_resume_mapping( 872 HIBERNATE_INFLATE_PAGE, 873 HIBERNATE_INFLATE_PAGE, 0); 874 } else { 875 hibernate_enter_resume_mapping( 876 HIBERNATE_INFLATE_PAGE, dest, 0); 877 } 878 879 hibernate_flush(); 880 end_stream = hibernate_inflate_page(); 881 882 dest += PAGE_SIZE; 883 } while (!end_stream); 884 } 885 886 /* 887 * deflate from src into the I/O page, up to 'remaining' bytes 888 * 889 * Returns number of input bytes consumed, and may reset 890 * the 'remaining' parameter if not all the output space was consumed 891 * (this information is needed to know how much to write to disk 892 */ 893 size_t 894 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 895 size_t *remaining) 896 { 897 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 898 struct hibernate_zlib_state *hibernate_state; 899 900 hibernate_state = 901 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 902 903 /* Set up the stream for deflate */ 904 hibernate_state->hib_stream.next_in = (caddr_t)src; 905 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 906 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 907 (PAGE_SIZE - *remaining); 908 hibernate_state->hib_stream.avail_out = *remaining; 909 910 /* Process next block of data */ 911 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 912 panic("hibernate zlib deflate error"); 913 914 /* Update pointers and return number of bytes consumed */ 915 *remaining = hibernate_state->hib_stream.avail_out; 916 return (PAGE_SIZE - (src & PAGE_MASK)) - 917 hibernate_state->hib_stream.avail_in; 918 } 919 920 /* 921 * Write the hibernation information specified in hiber_info 922 * to the location in swap previously calculated (last block of 923 * swap), called the "signature block". 924 */ 925 int 926 hibernate_write_signature(union hibernate_info *hiber_info) 927 { 928 /* Write hibernate info to disk */ 929 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 930 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 931 hiber_info->io_page)); 932 } 933 934 /* 935 * Write the memory chunk table to the area in swap immediately 936 * preceding the signature block. The chunk table is stored 937 * in the piglet when this function is called. 938 */ 939 int 940 hibernate_write_chunktable(union hibernate_info *hiber_info) 941 { 942 struct hibernate_disk_chunk *chunks; 943 vaddr_t hibernate_chunk_table_start; 944 size_t hibernate_chunk_table_size; 945 daddr_t chunkbase; 946 int i; 947 948 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 949 950 chunkbase = hiber_info->sig_offset - 951 (hibernate_chunk_table_size / hiber_info->secsize); 952 953 hibernate_chunk_table_start = hiber_info->piglet_va + 954 HIBERNATE_CHUNK_SIZE; 955 956 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 957 HIBERNATE_CHUNK_SIZE); 958 959 /* Write chunk table */ 960 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 961 if (hiber_info->io_func(hiber_info->device, 962 chunkbase + (i/hiber_info->secsize), 963 (vaddr_t)(hibernate_chunk_table_start + i), 964 MAXPHYS, HIB_W, hiber_info->io_page)) 965 return (1); 966 } 967 968 return (0); 969 } 970 971 /* 972 * Write an empty hiber_info to the swap signature block, which is 973 * guaranteed to not match any valid hiber_info. 974 */ 975 int 976 hibernate_clear_signature(void) 977 { 978 union hibernate_info blank_hiber_info; 979 union hibernate_info hiber_info; 980 981 /* Zero out a blank hiber_info */ 982 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 983 984 /* Get the signature block location */ 985 if (get_hibernate_info(&hiber_info, 0)) 986 return (1); 987 988 /* Write (zeroed) hibernate info to disk */ 989 #ifdef HIBERNATE_DEBUG 990 printf("clearing hibernate signature block location: %lld\n", 991 hiber_info.sig_offset - hiber_info.swap_offset); 992 #endif /* HIBERNATE_DEBUG */ 993 if (hibernate_block_io(&hiber_info, 994 hiber_info.sig_offset - hiber_info.swap_offset, 995 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 996 printf("Warning: could not clear hibernate signature\n"); 997 998 return (0); 999 } 1000 1001 /* 1002 * Check chunk range overlap when calculating whether or not to copy a 1003 * compressed chunk to the piglet area before decompressing. 