1 /* $OpenBSD: subr_hibernate.c,v 1.21 2011/11/13 23:13:29 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 struct hibernate_zlib_state *hibernate_state; 36 37 /* Temporary vaddr ranges used during hibernate */ 38 vaddr_t hibernate_temp_page; 39 vaddr_t hibernate_copy_page; 40 vaddr_t hibernate_stack_page; 41 vaddr_t hibernate_fchunk_area; 42 vaddr_t hibernate_chunktable_area; 43 44 /* Hibernate info as read from disk during resume */ 45 union hibernate_info disk_hiber_info; 46 paddr_t global_pig_start; 47 vaddr_t global_piglet_va; 48 49 /* 50 * Hib alloc enforced alignment. 51 */ 52 #define HIB_ALIGN 8 /* bytes alignment */ 53 54 /* 55 * sizeof builtin operation, but with alignment constraint. 56 */ 57 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 58 59 struct hiballoc_entry { 60 size_t hibe_use; 61 size_t hibe_space; 62 RB_ENTRY(hiballoc_entry) hibe_entry; 63 }; 64 65 /* 66 * Compare hiballoc entries based on the address they manage. 67 * 68 * Since the address is fixed, relative to struct hiballoc_entry, 69 * we just compare the hiballoc_entry pointers. 70 */ 71 static __inline int 72 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 73 { 74 return l < r ? -1 : (l > r); 75 } 76 77 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 78 79 /* 80 * Given a hiballoc entry, return the address it manages. 81 */ 82 static __inline void * 83 hib_entry_to_addr(struct hiballoc_entry *entry) 84 { 85 caddr_t addr; 86 87 addr = (caddr_t)entry; 88 addr += HIB_SIZEOF(struct hiballoc_entry); 89 return addr; 90 } 91 92 /* 93 * Given an address, find the hiballoc that corresponds. 94 */ 95 static __inline struct hiballoc_entry* 96 hib_addr_to_entry(void *addr_param) 97 { 98 caddr_t addr; 99 100 addr = (caddr_t)addr_param; 101 addr -= HIB_SIZEOF(struct hiballoc_entry); 102 return (struct hiballoc_entry*)addr; 103 } 104 105 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 106 107 /* 108 * Allocate memory from the arena. 109 * 110 * Returns NULL if no memory is available. 111 */ 112 void * 113 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 114 { 115 struct hiballoc_entry *entry, *new_entry; 116 size_t find_sz; 117 118 /* 119 * Enforce alignment of HIB_ALIGN bytes. 120 * 121 * Note that, because the entry is put in front of the allocation, 122 * 0-byte allocations are guaranteed a unique address. 123 */ 124 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 125 126 /* 127 * Find an entry with hibe_space >= find_sz. 128 * 129 * If the root node is not large enough, we switch to tree traversal. 130 * Because all entries are made at the bottom of the free space, 131 * traversal from the end has a slightly better chance of yielding 132 * a sufficiently large space. 133 */ 134 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 135 entry = RB_ROOT(&arena->hib_addrs); 136 if (entry != NULL && entry->hibe_space < find_sz) { 137 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 138 if (entry->hibe_space >= find_sz) 139 break; 140 } 141 } 142 143 /* 144 * Insufficient or too fragmented memory. 145 */ 146 if (entry == NULL) 147 return NULL; 148 149 /* 150 * Create new entry in allocated space. 151 */ 152 new_entry = (struct hiballoc_entry*)( 153 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 154 new_entry->hibe_space = entry->hibe_space - find_sz; 155 new_entry->hibe_use = alloc_sz; 156 157 /* 158 * Insert entry. 159 */ 160 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 161 panic("hib_alloc: insert failure"); 162 entry->hibe_space = 0; 163 164 /* Return address managed by entry. */ 165 return hib_entry_to_addr(new_entry); 166 } 167 168 /* 169 * Free a pointer previously allocated from this arena. 170 * 171 * If addr is NULL, this will be silently accepted. 172 */ 173 void 174 hib_free(struct hiballoc_arena *arena, void *addr) 175 { 176 struct hiballoc_entry *entry, *prev; 177 178 if (addr == NULL) 179 return; 180 181 /* 182 * Derive entry from addr and check it is really in this arena. 183 */ 184 entry = hib_addr_to_entry(addr); 185 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 186 panic("hib_free: freed item %p not in hib arena", addr); 187 188 /* 189 * Give the space in entry to its predecessor. 190 * 191 * If entry has no predecessor, change its used space into free space 192 * instead. 193 */ 194 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 195 if (prev != NULL && 196 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 197 prev->hibe_use + prev->hibe_space) == entry) { 198 /* Merge entry. */ 199 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 200 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 201 entry->hibe_use + entry->hibe_space; 202 } else { 203 /* Flip used memory to free space. */ 204 entry->hibe_space += entry->hibe_use; 205 entry->hibe_use = 0; 206 } 207 } 208 209 /* 210 * Initialize hiballoc. 211 * 212 * The allocator will manage memmory at ptr, which is len bytes. 213 */ 214 int 215 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 216 { 217 struct hiballoc_entry *entry; 218 caddr_t ptr; 219 size_t len; 220 221 RB_INIT(&arena->hib_addrs); 222 223 /* 224 * Hib allocator enforces HIB_ALIGN alignment. 225 * Fixup ptr and len. 226 */ 227 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 228 len = p_len - ((size_t)ptr - (size_t)p_ptr); 229 len &= ~((size_t)HIB_ALIGN - 1); 230 231 /* 232 * Insufficient memory to be able to allocate and also do bookkeeping. 233 */ 234 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 235 return ENOMEM; 236 237 /* 238 * Create entry describing space. 239 */ 240 entry = (struct hiballoc_entry*)ptr; 241 entry->hibe_use = 0; 242 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 243 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 244 245 return 0; 246 } 247 248 /* 249 * Zero all free memory. 250 */ 251 void 252 uvm_pmr_zero_everything(void) 253 { 254 struct uvm_pmemrange *pmr; 255 struct vm_page *pg; 256 int i; 257 258 uvm_lock_fpageq(); 259 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 260 /* Zero single pages. */ 261 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 262 != NULL) { 263 uvm_pmr_remove(pmr, pg); 264 uvm_pagezero(pg); 265 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 266 uvmexp.zeropages++; 267 uvm_pmr_insert(pmr, pg, 0); 268 } 269 270 /* Zero multi page ranges. */ 271 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 272 != NULL) { 273 pg--; /* Size tree always has second page. */ 274 uvm_pmr_remove(pmr, pg); 275 for (i = 0; i < pg->fpgsz; i++) { 276 uvm_pagezero(&pg[i]); 277 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 278 uvmexp.zeropages++; 279 } 280 uvm_pmr_insert(pmr, pg, 0); 281 } 282 } 283 uvm_unlock_fpageq(); 284 } 285 286 /* 287 * Mark all memory as dirty. 288 * 289 * Used to inform the system that the clean memory isn't clean for some 290 * reason, for example because we just came back from hibernate. 291 */ 292 void 293 uvm_pmr_dirty_everything(void) 294 { 295 struct uvm_pmemrange *pmr; 296 struct vm_page *pg; 297 int i; 298 299 uvm_lock_fpageq(); 300 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 301 /* Dirty single pages. */ 302 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 303 != NULL) { 304 uvm_pmr_remove(pmr, pg); 305 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 306 uvm_pmr_insert(pmr, pg, 0); 307 } 308 309 /* Dirty multi page ranges. */ 310 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 311 != NULL) { 312 pg--; /* Size tree always has second page. */ 313 uvm_pmr_remove(pmr, pg); 314 for (i = 0; i < pg->fpgsz; i++) 315 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 316 uvm_pmr_insert(pmr, pg, 0); 317 } 318 } 319 320 uvmexp.zeropages = 0; 321 uvm_unlock_fpageq(); 322 } 323 324 /* 325 * Allocate the highest address that can hold sz. 326 * 327 * sz in bytes. 328 */ 329 int 330 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 331 { 332 struct uvm_pmemrange *pmr; 333 struct vm_page *pig_pg, *pg; 334 335 /* 336 * Convert sz to pages, since that is what pmemrange uses internally. 337 */ 338 sz = atop(round_page(sz)); 339 340 uvm_lock_fpageq(); 341 342 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 343 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 344 if (pig_pg->fpgsz >= sz) { 345 goto found; 346 } 347 } 348 } 349 350 /* 351 * Allocation failure. 352 */ 353 uvm_unlock_pageq(); 354 return ENOMEM; 355 356 found: 357 /* Remove page from freelist. */ 358 uvm_pmr_remove_size(pmr, pig_pg); 359 pig_pg->fpgsz -= sz; 360 pg = pig_pg + pig_pg->fpgsz; 361 if (pig_pg->fpgsz == 0) 362 uvm_pmr_remove_addr(pmr, pig_pg); 363 else 364 uvm_pmr_insert_size(pmr, pig_pg); 365 366 uvmexp.free -= sz; 367 *addr = VM_PAGE_TO_PHYS(pg); 368 369 /* 370 * Update pg flags. 371 * 372 * Note that we trash the sz argument now. 373 */ 374 while (sz > 0) { 375 KASSERT(pg->pg_flags & PQ_FREE); 376 377 atomic_clearbits_int(&pg->pg_flags, 378 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 379 380 if (pg->pg_flags & PG_ZERO) 381 uvmexp.zeropages -= sz; 382 atomic_clearbits_int(&pg->pg_flags, 383 PG_ZERO|PQ_FREE); 384 385 pg->uobject = NULL; 386 pg->uanon = NULL; 387 pg->pg_version++; 388 389 /* 390 * Next. 391 */ 392 pg++; 393 sz--; 394 } 395 396 /* Return. */ 397 uvm_unlock_fpageq(); 398 return 0; 399 } 400 401 /* 402 * Allocate a piglet area. 403 * 404 * This is as low as possible. 405 * Piglets are aligned. 406 * 407 * sz and align in bytes. 408 * 409 * The call will sleep for the pagedaemon to attempt to free memory. 410 * The pagedaemon may decide its not possible to free enough memory, causing 411 * the allocation to fail. 412 */ 413 int 414 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 415 { 416 paddr_t pg_addr, piglet_addr; 417 struct uvm_pmemrange *pmr; 418 struct vm_page *pig_pg, *pg; 419 struct pglist pageq; 420 int pdaemon_woken; 421 vaddr_t piglet_va; 422 423 KASSERT((align & (align - 1)) == 0); 424 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 425 426 /* 427 * Fixup arguments: align must be at least PAGE_SIZE, 428 * sz will be converted to pagecount, since that is what 429 * pmemrange uses internally. 430 */ 431 if (align < PAGE_SIZE) 432 align = PAGE_SIZE; 433 sz = round_page(sz); 434 435 uvm_lock_fpageq(); 436 437 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 438 pmr_use) { 439 retry: 440 /* 441 * Search for a range with enough space. 442 * Use the address tree, to ensure the range is as low as 443 * possible. 444 */ 445 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 446 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 447 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 448 449 if (atop(pg_addr) + pig_pg->fpgsz >= 450 atop(piglet_addr) + atop(sz)) 451 goto found; 452 } 453 } 454 455 /* 456 * Try to coerse the pagedaemon into freeing memory 457 * for the piglet. 458 * 459 * pdaemon_woken is set to prevent the code from 460 * falling into an endless loop. 461 */ 462 if (!pdaemon_woken) { 463 pdaemon_woken = 1; 464 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 465 sz, UVM_PLA_FAILOK) == 0) 466 goto retry; 467 } 468 469 /* Return failure. */ 470 uvm_unlock_fpageq(); 471 return ENOMEM; 472 473 found: 474 /* 475 * Extract piglet from pigpen. 476 */ 477 TAILQ_INIT(&pageq); 478 uvm_pmr_extract_range(pmr, pig_pg, 479 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 480 481 *pa = piglet_addr; 482 uvmexp.free -= atop(sz); 483 484 /* 485 * Update pg flags. 486 * 487 * Note that we trash the sz argument now. 488 */ 489 TAILQ_FOREACH(pg, &pageq, pageq) { 490 KASSERT(pg->pg_flags & PQ_FREE); 491 492 atomic_clearbits_int(&pg->pg_flags, 493 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 494 495 if (pg->pg_flags & PG_ZERO) 496 uvmexp.zeropages--; 497 atomic_clearbits_int(&pg->pg_flags, 498 PG_ZERO|PQ_FREE); 499 500 pg->uobject = NULL; 501 pg->uanon = NULL; 502 pg->pg_version++; 503 } 504 505 uvm_unlock_fpageq(); 506 507 /* 508 * Now allocate a va. 509 * Use direct mappings for the pages. 510 */ 511 512 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 513 if (!piglet_va) { 514 uvm_pglistfree(&pageq); 515 return ENOMEM; 516 } 517 518 /* 519 * Map piglet to va. 520 */ 521 TAILQ_FOREACH(pg, &pageq, pageq) { 522 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 523 piglet_va += PAGE_SIZE; 524 } 525 pmap_update(pmap_kernel()); 526 527 return 0; 528 } 529 530 /* 531 * Free a piglet area. 532 */ 533 void 534 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 535 { 536 paddr_t pa; 537 struct vm_page *pg; 538 539 /* 540 * Fix parameters. 