1004 * 1005 * returns zero if the ranges do not overlap, non-zero otherwise. 1006 */ 1007 int 1008 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1009 { 1010 /* case A : end of r1 overlaps start of r2 */ 1011 if (r1s < r2s && r1e > r2s) 1012 return (1); 1013 1014 /* case B : r1 entirely inside r2 */ 1015 if (r1s >= r2s && r1e <= r2e) 1016 return (1); 1017 1018 /* case C : r2 entirely inside r1 */ 1019 if (r2s >= r1s && r2e <= r1e) 1020 return (1); 1021 1022 /* case D : end of r2 overlaps start of r1 */ 1023 if (r2s < r1s && r2e > r1s) 1024 return (1); 1025 1026 return (0); 1027 } 1028 1029 /* 1030 * Compare two hibernate_infos to determine if they are the same (eg, 1031 * we should be performing a hibernate resume on this machine. 1032 * Not all fields are checked - just enough to verify that the machine 1033 * has the same memory configuration and kernel as the one that 1034 * wrote the signature previously. 1035 */ 1036 int 1037 hibernate_compare_signature(union hibernate_info *mine, 1038 union hibernate_info *disk) 1039 { 1040 u_int i; 1041 1042 if (mine->nranges != disk->nranges) { 1043 #ifdef HIBERNATE_DEBUG 1044 printf("hibernate memory range count mismatch\n"); 1045 #endif 1046 return (1); 1047 } 1048 1049 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1050 #ifdef HIBERNATE_DEBUG 1051 printf("hibernate kernel version mismatch\n"); 1052 #endif 1053 return (1); 1054 } 1055 1056 for (i = 0; i < mine->nranges; i++) { 1057 if ((mine->ranges[i].base != disk->ranges[i].base) || 1058 (mine->ranges[i].end != disk->ranges[i].end) ) { 1059 #ifdef HIBERNATE_DEBUG 1060 printf("hib range %d mismatch [%p-%p != %p-%p]\n", 1061 i, mine->ranges[i].base, mine->ranges[i].end, 1062 disk->ranges[i].base, disk->ranges[i].end); 1063 #endif 1064 return (1); 1065 } 1066 } 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * Transfers xfer_size bytes between the hibernate device specified in 1073 * hib_info at offset blkctr and the vaddr specified at dest. 1074 * 1075 * Separate offsets and pages are used to handle misaligned reads (reads 1076 * that span a page boundary). 1077 * 1078 * blkctr specifies a relative offset (relative to the start of swap), 1079 * not an absolute disk offset 1080 * 1081 */ 1082 int 1083 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1084 size_t xfer_size, vaddr_t dest, int iswrite) 1085 { 1086 struct buf *bp; 1087 struct bdevsw *bdsw; 1088 int error; 1089 1090 bp = geteblk(xfer_size); 1091 bdsw = &bdevsw[major(hib_info->device)]; 1092 1093 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1094 if (error) { 1095 printf("hibernate_block_io open failed\n"); 1096 return (1); 1097 } 1098 1099 if (iswrite) 1100 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1101 1102 bp->b_bcount = xfer_size; 1103 bp->b_blkno = blkctr; 1104 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1105 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1106 bp->b_dev = hib_info->device; 1107 bp->b_cylinder = 0; 1108 (*bdsw->d_strategy)(bp); 1109 1110 error = biowait(bp); 1111 if (error) { 1112 printf("hibernate_block_io biowait failed %d\n", error); 1113 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1114 curproc); 1115 if (error) 1116 printf("hibernate_block_io error close failed\n"); 1117 return (1); 1118 } 1119 1120 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1121 if (error) { 1122 printf("hibernate_block_io close failed\n"); 1123 return (1); 1124 } 1125 1126 if (!iswrite) 1127 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1128 1129 bp->b_flags |= B_INVAL; 1130 brelse(bp); 1131 1132 return (0); 1133 } 1134 1135 /* 1136 * Reads the signature block from swap, checks against the current machine's 1137 * information. If the information matches, perform a resume by reading the 1138 * saved image into the pig area, and unpacking. 