541 */ 542 sz = round_page(sz); 543 544 /* 545 * Find the first page in piglet. 546 * Since piglets are contiguous, the first pg is all we need. 547 */ 548 if (!pmap_extract(pmap_kernel(), va, &pa)) 549 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 550 pg = PHYS_TO_VM_PAGE(pa); 551 if (pg == NULL) 552 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 553 554 /* 555 * Unmap. 556 */ 557 pmap_kremove(va, sz); 558 pmap_update(pmap_kernel()); 559 560 /* 561 * Free the physical and virtual memory. 562 */ 563 uvm_pmr_freepages(pg, atop(sz)); 564 km_free((void *)va, sz, &kv_any, &kp_none); 565 } 566 567 /* 568 * Physmem RLE compression support. 569 * 570 * Given a physical page address, it will return the number of pages 571 * starting at the address, that are free. 572 * Returns 0 if the page at addr is not free. 573 */ 574 psize_t 575 uvm_page_rle(paddr_t addr) 576 { 577 struct vm_page *pg, *pg_end; 578 struct vm_physseg *vmp; 579 int pseg_idx, off_idx; 580 581 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 582 if (pseg_idx == -1) 583 return 0; 584 585 vmp = &vm_physmem[pseg_idx]; 586 pg = &vmp->pgs[off_idx]; 587 if (!(pg->pg_flags & PQ_FREE)) 588 return 0; 589 590 /* 591 * Search for the first non-free page after pg. 592 * Note that the page may not be the first page in a free pmemrange, 593 * therefore pg->fpgsz cannot be used. 594 */ 595 for (pg_end = pg; pg_end <= vmp->lastpg && 596 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++); 597 return pg_end - pg; 598 } 599 600 /* 601 * Fills out the hibernate_info union pointed to by hiber_info 602 * with information about this machine (swap signature block 603 * offsets, number of memory ranges, kernel in use, etc) 604 */ 605 int 606 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 607 { 608 int chunktable_size; 609 struct disklabel dl; 610 char err_string[128], *dl_ret; 611 612 /* Determine I/O function to use */ 613 hiber_info->io_func = get_hibernate_io_function(); 614 if (hiber_info->io_func == NULL) 615 return (1); 616 617 /* Calculate hibernate device */ 618 hiber_info->device = swdevt[0].sw_dev; 619 620 /* Read disklabel (used to calculate signature and image offsets) */ 621 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 622 623 if (dl_ret) { 624 printf("Hibernate error reading disklabel: %s\n", dl_ret); 625 return (1); 626 } 627 628 hiber_info->secsize = dl.d_secsize; 629 630 /* Make sure the signature can fit in one block */ 631 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 632 633 /* Calculate swap offset from start of disk */ 634 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 635 636 /* Calculate signature block location */ 637 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 638 dl.d_partitions[1].p_size - 639 sizeof(union hibernate_info)/hiber_info->secsize; 640 641 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 642 643 /* Stash kernel version information */ 644 bzero(&hiber_info->kernel_version, 128); 645 bcopy(version, &hiber_info->kernel_version, 646 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 647 648 if (suspend) { 649 /* Allocate piglet region */ 650 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 651 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 652 HIBERNATE_CHUNK_SIZE)) { 653 printf("Hibernate failed to allocate the piglet\n"); 654 return (1); 655 } 656 } 657 658 if (get_hibernate_info_md(hiber_info)) 659 return (1); 660 661 /* Calculate memory image location */ 662 hiber_info->image_offset = dl.d_partitions[1].p_offset + 663 dl.d_partitions[1].p_size - 664 (hiber_info->image_size / hiber_info->secsize) - 665 sizeof(union hibernate_info)/hiber_info->secsize - 666 chunktable_size; 667 668 return (0); 669 } 670 671 /* 672 * Allocate nitems*size bytes from the hiballoc area presently in use 673 */ 674 void 675 *hibernate_zlib_alloc(void *unused, int nitems, int size) 676 { 677 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 678 } 679 680 /* 681 * Free the memory pointed to by addr in the hiballoc area presently in 682 * use 683 */ 684 void 685 hibernate_zlib_free(void *unused, void *addr) 686 { 687 hib_free(&hibernate_state->hiballoc_arena, addr); 688 } 689 690 /* 691 * Inflate size bytes from src into dest, skipping any pages in 692 * [src..dest] that are special (see hibernate_inflate_skip) 693 * 694 * For each page of output data, we map HIBERNATE_TEMP_PAGE 695 * to the current output page, and tell inflate() to inflate 696 * its data there, resulting in the inflated data being placed 697 * at the proper paddr. 698 * 699 * This function executes while using the resume-time stack 700 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 701 * will likely hang or reset the machine. 702 */ 703 void 704 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest, 705 paddr_t src, size_t size) 706 { 707 int i; 708 709 hibernate_state->hib_stream.avail_in = size; 710 hibernate_state->hib_stream.next_in = (char *)src; 711 712 do { 713 /* Flush cache and TLB */ 714 hibernate_flush(); 715 716 /* 717 * Is this a special page? If yes, redirect the 718 * inflate output to a scratch page (eg, discard it) 719 */ 720 if (hibernate_inflate_skip(hiber_info, dest)) 721 hibernate_enter_resume_mapping( 722 HIBERNATE_INFLATE_PAGE, 723 HIBERNATE_INFLATE_PAGE, 0); 724 else 725 hibernate_enter_resume_mapping( 726 HIBERNATE_INFLATE_PAGE, dest, 0); 727 728 /* Set up the stream for inflate */ 729 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 730 hibernate_state->hib_stream.next_out = 731 (char *)HIBERNATE_INFLATE_PAGE; 732 733 /* Process next block of data */ 734 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 735 if (i != Z_OK && i != Z_STREAM_END) { 736 /* 737 * XXX - this will likely reboot/hang most machines, 738 * but there's not much else we can do here. 739 */ 740 panic("inflate error"); 741 } 742 743 dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out; 744 } while (i != Z_STREAM_END); 745 } 746 747 /* 748 * deflate from src into the I/O page, up to 'remaining' bytes 749 * 750 * Returns number of input bytes consumed, and may reset 751 * the 'remaining' parameter if not all the output space was consumed 752 * (this information