1139 */ 1140 void 1141 hibernate_resume(void) 1142 { 1143 union hibernate_info hiber_info; 1144 int s; 1145 1146 /* Get current running machine's hibernate info */ 1147 bzero(&hiber_info, sizeof(hiber_info)); 1148 if (get_hibernate_info(&hiber_info, 0)) 1149 return; 1150 1151 /* Read hibernate info from disk */ 1152 s = splbio(); 1153 1154 #ifdef HIBERNATE_DEBUG 1155 printf("reading hibernate signature block location: %lld\n", 1156 hiber_info.sig_offset - hiber_info.swap_offset); 1157 #endif /* HIBERNATE_DEBUG */ 1158 1159 if (hibernate_block_io(&hiber_info, 1160 hiber_info.sig_offset - hiber_info.swap_offset, 1161 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1162 panic("error in hibernate read"); 1163 1164 /* Check magic number */ 1165 if (disk_hiber_info.magic != HIBERNATE_MAGIC) { 1166 splx(s); 1167 return; 1168 } 1169 1170 /* 1171 * We (possibly) found a hibernate signature. Clear signature first, 1172 * to prevent accidental resume or endless resume cycles later. 1173 */ 1174 if (hibernate_clear_signature()) { 1175 splx(s); 1176 return; 1177 } 1178 1179 /* 1180 * If on-disk and in-memory hibernate signatures match, 1181 * this means we should do a resume from hibernate. 1182 */ 1183 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1184 splx(s); 1185 return; 1186 } 1187 1188 printf("Unhibernating...\n"); 1189 1190 /* Read the image from disk into the image (pig) area */ 1191 if (hibernate_read_image(&disk_hiber_info)) 1192 goto fail; 1193 1194 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1195 goto fail; 1196 1197 (void) splhigh(); 1198 disable_intr(); 1199 cold = 1; 1200 1201 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1202 cold = 0; 1203 enable_intr(); 1204 goto fail; 1205 } 1206 1207 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1208 VM_PROT_ALL); 1209 pmap_activate(curproc); 1210 1211 /* Switch stacks */ 1212 hibernate_switch_stack_machdep(); 1213 1214 /* 1215 * Point of no return. Once we pass this point, only kernel code can 1216 * be accessed. No global variables or other kernel data structures 1217 * are guaranteed to be coherent after unpack starts. 1218 * 1219 * The image is now in high memory (pig area), we unpack from the pig 1220 * to the correct location in memory. We'll eventually end up copying 1221 * on top of ourself, but we are assured the kernel code here is the 1222 * same between the hibernated and resuming kernel, and we are running 1223 * on our own stack, so the overwrite is ok. 1224 */ 1225 hibernate_unpack_image(&disk_hiber_info); 1226 1227 /* 1228 * Resume the loaded kernel by jumping to the MD resume vector. 1229 * We won't be returning from this call. 1230 */ 1231 hibernate_resume_machdep(); 1232 1233 fail: 1234 splx(s); 1235 printf("Unable to resume hibernated image\n"); 1236 } 1237 1238 /* 1239 * Unpack image from pig area to original location by looping through the 1240 * list of output chunks in the order they should be restored (fchunks). 1241 */ 1242 void 1243 hibernate_unpack_image(union hibernate_info *hiber_info) 1244 { 1245 struct hibernate_disk_chunk *chunks; 1246 union hibernate_info local_hiber_info; 1247 paddr_t image_cur = global_pig_start; 1248 short i, *fchunks; 1249 char *pva = (char *)hiber_info->piglet_va; 1250 struct hibernate_zlib_state *hibernate_state; 1251 1252 hibernate_state = 1253 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1254 1255 /* Mask off based on arch-specific piglet page size */ 1256 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1257 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1258 1259 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1260 1261 /* Can't use hiber_info that's passed in after this point */ 1262 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1263 1264 hibernate_activate_resume_pt_machdep(); 1265 1266 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1267 /* Reset zlib for inflate */ 1268 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1269 panic("hibernate failed to reset zlib for inflate"); 1270 1271 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1272 image_cur); 1273 1274 image_cur += chunks[fchunks[i]].compressed_size; 1275 1276 } 1277 } 1278 1279 /* 1280 * Bounce a compressed image chunk to the piglet, entering mappings for the 1281 * copied pages as needed 1282 */ 1283 void 1284 