is needed to know how much to write to disk 753 */ 754 size_t 755 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 756 size_t *remaining) 757 { 758 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 759 760 /* Set up the stream for deflate */ 761 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 762 hibernate_state->hib_stream.avail_out = *remaining; 763 hibernate_state->hib_stream.next_in = (caddr_t)src; 764 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 765 (PAGE_SIZE - *remaining); 766 767 /* Process next block of data */ 768 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 769 panic("hibernate zlib deflate error\n"); 770 771 /* Update pointers and return number of bytes consumed */ 772 *remaining = hibernate_state->hib_stream.avail_out; 773 return (PAGE_SIZE - (src & PAGE_MASK)) - 774 hibernate_state->hib_stream.avail_in; 775 } 776 777 /* 778 * Write the hibernation information specified in hiber_info 779 * to the location in swap previously calculated (last block of 780 * swap), called the "signature block". 781 * 782 * Write the memory chunk table to the area in swap immediately 783 * preceding the signature block. 784 */ 785 int 786 hibernate_write_signature(union hibernate_info *hiber_info) 787 { 788 u_int8_t *io_page; 789 int result = 0; 790 791 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 792 if (!io_page) 793 return (1); 794 795 /* Write hibernate info to disk */ 796 if (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 797 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, io_page)) 798 result = 1; 799 800 free(io_page, M_DEVBUF); 801 return (result); 802 } 803 804 /* 805 * Write the memory chunk table to the area in swap immediately 806 * preceding the signature block. The chunk table is stored 807 * in the piglet when this function is called. 808 */ 809 int 810 hibernate_write_chunktable(union hibernate_info *hiber_info) 811 { 812 struct hibernate_disk_chunk *chunks; 813 vaddr_t hibernate_chunk_table_start; 814 size_t hibernate_chunk_table_size; 815 u_int8_t *io_page; 816 daddr_t chunkbase; 817 int i; 818 819 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 820 if (!io_page) 821 return (1); 822 823 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 824 825 chunkbase = hiber_info->sig_offset - 826 (hibernate_chunk_table_size / hiber_info->secsize); 827 828 hibernate_chunk_table_start = hiber_info->piglet_va + 829 HIBERNATE_CHUNK_SIZE; 830 831 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 832 HIBERNATE_CHUNK_SIZE); 833 834 /* Write chunk table */ 835 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 836 if (hiber_info->io_func(hiber_info->device, 837 chunkbase + (i/hiber_info->secsize), 838 (vaddr_t)(hibernate_chunk_table_start + i), 839 MAXPHYS, HIB_W, io_page)) { 840 free(io_page, M_DEVBUF); 841 return (1); 842 } 843 } 844 845 free(io_page, M_DEVBUF); 846 return (0); 847 } 848 849 /* 850 * Write an empty hiber_info to the swap signature block, which is 851 * guaranteed to not match any valid hiber_info. 852 */ 853 int 854 hibernate_clear_signature(void) 855 { 856 union hibernate_info blank_hiber_info; 857 union hibernate_info hiber_info; 858 u_int8_t *io_page; 859 860 /* Zero out a blank hiber_info */ 861 bzero(&blank_hiber_info, sizeof(hiber_info)); 862 863 if (get_hibernate_info(&hiber_info, 0)) 864 return (1); 865 866 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 867 if (!io_page) 868 return (1); 869 870 /* Write (zeroed) hibernate info to disk */ 871 /* XXX - use regular kernel write routine for this */ 872 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 873 (vaddr_t)&blank_hiber_info, hiber_info.secsize, HIB_W, io_page)) 874 panic("error hibernate write 6\n"); 875 876 free(io_page, M_DEVBUF); 877 878 return (0); 879 } 880 881 /* 882 * Check chunk range overlap when calculating whether or not to copy a 883 * compressed chunk to the piglet area before decompressing. 884 * 885 * returns zero if the ranges do not overlap, non-zero otherwise. 886 */ 887 int 888 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 889 { 890 /* case A : end of r1 overlaps start of r2 */ 891 if (r1s < r2s && r1e > r2s) 892 return (1); 893 894 /* case B : r1 entirely inside r2 */ 895 if (r1s >= r2s && r1e <= r2e) 896 return (1); 897 898 /* case C : r2 entirely inside r1 */ 899 if (r2s >= r1s && r2e <= r1e) 900 return (1); 901 902 /* case D : end of r2 overlaps start of r1 */ 903 if (r2s < r1s && r2e > r1s) 904 return (1); 905 906 return (0); 907 } 908 909 /* 910 * Compare two hibernate_infos to determine if they are the same (eg, 911 * we should be performing a hibernate resume on this machine. 912 * Not all fields are checked - just enough to verify that the machine 913 * has the same memory configuration and kernel as the one that 914 * wrote the signature previously. 915 */ 916 int 917 hibernate_compare_signature(union hibernate_info *mine, 918 union hibernate_info *disk) 919 { 920 u_int i; 921 922 if (mine->nranges != disk->nranges) 923 return (1); 924 925 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 926 return (1); 927 928 for (i = 0; i < mine->nranges; i++) { 929 if ((mine->ranges[i].base != disk->ranges[i].base) || 930 (mine->ranges[i].end != disk->ranges[i].end) ) 931 return (1); 932 } 933 934 return (0); 935 } 936 937 /* 938 * Reads read_size bytes from the hibernate device specified in 939 * hib_info at offset blkctr. Output is placed into the vaddr specified 940 * at dest. 941 * 942 * Separate offsets and pages are used to handle misaligned reads (reads 943 * that span a page boundary). 