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1285 { 1286 size_t ct, ofs; 1287 paddr_t src = img_cur; 1288 vaddr_t dest = piglet; 1289 1290 /* Copy first partial page */ 1291 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1292 ofs = (src & PAGE_MASK); 1293 1294 if (ct < PAGE_SIZE) { 1295 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1296 (src - ofs), 0); 1297 hibernate_flush(); 1298 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1299 src += ct; 1300 dest += ct; 1301 } 1302 1303 /* Copy remaining pages */ 1304 while (src < size + img_cur) { 1305 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1306 hibernate_flush(); 1307 ct = PAGE_SIZE; 1308 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1309 hibernate_flush(); 1310 src += ct; 1311 dest += ct; 1312 } 1313 } 1314 1315 /* 1316 * Process a chunk by bouncing it to the piglet, followed by unpacking 1317 */ 1318 void 1319 hibernate_process_chunk(union hibernate_info *hiber_info, 1320 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1321 { 1322 char *pva = (char *)hiber_info->piglet_va; 1323 1324 hibernate_copy_chunk_to_piglet(img_cur, 1325 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1326 1327 hibernate_inflate_region(hiber_info, chunk->base, 1328 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1329 chunk->compressed_size); 1330 } 1331 1332 /* 1333 * Write a compressed version of this machine's memory to disk, at the 1334 * precalculated swap offset: 1335 * 1336 * end of swap - signature block size - chunk table size - memory size 1337 * 1338 * The function begins by looping through each phys mem range, cutting each 1339 * one into MD sized chunks. These chunks are then compressed individually 1340 * and written out to disk, in phys mem order. Some chunks might compress 1341 * more than others, and for this reason, each chunk's size is recorded 1342 * in the chunk table, which is written to disk after the image has 1343 * properly been compressed and written (in hibernate_write_chunktable). 1344 * 1345 * When this function is called, the machine is nearly suspended - most 1346 * devices are quiesced/suspended, interrupts are off, and cold has 1347 * been set. This means that there can be no side effects once the 1348 * write has started, and the write function itself can also have no 1349 * side effects. This also means no printfs are permitted (since printf 1350 * has side effects.) 1351 */ 1352 int 1353 hibernate_write_chunks(union hibernate_info *hiber_info) 1354 { 1355 paddr_t range_base, range_end, inaddr, temp_inaddr; 1356 size_t nblocks, out_remaining, used; 1357 struct hibernate_disk_chunk *chunks; 1358 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1359 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1360 int i; 1361 struct hibernate_zlib_state *hibernate_state; 1362 1363 hibernate_state = 1364 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1365 1366 hiber_info->chunk_ctr = 0; 1367 1368 /* 1369 * Allocate VA for the temp and copy page. 1370 * 1371 * These will become part of the suspended kernel and will 1372 * be freed in hibernate_free, upon resume. 1373 */ 1374 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1375 &kp_none, &kd_nowait); 1376 if (!hibernate_temp_page) 1377 return (1); 1378 1379 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1380 &kp_none, &kd_nowait); 1381 if (!hibernate_copy_page) 1382 return (1); 1383 1384 pmap_kenter_pa(hibernate_copy_page, 1385 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1386 1387 /* XXX - not needed on all archs */ 1388 pmap_activate(curproc); 1389 1390 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1391 HIBERNATE_CHUNK_SIZE); 1392 1393 /* Calculate the chunk regions */ 1394 for (i = 0; i < hiber_info->nranges; i++) { 1395 range_base = hiber_info->ranges[i].base; 1396 range_end = hiber_info->ranges[i].end; 1397 1398 inaddr = range_base; 1399 1400 while (inaddr < range_end) { 1401 chunks[hiber_info->chunk_ctr].base = inaddr; 1402 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1403 chunks[hiber_info->chunk_ctr].end = inaddr + 1404 HIBERNATE_CHUNK_SIZE; 1405 else 1406 chunks[hiber_info->chunk_ctr].end = range_end; 1407 1408 inaddr += HIBERNATE_CHUNK_SIZE; 1409 hiber_info->chunk_ctr ++; 1410 } 1411 } 1412 1413 /* Compress and write the chunks in the chunktable */ 1414 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1415 range_base = chunks[i].base; 1416 range_end = chunks[i].end; 1417 1418 chunks[i].offset = blkctr; 1419 1420 /* Reset zlib for deflate */ 1421 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1422 return (1); 1423 1424 inaddr = range_base; 1425 1426 /* 1427 * For each range, loop through its phys mem region 1428 * and write out the chunks (the last chunk might be 1429 * smaller than the chunk size). 1430 */ 1431 while (inaddr < range_end) { 1432 out_remaining = PAGE_SIZE; 1433 while (out_remaining > 0 && inaddr < range_end) { 1434 1435 /* 1436 * Adjust for regions that are not evenly 1437 * divisible by PAGE_SIZE or overflowed 1438 * pages from the previous iteration. 1439 */ 1440 temp_inaddr = (inaddr & PAGE_MASK) + 1441 hibernate_copy_page; 1442 1443 /* Deflate from temp_inaddr to IO page */ 1444 if (inaddr != range_end) { 1445 pmap_kenter_pa(hibernate_temp_page, 1446 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1447 1448 /* XXX - not needed on all archs */ 1449 pmap_activate(curproc); 1450 1451 bcopy((caddr_t)hibernate_temp_page, 1452 (caddr_t)hibernate_copy_page, 1453 PAGE_SIZE); 1454 inaddr += hibernate_deflate(hiber_info, 1455 temp_inaddr, &out_remaining); 1456 } 1457 1458 if (out_remaining == 0) { 1459 /* Filled up the page */ 1460 nblocks = 1461 PAGE_SIZE / hiber_info->secsize; 1462 1463 if (hiber_info->io_func( 1464 hiber_info->device, 1465 blkctr, (vaddr_t)hibernate_io_page, 1466 PAGE_SIZE, HIB_W, 1467 hiber_info->io_page)) 1468 return (1); 1469 1470 blkctr += nblocks; 1471 } 1472 } 1473 } 1474 1475 if (inaddr != range_end) 1476 return (1); 1477 1478 /* 1479 * End of range. Round up to next secsize bytes 1480 * after finishing compress 1481 */ 1482 if (out_remaining == 0) 1483 out_remaining = PAGE_SIZE; 1484 1485 /* Finish compress */ 1486 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1487 hibernate_state->hib_stream.avail_in = 0; 1488 hibernate_state->hib_stream.next_out = 1489 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1490 hibernate_state->hib_stream.avail_out = out_remaining; 1491 1492 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1493 Z_STREAM_END) 1494 return (1); 1495 1496 out_remaining = hibernate_state->hib_stream.avail_out; 1497 1498 used = PAGE_SIZE - out_remaining; 1499 nblocks = used / hiber_info->secsize; 1500 1501 /* Round up to next block if needed */ 1502 if (used % hiber_info->secsize != 0) 1503 nblocks ++; 1504 1505 /* Write final block(s) for this chunk */ 1506 if (hiber_info->io_func(hiber_info->device, blkctr, 1507 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1508 HIB_W, hiber_info->io_page)) 1509 return (1); 1510 1511 blkctr += nblocks; 1512 1513 offset = blkctr; 1514 chunks[i].compressed_size = (offset - chunks[i].offset) * 1515 hiber_info->secsize; 1516 } 1517 1518 return (0); 1519 } 1520 1521 /* 1522 * Reset the zlib stream state and allocate a new hiballoc area for either 1523 * inflate or deflate. This function is called once for each hibernate chunk. 1524 * Calling hiballoc_init multiple times is acceptable since the memory it is 1525 * provided is unmanaged memory (stolen). We use the memory provided to us 1526 * by the piglet allocated via the supplied hiber_info. 1527 */ 1528 int 1529 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1530 { 1531 vaddr_t hibernate_zlib_start; 1532 size_t hibernate_zlib_size; 1533 char *pva = (char *)hiber_info->piglet_va; 1534 struct hibernate_zlib_state *hibernate_state; 1535 1536 hibernate_state = 1537 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1538 1539 if(!deflate) 1540 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1541 1542 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1543 hibernate_zlib_size = 80 * PAGE_SIZE; 1544 1545 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1546 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1547 1548 /* Set up stream structure */ 1549 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1550 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1551 1552 /* Initialize the hiballoc arena for zlib allocs/frees */ 1553 hiballoc_init(&hibernate_state->hiballoc_arena, 1554 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1555 1556 if (deflate) { 1557 return deflateInit(&hibernate_state->hib_stream, 1558 Z_BEST_SPEED); 1559 } else 1560 return inflateInit(&hibernate_state->hib_stream); 1561 } 1562 1563 /* 1564 * Reads the hibernated memory image from disk, whose location and 1565 * size are recorded in hiber_info. Begin by reading the persisted 1566 * chunk table, which records the original chunk placement location 1567 * and compressed size for each. Next, allocate a pig region of 1568 * sufficient size to hold the compressed image. Next, read the 1569 * chunks into the pig area (calling hibernate_read_chunks to do this), 1570 * and finally, if all of the above succeeds, clear the hibernate signature. 1571 * The function will then return to hibernate_resume, which will proceed 1572 * to unpack the pig image to the correct place in memory. 1573 */ 1574 int 1575 hibernate_read_image(union hibernate_info *hiber_info) 1576 { 1577 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1578 paddr_t image_start, image_end, pig_start, pig_end; 1579 struct hibernate_disk_chunk *chunks; 1580 daddr_t blkctr; 1581 vaddr_t chunktable = (vaddr_t)NULL; 1582 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1583 HIBERNATE_CHUNK_SIZE; 1584 int i; 1585 1586 pmap_activate(curproc); 1587 1588 /* Calculate total chunk table size in disk blocks */ 1589 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1590 1591 blkctr = hiber_info->sig_offset - chunktable_size - 1592 hiber_info->swap_offset; 1593 1594 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1595 &kp_none, &kd_nowait); 1596 1597 if (!chunktable) 1598 return (1); 1599 1600 /* Read the chunktable from disk into the piglet chunktable */ 1601 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1602 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1603 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1604 VM_PROT_ALL); 1605 pmap_update(pmap_kernel()); 1606 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1607 chunktable + i, 0); 1608 } 1609 1610 blkctr = hiber_info->image_offset; 1611 compressed_size = 0; 1612 1613 chunks = (struct hibernate_disk_chunk *)chunktable; 1614 1615 for (i = 0; i < hiber_info->chunk_ctr; i++) 1616 compressed_size += chunks[i].compressed_size; 1617 1618 disk_size = compressed_size; 1619 1620 /* Allocate the pig area */ 1621 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1622 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1623 return (1); 1624 1625 pig_end = pig_start + pig_sz; 1626 1627 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1628 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1629 image_start = pig_start; 1630 1631 image_start = image_end - disk_size; 1632 1633 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1634 chunks); 1635 1636 pmap_kremove(chunktable, PAGE_SIZE); 1637 pmap_update(pmap_kernel()); 1638 1639 /* Prepare the resume time pmap/page table */ 1640 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1641 1642 return (0); 1643 } 1644 1645 /* 1646 * Read the hibernated memory chunks from disk (chunk information at this 1647 * point is stored in the piglet) into the pig area specified by 1648 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1649 * only chunk with overlap possibilities. 