944 * 945 * blkctr specifies a relative offset (relative to the start of swap), 946 * not an absolute disk offset 947 * 948 */ 949 int 950 hibernate_read_block(union hibernate_info *hib_info, daddr_t blkctr, 951 size_t read_size, vaddr_t dest) 952 { 953 struct buf *bp; 954 struct bdevsw *bdsw; 955 int error; 956 957 bp = geteblk(read_size); 958 bdsw = &bdevsw[major(hib_info->device)]; 959 960 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 961 if (error) { 962 printf("hibernate_read_block open failed\n"); 963 return (1); 964 } 965 966 bp->b_bcount = read_size; 967 bp->b_blkno = blkctr; 968 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 969 SET(bp->b_flags, B_BUSY | B_READ | B_RAW); 970 bp->b_dev = hib_info->device; 971 bp->b_cylinder = 0; 972 (*bdsw->d_strategy)(bp); 973 974 error = biowait(bp); 975 if (error) { 976 printf("hibernate_read_block biowait failed %d\n", error); 977 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 978 curproc); 979 if (error) 980 printf("hibernate_read_block error close failed\n"); 981 return (1); 982 } 983 984 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 985 if (error) { 986 printf("hibernate_read_block close failed\n"); 987 return (1); 988 } 989 990 bcopy(bp->b_data, (caddr_t)dest, read_size); 991 992 bp->b_flags |= B_INVAL; 993 brelse(bp); 994 995 return (0); 996 } 997 998 /* 999 * Reads the signature block from swap, checks against the current machine's 1000 * information. If the information matches, perform a resume by reading the 1001 * saved image into the pig area, and unpacking. 1002 */ 1003 void 1004 hibernate_resume(void) 1005 { 1006 union hibernate_info hiber_info; 1007 u_int8_t *io_page; 1008 int s; 1009 1010 /* Scrub temporary vaddr ranges used during resume */ 1011 hibernate_temp_page = (vaddr_t)NULL; 1012 hibernate_fchunk_area = (vaddr_t)NULL; 1013 hibernate_chunktable_area = (vaddr_t)NULL; 1014 hibernate_stack_page = (vaddr_t)NULL; 1015 1016 /* Get current running machine's hibernate info */ 1017 bzero(&hiber_info, sizeof(hiber_info)); 1018 if (get_hibernate_info(&hiber_info, 0)) 1019 return; 1020 1021 io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 1022 if (!io_page) 1023 return; 1024 1025 /* Read hibernate info from disk */ 1026 s = splbio(); 1027 1028 /* XXX use regular kernel read routine here */ 1029 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 1030 (vaddr_t)&disk_hiber_info, hiber_info.secsize, HIB_R, io_page)) 1031 panic("error in hibernate read\n"); 1032 1033 free(io_page, M_DEVBUF); 1034 1035 /* 1036 * If on-disk and in-memory hibernate signatures match, 1037 * this means we should do a resume from hibernate. 1038 */ 1039 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1040 return; 1041 1042 /* 1043 * Allocate several regions of vaddrs for use during read. 1044 * These mappings go into the resuming kernel's page table, and are 1045 * used only during image read. 1046 */ 1047 hibernate_temp_page = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, 1048 &kp_none, &kd_nowait); 1049 if (!hibernate_temp_page) 1050 goto fail; 1051 1052 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1053 &kp_none, &kd_nowait); 1054 if (!hibernate_fchunk_area) 1055 goto fail; 1056 1057 /* Allocate a temporary chunktable area */ 1058 hibernate_chunktable_area = (vaddr_t)malloc(HIBERNATE_CHUNK_TABLE_SIZE, 1059 M_DEVBUF, M_NOWAIT); 1060 if (!hibernate_chunktable_area) 1061 goto fail; 1062 1063 /* Allocate one temporary page of VAs for the resume time stack */ 1064 hibernate_stack_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1065 &kp_none, &kd_nowait); 1066 if (!hibernate_stack_page) 1067 goto fail; 1068 1069 /* Read the image from disk into the image (pig) area */ 1070 if (hibernate_read_image(&disk_hiber_info)) 1071 goto fail; 1072 1073 /* Point of no return ... */ 1074 1075 disable_intr(); 1076 cold = 1; 1077 1078 /* Switch stacks */ 1079 hibernate_switch_stack_machdep(); 1080 1081 /* 1082 * Image is now in high memory (pig area), copy to correct location 1083 * in memory. We'll eventually end up copying on top of ourself, but 1084 * we are assured the kernel code here is the same between the 1085 * hibernated and resuming kernel, and we are running on our own 1086 * stack, so the overwrite is ok. 1087 */ 1088 hibernate_unpack_image(&disk_hiber_info); 1089 1090 /* 1091 * Resume the loaded kernel by jumping to the MD resume vector. 1092 * We won't be returning from this call. 1093 */ 1094 hibernate_resume_machdep(); 1095 1096 fail: 1097 printf("Unable to resume hibernated image\n"); 1098 1099 if (hibernate_temp_page) 1100 km_free((void *)hibernate_temp_page, 2*PAGE_SIZE, &kv_any, 1101 &kp_none); 1102 1103 if (hibernate_fchunk_area) 1104 km_free((void *)hibernate_fchunk_area, 3*PAGE_SIZE, &kv_any, 1105 &kp_none); 1106 1107 if (io_page) 1108 free((void *)io_page, M_DEVBUF); 1109 1110 if (hibernate_chunktable_area) 1111 free((void *)hibernate_chunktable_area, M_DEVBUF); 1112 } 1113 1114 /* 1115 * Unpack image from pig area to original location by looping through the 1116 * list of output chunks in the order they should be restored (fchunks). 1117 * This ordering is used to avoid having inflate overwrite a chunk in the 1118 * middle of processing that chunk. This will, of course, happen during the 1119 * final output chunk, where we copy the chunk to the piglet area first, 1120 * before inflating. 1121 */ 1122 void 1123 hibernate_unpack_image(union hibernate_info *hiber_info) 1124 { 1125 struct hibernate_disk_chunk *chunks; 1126 union hibernate_info local_hiber_info; 1127 paddr_t image_cur = global_pig_start; 1128 vaddr_t tempva; 1129 int *fchunks, i; 1130 char *pva = (char *)hiber_info->piglet_va; 1131 1132 /* Mask off based on arch-specific piglet page size */ 1133 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1134 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1135 1136 /* Copy temporary chunktable to piglet */ 1137 tempva = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1138 &kp_none, &kd_nowait); 1139 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1140 pmap_kenter_pa(tempva + i, hiber_info->piglet_pa + 1141 HIBERNATE_CHUNK_SIZE + i, VM_PROT_ALL); 1142 1143 bcopy((caddr_t)hibernate_chunktable_area, (caddr_t)tempva, 1144 HIBERNATE_CHUNK_TABLE_SIZE); 1145 1146 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1147 1148 /* Can't use hiber_info that's passed in after here */ 1149 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1150 1151 hibernate_activate_resume_pt_machdep(); 1152 1153 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1154 /* Reset zlib for inflate */ 1155 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1156 panic("hibernate failed to reset zlib for inflate\n"); 1157 1158 /* 1159 * If there is a conflict, copy the chunk to the piglet area 1160 * before unpacking it to its original location. 