1650 */ 1651 int 1652 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1653 paddr_t pig_end, size_t image_compr_size, 1654 struct hibernate_disk_chunk *chunks) 1655 { 1656 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1657 paddr_t copy_start, copy_end, piglet_cur; 1658 paddr_t piglet_base = hib_info->piglet_pa; 1659 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1660 daddr_t blkctr; 1661 size_t processed, compressed_size, read_size; 1662 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1663 short *ochunks, *pchunks, *fchunks, i, j; 1664 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1665 1666 global_pig_start = pig_start; 1667 1668 /* XXX - dont need this on all archs */ 1669 pmap_activate(curproc); 1670 1671 /* 1672 * These mappings go into the resuming kernel's page table, and are 1673 * used only during image read. They dissappear from existence 1674 * when the suspended kernel is unpacked on top of us. 1675 */ 1676 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1677 if (!tempva) 1678 return (1); 1679 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1680 &kp_none, &kd_nowait); 1681 if (!hibernate_fchunk_area) 1682 return (1); 1683 1684 /* Final output chunk ordering VA */ 1685 fchunks = (short *)hibernate_fchunk_area; 1686 1687 /* Piglet chunk ordering VA */ 1688 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1689 1690 /* Final chunk ordering VA */ 1691 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1692 1693 /* Map the chunk ordering region */ 1694 for(i=0; i<24 ; i++) { 1695 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1696 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1697 pmap_update(pmap_kernel()); 1698 } 1699 1700 nchunks = hib_info->chunk_ctr; 1701 1702 /* Initially start all chunks as unplaced */ 1703 for (i = 0; i < nchunks; i++) 1704 chunks[i].flags = 0; 1705 1706 /* 1707 * Search the list for chunks that are outside the pig area. These 1708 * can be placed first in the final output list. 1709 */ 1710 for (i = 0; i < nchunks; i++) { 1711 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1712 ochunks[nochunks] = i; 1713 fchunks[nfchunks] = i; 1714 nochunks++; 1715 nfchunks++; 1716 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1717 } 1718 } 1719 1720 /* 1721 * Walk the ordering, place the chunks in ascending memory order. 1722 * Conflicts might arise, these are handled next. 1723 */ 1724 do { 1725 img_index = -1; 1726 found = 0; 1727 j = -1; 1728 for (i = 0; i < nchunks; i++) 1729 if (chunks[i].base < img_index && 1730 chunks[i].flags == 0 ) { 1731 j = i; 1732 img_index = chunks[i].base; 1733 } 1734 1735 if (j != -1) { 1736 found = 1; 1737 ochunks[nochunks] = j; 1738 nochunks++; 1739 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1740 } 1741 } while (found); 1742 1743 img_index = pig_start; 1744 1745 /* 1746 * Identify chunk output conflicts (chunks whose pig load area 1747 * corresponds to their original memory placement location) 1748 */ 1749 for (i = 0; i < nochunks ; i++) { 1750 overlap = 0; 1751 r1s = img_index; 1752 r1e = img_index + chunks[ochunks[i]].compressed_size; 1753 r2s = chunks[ochunks[i]].base; 1754 r2e = chunks[ochunks[i]].end; 1755 1756 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1757 if (overlap) 1758 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1759 img_index += chunks[ochunks[i]].compressed_size; 1760 } 1761 1762 /* 1763 * Prepare the final output chunk list. Calculate an output 1764 * inflate strategy for overlapping chunks if needed. 1765 */ 1766 img_index = pig_start; 1767 for (i = 0; i < nochunks ; i++) { 1768 /* 1769 * If a conflict is detected, consume enough compressed 1770 * output chunks to fill the piglet 1771 */ 1772 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1773 copy_start = piglet_base; 1774 copy_end = piglet_end; 1775 piglet_cur = piglet_base; 1776 npchunks = 0; 1777 j = i; 1778 1779 while (copy_start < copy_end && j < nochunks) { 1780 piglet_cur += 1781 chunks[ochunks[j]].compressed_size; 1782 pchunks[npchunks] = ochunks[j]; 1783 npchunks++; 1784 copy_start += 1785 chunks[ochunks[j]].compressed_size; 1786 img_index += chunks[ochunks[j]].compressed_size; 1787 i++; 1788 j++; 1789 } 1790 1791 piglet_cur = piglet_base; 1792 for (j = 0; j < npchunks; j++) { 1793 piglet_cur += 1794 chunks[pchunks[j]].compressed_size; 1795 fchunks[nfchunks] = pchunks[j]; 1796 chunks[pchunks[j]].flags |= 1797 HIBERNATE_CHUNK_USED; 1798 nfchunks++; 1799 } 1800 } else { 1801 /* 1802 * No conflict, chunk can be added without copying 1803 */ 1804 if ((chunks[ochunks[i]].flags & 1805 HIBERNATE_CHUNK_USED) == 0) { 1806 fchunks[nfchunks] = ochunks[i]; 1807 chunks[ochunks[i]].flags |= 