1161 */ 1162 if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1163 hibernate_inflate(&local_hiber_info, 1164 chunks[fchunks[i]].base, image_cur, 1165 chunks[fchunks[i]].compressed_size); 1166 else { 1167 bcopy((caddr_t)image_cur, 1168 pva + (HIBERNATE_CHUNK_SIZE * 2), 1169 chunks[fchunks[i]].compressed_size); 1170 hibernate_inflate(&local_hiber_info, 1171 chunks[fchunks[i]].base, 1172 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1173 chunks[fchunks[i]].compressed_size); 1174 } 1175 image_cur += chunks[fchunks[i]].compressed_size; 1176 } 1177 } 1178 1179 /* 1180 * Write a compressed version of this machine's memory to disk, at the 1181 * precalculated swap offset: 1182 * 1183 * end of swap - signature block size - chunk table size - memory size 1184 * 1185 * The function begins by looping through each phys mem range, cutting each 1186 * one into 4MB chunks. These chunks are then compressed individually 1187 * and written out to disk, in phys mem order. Some chunks might compress 1188 * more than others, and for this reason, each chunk's size is recorded 1189 * in the chunk table, which is written to disk after the image has 1190 * properly been compressed and written (in hibernate_write_chunktable). 1191 * 1192 * When this function is called, the machine is nearly suspended - most 1193 * devices are quiesced/suspended, interrupts are off, and cold has 1194 * been set. This means that there can be no side effects once the 1195 * write has started, and the write function itself can also have no 1196 * side effects. 1197 * 1198 * This function uses the piglet area during this process as follows: 1199 * 1200 * offset from piglet base use 1201 * ----------------------- -------------------- 1202 * 0 i/o allocation area 1203 * PAGE_SIZE i/o write area 1204 * 2*PAGE_SIZE temp/scratch page 1205 * 3*PAGE_SIZE temp/scratch page 1206 * 4*PAGE_SIZE hiballoc arena 1207 * 5*PAGE_SIZE to 85*PAGE_SIZE zlib deflate area 1208 * ... 1209 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1210 * 1211 * Some transient piglet content is saved as part of deflate, 1212 * but it is irrelevant during resume as it will be repurposed 1213 * at that time for other things. 1214 */ 1215 int 1216 hibernate_write_chunks(union hibernate_info *hiber_info) 1217 { 1218 paddr_t range_base, range_end, inaddr, temp_inaddr; 1219 size_t nblocks, out_remaining, used, offset = 0; 1220 struct hibernate_disk_chunk *chunks; 1221 vaddr_t hibernate_alloc_page = hiber_info->piglet_va; 1222 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1223 daddr_t blkctr = hiber_info->image_offset; 1224 int i; 1225 1226 hiber_info->chunk_ctr = 0; 1227 1228 /* 1229 * Allocate VA for the temp and copy page. 1230 */ 1231 1232 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1233 &kp_none, &kd_nowait); 1234 if (!hibernate_temp_page) 1235 return (1); 1236 1237 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1238 &kp_none, &kd_nowait); 1239 if (!hibernate_copy_page) 1240 return (1); 1241 1242 pmap_kenter_pa(hibernate_copy_page, 1243 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1244 1245 /* XXX - not needed on all archs */ 1246 pmap_activate(curproc); 1247 1248 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1249 HIBERNATE_CHUNK_SIZE); 1250 1251 /* Calculate the chunk regions */ 1252 for (i = 0; i < hiber_info->nranges; i++) { 1253 range_base = hiber_info->ranges[i].base; 1254 range_end = hiber_info->ranges[i].end; 1255 1256 inaddr = range_base; 1257 1258 while (inaddr < range_end) { 1259 chunks[hiber_info->chunk_ctr].base = inaddr; 1260 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1261 chunks[hiber_info->chunk_ctr].end = inaddr + 1262 HIBERNATE_CHUNK_SIZE; 1263 else 1264 chunks[hiber_info->chunk_ctr].end = range_end; 1265 1266 inaddr += HIBERNATE_CHUNK_SIZE; 1267 hiber_info->chunk_ctr ++; 1268 } 1269 } 1270 1271 /* Compress and write the chunks in the chunktable */ 1272 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1273 range_base = chunks[i].base; 1274 range_end = chunks[i].end; 1275 1276 chunks[i].offset = blkctr; 1277 1278 /* Reset zlib for deflate */ 1279 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1280 return (1); 1281 1282 inaddr = range_base; 1283 1284 /* 1285 * For each range, loop through its phys mem region 1286 * and write out the chunks (the last chunk might be 1287 * smaller than the chunk size). 1288 */ 1289 while (inaddr < range_end) { 1290 out_remaining = PAGE_SIZE; 1291 while (out_remaining > 0 && inaddr < range_end) { 1292 pmap_kenter_pa(hibernate_temp_page, 1293 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1294 1295 /* XXX - not needed on all archs */ 1296 pmap_activate(curproc); 1297 1298 bcopy((caddr_t)hibernate_temp_page, 1299 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1300 1301 /* 1302 * Adjust for regions that are not evenly 1303 * divisible by PAGE_SIZE 1304 */ 1305 temp_inaddr = (inaddr & PAGE_MASK) + 1306 hibernate_copy_page; 1307 1308 /* Deflate from temp_inaddr to IO page */ 1309 inaddr += hibernate_deflate(hiber_info, 1310 temp_inaddr, &out_remaining); 1311 } 1312 1313 if (out_remaining == 0) { 1314 /* Filled up the page */ 1315 nblocks = PAGE_SIZE / hiber_info->secsize; 1316 1317 if (hiber_info->io_func(hiber_info->device, 1318 blkctr, (vaddr_t)hibernate_io_page, 1319 PAGE_SIZE, HIB_W, (void *)hibernate_alloc_page)) 1320 return (1); 1321 1322 blkctr += nblocks; 1323 } 1324 } 1325 1326 if (inaddr != range_end) 1327 return (1); 1328 1329 /* 1330 * End of range. Round up to next secsize bytes 1331 * after finishing compress 1332 */ 1333 if (out_remaining == 0) 1334 out_remaining = PAGE_SIZE; 1335 1336 /* Finish compress */ 1337 hibernate_state->hib_stream.avail_in = 0; 1338 hibernate_state->hib_stream.avail_out = out_remaining; 1339 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1340 hibernate_state->hib_stream.next_out = 1341 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1342 1343 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1344 Z_STREAM_END) 1345 return (1); 1346 1347 out_remaining = hibernate_state->hib_stream.avail_out; 1348 1349 used = PAGE_SIZE - out_remaining; 1350 nblocks = used / hiber_info->secsize; 1351 1352 /* Round up to next block if needed */ 1353 if (used % hiber_info->secsize != 0) 1354 nblocks ++; 1355 1356 /* Write final block(s) for this chunk */ 1357 if (hiber_info->io_func(hiber_info->device, blkctr, 1358 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1359 HIB_W, (void *)hibernate_alloc_page)) 1360 return (1); 1361 1362 blkctr += nblocks; 1363 1364 offset = blkctr; 1365 chunks[i].compressed_size = (offset - chunks[i].offset) * 1366 hiber_info->secsize; 1367 } 1368 1369 return (0); 1370 } 1371 1372 /* 1373 * Reset the zlib stream state and allocate a new hiballoc area for either 1374 * inflate or deflate. This function is called once for each hibernate chunk. 1375 * Calling hiballoc_init multiple times is acceptable since the memory it is 1376 * provided is unmanaged memory (stolen). We use the memory provided to us 1377 * by the piglet allocated via the supplied hiber_info. 1378 */ 1379 int 1380 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1381 { 1382 vaddr_t hibernate_zlib_start; 1383 size_t hibernate_zlib_size; 1384 char *pva = (char *)hiber_info->piglet_va; 1385 1386 hibernate_state = (struct hibernate_zlib_state *) 1387 (pva + (7 * PAGE_SIZE)); 1388 1389 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1390 hibernate_zlib_size = 80 * PAGE_SIZE; 1391 1392 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1393 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1394 1395 /* Set up stream structure */ 1396 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1397 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1398 1399 /* Initialize the hiballoc arena for zlib allocs/frees */ 1400 hiballoc_init(&hibernate_state->hiballoc_arena, 1401 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1402 1403 if (deflate) { 1404 return deflateInit(&hibernate_state->hib_stream, 1405 Z_DEFAULT_COMPRESSION); 1406 } else 1407 return inflateInit(&hibernate_state->hib_stream); 1408 } 1409 1410 /* 1411 * Reads the hibernated memory image from disk, whose location and 1412 * size are recorded in hiber_info. Begin by reading the persisted 1413 * chunk table, which records the original chunk placement location 1414 * and compressed size for each. Next, allocate a pig region of 1415 * sufficient size to hold the compressed image. Next, read the 1416 * chunks into the pig area (calling hibernate_read_chunks to do this), 1417 * and finally, if all of the above succeeds, clear the hibernate signature. 1418 * The function will then return to hibernate_resume, which will proceed 1419 * to unpack the pig image to the correct place in memory. 1420 */ 1421 int 1422 hibernate_read_image(union hibernate_info *hiber_info) 1423 { 1424 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1425 paddr_t image_start, image_end, pig_start, pig_end; 1426 struct hibernate_disk_chunk *chunks; 1427 daddr_t blkctr; 1428 int i; 1429 1430 /* Calculate total chunk table size in disk blocks */ 1431 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1432 1433 blkctr = hiber_info->sig_offset - chunktable_size - 1434 hiber_info->swap_offset; 1435 1436 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1437 i += MAXPHYS, blkctr += MAXPHYS/hiber_info->secsize) 1438 hibernate_read_block(hiber_info, blkctr, MAXPHYS, 1439 hibernate_chunktable_area + i); 1440 1441 blkctr = hiber_info->image_offset; 1442 compressed_size = 0; 1443 chunks = (struct hibernate_disk_chunk *)hibernate_chunktable_area; 1444 1445 for (i = 0; i < hiber_info->chunk_ctr; i++) 1446 compressed_size += chunks[i].compressed_size; 1447 1448 disk_size = compressed_size; 1449 1450 /* Allocate the pig area */ 1451 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1452 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1453 return (1); 1454 1455 pig_end = pig_start + pig_sz; 1456 1457 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1458 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1459 image_start = pig_start; 1460 1461 image_start = image_end - disk_size; 1462 1463 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size); 1464 1465 /* Prepare the resume time pmap/page table */ 1466 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1467 1468 /* Read complete, clear the signature and return */ 1469 return hibernate_clear_signature(); 1470 } 1471 1472 /* 1473 * Read the hibernated memory chunks from disk (chunk information at this 1474 * point is stored in the piglet) into the pig area specified by 1475 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1476 * only chunk with overlap possibilities. 1477 * 1478 * This function uses the piglet area during this process as follows: 1479 * 1480 * offset from piglet base use 1481 * ----------------------- -------------------- 1482 * 0 i/o allocation area 1483 * PAGE_SIZE i/o write area 1484 * 2*PAGE_SIZE temp/scratch page 1485 * 3*PAGE_SIZE temp/scratch page 1486 * 4*PAGE_SIZE to 6*PAGE_SIZE chunk ordering area 1487 * 7*PAGE_SIZE hiballoc arena 1488 * 8*PAGE_SIZE to 88*PAGE_SIZE zlib deflate area 1489 * ... 1490 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1491 */ 1492 int 1493 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1494 paddr_t pig_end, size_t image_compr_size) 1495 { 1496 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1497 paddr_t copy_start, copy_end, piglet_cur; 1498 paddr_t piglet_base = hib_info->piglet_pa; 1499 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1500 daddr_t blkctr; 1501 size_t processed, compressed_size, read_size; 1502 int i, j, overlap, found, nchunks; 1503 int nochunks = 0, nfchunks = 0, npchunks = 0; 1504 struct hibernate_disk_chunk *chunks; 1505 int *ochunks, *pchunks, *fchunks; 1506 1507 global_pig_start = pig_start; 1508 1509 /* XXX - dont need this on all archs */ 1510 pmap_activate(curproc); 1511 1512 /* Temporary output chunk ordering */ 1513 ochunks = (int *)hibernate_fchunk_area; 1514 1515 /* Piglet chunk ordering */ 1516 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1517 1518 /* Final chunk ordering */ 1519 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1520 1521 /* Map the chunk ordering region */ 1522 pmap_kenter_pa(hibernate_fchunk_area, 1523 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1524 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1525 VM_PROT_ALL); 1526 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1527 VM_PROT_ALL); 1528 1529 nchunks = hib_info->chunk_ctr; 1530 chunks = (struct hibernate_disk_chunk *)hibernate_chunktable_area; 1531 1532 /* Initially start all chunks as unplaced */ 1533 for (i = 0; i < nchunks; i++) 1534 chunks[i].flags = 0; 1535 1536 /* 1537 * Search the list for chunks that are outside the pig area. These 1538 * can be placed first in the final output list. 1539 */ 1540 for (i = 0; i < nchunks; i++) { 1541 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1542 ochunks[nochunks] = (u_int8_t)i; 1543 fchunks[nfchunks] = (u_int8_t)i; 1544 nochunks++; 1545 nfchunks++; 1546 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1547 } 1548 } 1549 1550 /* 1551 * Walk the ordering, place the chunks in ascending memory order. 