1808 HIBERNATE_CHUNK_USED; 1809 nfchunks++; 1810 } 1811 img_index += chunks[ochunks[i]].compressed_size; 1812 } 1813 } 1814 1815 img_index = pig_start; 1816 for (i = 0; i < nfchunks; i++) { 1817 piglet_cur = piglet_base; 1818 img_index += chunks[fchunks[i]].compressed_size; 1819 } 1820 1821 img_cur = pig_start; 1822 1823 for (i = 0; i < nfchunks; i++) { 1824 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1825 processed = 0; 1826 compressed_size = chunks[fchunks[i]].compressed_size; 1827 1828 while (processed < compressed_size) { 1829 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1830 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1831 VM_PROT_ALL); 1832 pmap_update(pmap_kernel()); 1833 1834 if (compressed_size - processed >= PAGE_SIZE) 1835 read_size = PAGE_SIZE; 1836 else 1837 read_size = compressed_size - processed; 1838 1839 hibernate_block_io(hib_info, blkctr, read_size, 1840 tempva + (img_cur & PAGE_MASK), 0); 1841 1842 blkctr += (read_size / hib_info->secsize); 1843 1844 hibernate_flush(); 1845 pmap_kremove(tempva, PAGE_SIZE); 1846 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1847 processed += read_size; 1848 img_cur += read_size; 1849 } 1850 } 1851 1852 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1853 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1854 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1855 pmap_update(pmap_kernel()); 1856 1857 return (0); 1858 } 1859 1860 /* 1861 * Hibernating a machine comprises the following operations: 1862 * 1. Calculating this machine's hibernate_info information 1863 * 2. Allocating a piglet and saving the piglet's physaddr 1864 * 3. Calculating the memory chunks 1865 * 4. Writing the compressed chunks to disk 1866 * 5. Writing the chunk table 1867 * 6. Writing the signature block (hibernate_info) 1868 * 1869 * On most architectures, the function calling hibernate_suspend would 1870 * then power off the machine using some MD-specific implementation. 1871 */ 1872 int 1873 hibernate_suspend(void) 1874 { 1875 union hibernate_info hib_info; 1876 size_t swap_size; 1877 1878 /* 1879 * Calculate memory ranges, swap offsets, etc. 1880 * This also allocates a piglet whose physaddr is stored in 1881 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1882 */ 1883 if (get_hibernate_info(&hib_info, 1)) 1884 return (1); 1885 1886 swap_size = hib_info.image_size + hib_info.secsize + 1887 HIBERNATE_CHUNK_TABLE_SIZE; 1888 1889 if (uvm_swap_check_range(hib_info.device, swap_size)) { 1890 printf("insufficient swap space for hibernate\n"); 1891 return (1); 1892 } 1893 1894 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1895 VM_PROT_ALL); 1896 pmap_activate(curproc); 1897 1898 /* Stash the piglet VA so we can free it in the resuming kernel */ 1899 global_piglet_va = hib_info.piglet_va; 1900 1901 if (hibernate_write_chunks(&hib_info)) 1902 return (1); 1903 1904 if (hibernate_write_chunktable(&hib_info)) 1905 return (1); 1906 1907 if (hibernate_write_signature(&hib_info)) 1908 return (1); 1909 1910 /* Allow the disk to settle */ 1911 delay(500000); 1912 1913 /* 1914 * Give the device-specific I/O function a notification that we're 1915 * done, and that it can clean up or shutdown as needed. 1916 */ 1917 hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0, 1918 HIB_DONE, hib_info.io_page); 1919 1920 return (0); 1921 } 1922 1923 /* 1924 * Free items allocated by hibernate_suspend() 1925 */ 1926 void 1927 hibernate_free(void) 1928 { 1929 if (global_piglet_va) 1930 uvm_pmr_free_piglet(global_piglet_va, 1931 3*HIBERNATE_CHUNK_SIZE); 1932 1933 if (hibernate_copy_page) 1934 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1935 if (hibernate_temp_page) 1936 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1937 1938 pmap_update(pmap_kernel()); 1939 1940 if (hibernate_copy_page) 1941 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1942 &kv_any, &kp_none); 1943 if (hibernate_temp_page) 1944 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1945 &kv_any, &kp_none); 1946 1947 global_piglet_va = 0; 1948 hibernate_copy_page = 0; 1949 hibernate_temp_page = 0; 1950 } 1951