1552 * Conflicts might arise, these are handled next. 1553 */ 1554 do { 1555 img_index = -1; 1556 found = 0; 1557 j = -1; 1558 for (i = 0; i < nchunks; i++) 1559 if (chunks[i].base < img_index && 1560 chunks[i].flags == 0 ) { 1561 j = i; 1562 img_index = chunks[i].base; 1563 } 1564 1565 if (j != -1) { 1566 found = 1; 1567 ochunks[nochunks] = (short)j; 1568 nochunks++; 1569 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1570 } 1571 } while (found); 1572 1573 img_index = pig_start; 1574 1575 /* 1576 * Identify chunk output conflicts (chunks whose pig load area 1577 * corresponds to their original memory placement location) 1578 */ 1579 for (i = 0; i < nochunks ; i++) { 1580 overlap = 0; 1581 r1s = img_index; 1582 r1e = img_index + chunks[ochunks[i]].compressed_size; 1583 r2s = chunks[ochunks[i]].base; 1584 r2e = chunks[ochunks[i]].end; 1585 1586 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1587 if (overlap) 1588 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1589 img_index += chunks[ochunks[i]].compressed_size; 1590 } 1591 1592 /* 1593 * Prepare the final output chunk list. Calculate an output 1594 * inflate strategy for overlapping chunks if needed. 1595 */ 1596 img_index = pig_start; 1597 for (i = 0; i < nochunks ; i++) { 1598 /* 1599 * If a conflict is detected, consume enough compressed 1600 * output chunks to fill the piglet 1601 */ 1602 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1603 copy_start = piglet_base; 1604 copy_end = piglet_end; 1605 piglet_cur = piglet_base; 1606 npchunks = 0; 1607 j = i; 1608 while (copy_start < copy_end && j < nochunks) { 1609 piglet_cur += chunks[ochunks[j]].compressed_size; 1610 pchunks[npchunks] = ochunks[j]; 1611 npchunks++; 1612 copy_start += chunks[ochunks[j]].compressed_size; 1613 img_index += chunks[ochunks[j]].compressed_size; 1614 i++; 1615 j++; 1616 } 1617 1618 piglet_cur = piglet_base; 1619 for (j = 0; j < npchunks; j++) { 1620 piglet_cur += chunks[pchunks[j]].compressed_size; 1621 fchunks[nfchunks] = pchunks[j]; 1622 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1623 nfchunks++; 1624 } 1625 } else { 1626 /* 1627 * No conflict, chunk can be added without copying 1628 */ 1629 if ((chunks[ochunks[i]].flags & 1630 HIBERNATE_CHUNK_USED) == 0) { 1631 fchunks[nfchunks] = ochunks[i]; 1632 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1633 nfchunks++; 1634 } 1635 img_index += chunks[ochunks[i]].compressed_size; 1636 } 1637 } 1638 1639 img_index = pig_start; 1640 for (i = 0; i < nfchunks; i++) { 1641 piglet_cur = piglet_base; 1642 img_index += chunks[fchunks[i]].compressed_size; 1643 } 1644 1645 img_cur = pig_start; 1646 1647 for (i = 0; i < nfchunks; i++) { 1648 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1649 processed = 0; 1650 compressed_size = chunks[fchunks[i]].compressed_size; 1651 1652 while (processed < compressed_size) { 1653 pmap_kenter_pa(hibernate_temp_page, img_cur, 1654 VM_PROT_ALL); 1655 pmap_kenter_pa(hibernate_temp_page + PAGE_SIZE, 1656 img_cur+PAGE_SIZE, VM_PROT_ALL); 1657 1658 /* XXX - not needed on all archs */ 1659 pmap_activate(curproc); 1660 if (compressed_size - processed >= PAGE_SIZE) 1661 read_size = PAGE_SIZE; 1662 else 1663 read_size = compressed_size - processed; 1664 1665 hibernate_read_block(hib_info, blkctr, read_size, 1666 hibernate_temp_page + (img_cur & PAGE_MASK)); 1667 1668 blkctr += (read_size / hib_info->secsize); 1669 1670 hibernate_flush(); 1671 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1672 pmap_kremove(hibernate_temp_page + PAGE_SIZE, 1673 PAGE_SIZE); 1674 processed += read_size; 1675 img_cur += read_size; 1676 } 1677 } 1678 1679 return (0); 1680 } 1681 1682 /* 1683 * Hibernating a machine comprises the following operations: 1684 * 1. Calculating this machine's hibernate_info information 1685 * 2. Allocating a piglet and saving the piglet's physaddr 1686 * 3. Calculating the memory chunks 1687 * 4. Writing the compressed chunks to disk 1688 * 5. Writing the chunk table 1689 * 6. Writing the signature block (hibernate_info) 1690 * 1691 * On most architectures, the function calling hibernate_suspend would 1692 * then power off the machine using some MD-specific implementation. 1693 */ 1694 int 1695 hibernate_suspend(void) 1696 { 1697 union hibernate_info hib_info; 1698 1699 /* 1700 * Calculate memory ranges, swap offsets, etc. 1701 * This also allocates a piglet whose physaddr is stored in 1702 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1703 */ 1704 if (get_hibernate_info(&hib_info, 1)) 1705 return (1); 1706 1707 global_piglet_va = hib_info.piglet_va; 1708 1709 /* XXX - Won't need to zero everything with RLE */ 1710 uvm_pmr_zero_everything(); 1711 1712 if (hibernate_write_chunks(&hib_info)) 1713 return (1); 1714 1715 if (hibernate_write_chunktable(&hib_info)) 1716 return (1); 1717 1718 if (hibernate_write_signature(&hib_info)) 1719 return (1); 1720 1721 delay(500000); 1722 return (0); 1723 } 1724 1725 /* 1726 * Free items allocated during hibernate 1727 */ 1728 void 1729 hibernate_free(void) 1730 { 1731 uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE); 1732 1733 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1734 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1735 pmap_update(pmap_kernel()); 1736 1737 km_free((void *)hibernate_fchunk_area, 3*PAGE_SIZE, &kv_any, &kp_none); 1738 km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none); 1739 km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none); 1740 } 1741