1 /* $OpenBSD: subr_hibernate.c,v 1.39 2012/07/08 21:11:49 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 /* Temporary vaddr ranges used during hibernate */ 36 vaddr_t hibernate_temp_page; 37 vaddr_t hibernate_copy_page; 38 39 /* Hibernate info as read from disk during resume */ 40 union hibernate_info disk_hiber_info; 41 paddr_t global_pig_start; 42 vaddr_t global_piglet_va; 43 44 /* 45 * Hib alloc enforced alignment. 46 */ 47 #define HIB_ALIGN 8 /* bytes alignment */ 48 49 /* 50 * sizeof builtin operation, but with alignment constraint. 51 */ 52 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 53 54 struct hiballoc_entry { 55 size_t hibe_use; 56 size_t hibe_space; 57 RB_ENTRY(hiballoc_entry) hibe_entry; 58 }; 59 60 /* 61 * Compare hiballoc entries based on the address they manage. 62 * 63 * Since the address is fixed, relative to struct hiballoc_entry, 64 * we just compare the hiballoc_entry pointers. 65 */ 66 static __inline int 67 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 68 { 69 return l < r ? -1 : (l > r); 70 } 71 72 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 73 74 /* 75 * Given a hiballoc entry, return the address it manages. 76 */ 77 static __inline void * 78 hib_entry_to_addr(struct hiballoc_entry *entry) 79 { 80 caddr_t addr; 81 82 addr = (caddr_t)entry; 83 addr += HIB_SIZEOF(struct hiballoc_entry); 84 return addr; 85 } 86 87 /* 88 * Given an address, find the hiballoc that corresponds. 89 */ 90 static __inline struct hiballoc_entry* 91 hib_addr_to_entry(void *addr_param) 92 { 93 caddr_t addr; 94 95 addr = (caddr_t)addr_param; 96 addr -= HIB_SIZEOF(struct hiballoc_entry); 97 return (struct hiballoc_entry*)addr; 98 } 99 100 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 101 102 /* 103 * Allocate memory from the arena. 104 * 105 * Returns NULL if no memory is available. 106 */ 107 void * 108 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 109 { 110 struct hiballoc_entry *entry, *new_entry; 111 size_t find_sz; 112 113 /* 114 * Enforce alignment of HIB_ALIGN bytes. 115 * 116 * Note that, because the entry is put in front of the allocation, 117 * 0-byte allocations are guaranteed a unique address. 118 */ 119 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 120 121 /* 122 * Find an entry with hibe_space >= find_sz. 123 * 124 * If the root node is not large enough, we switch to tree traversal. 125 * Because all entries are made at the bottom of the free space, 126 * traversal from the end has a slightly better chance of yielding 127 * a sufficiently large space. 128 */ 129 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 130 entry = RB_ROOT(&arena->hib_addrs); 131 if (entry != NULL && entry->hibe_space < find_sz) { 132 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 133 if (entry->hibe_space >= find_sz) 134 break; 135 } 136 } 137 138 /* 139 * Insufficient or too fragmented memory. 140 */ 141 if (entry == NULL) 142 return NULL; 143 144 /* 145 * Create new entry in allocated space. 146 */ 147 new_entry = (struct hiballoc_entry*)( 148 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 149 new_entry->hibe_space = entry->hibe_space - find_sz; 150 new_entry->hibe_use = alloc_sz; 151 152 /* 153 * Insert entry. 154 */ 155 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 156 panic("hib_alloc: insert failure"); 157 entry->hibe_space = 0; 158 159 /* Return address managed by entry. */ 160 return hib_entry_to_addr(new_entry); 161 } 162 163 /* 164 * Free a pointer previously allocated from this arena. 165 * 166 * If addr is NULL, this will be silently accepted. 167 */ 168 void 169 hib_free(struct hiballoc_arena *arena, void *addr) 170 { 171 struct hiballoc_entry *entry, *prev; 172 173 if (addr == NULL) 174 return; 175 176 /* 177 * Derive entry from addr and check it is really in this arena. 178 */ 179 entry = hib_addr_to_entry(addr); 180 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 181 panic("hib_free: freed item %p not in hib arena", addr); 182 183 /* 184 * Give the space in entry to its predecessor. 185 * 186 * If entry has no predecessor, change its used space into free space 187 * instead. 188 */ 189 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 190 if (prev != NULL && 191 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 192 prev->hibe_use + prev->hibe_space) == entry) { 193 /* Merge entry. */ 194 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 195 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 196 entry->hibe_use + entry->hibe_space; 197 } else { 198 /* Flip used memory to free space. */ 199 entry->hibe_space += entry->hibe_use; 200 entry->hibe_use = 0; 201 } 202 } 203 204 /* 205 * Initialize hiballoc. 206 * 207 * The allocator will manage memmory at ptr, which is len bytes. 208 */ 209 int 210 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 211 { 212 struct hiballoc_entry *entry; 213 caddr_t ptr; 214 size_t len; 215 216 RB_INIT(&arena->hib_addrs); 217 218 /* 219 * Hib allocator enforces HIB_ALIGN alignment. 220 * Fixup ptr and len. 221 */ 222 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 223 len = p_len - ((size_t)ptr - (size_t)p_ptr); 224 len &= ~((size_t)HIB_ALIGN - 1); 225 226 /* 227 * Insufficient memory to be able to allocate and also do bookkeeping. 228 */ 229 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 230 return ENOMEM; 231 232 /* 233 * Create entry describing space. 234 */ 235 entry = (struct hiballoc_entry*)ptr; 236 entry->hibe_use = 0; 237 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 238 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 239 240 return 0; 241 } 242 243 /* 244 * Zero all free memory. 245 */ 246 void 247 uvm_pmr_zero_everything(void) 248 { 249 struct uvm_pmemrange *pmr; 250 struct vm_page *pg; 251 int i; 252 253 uvm_lock_fpageq(); 254 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 255 /* Zero single pages. */ 256 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 257 != NULL) { 258 uvm_pmr_remove(pmr, pg); 259 uvm_pagezero(pg); 260 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 261 uvmexp.zeropages++; 262 uvm_pmr_insert(pmr, pg, 0); 263 } 264 265 /* Zero multi page ranges. */ 266 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 267 != NULL) { 268 pg--; /* Size tree always has second page. */ 269 uvm_pmr_remove(pmr, pg); 270 for (i = 0; i < pg->fpgsz; i++) { 271 uvm_pagezero(&pg[i]); 272 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 273 uvmexp.zeropages++; 274 } 275 uvm_pmr_insert(pmr, pg, 0); 276 } 277 } 278 uvm_unlock_fpageq(); 279 } 280 281 /* 282 * Mark all memory as dirty. 283 * 284 * Used to inform the system that the clean memory isn't clean for some 285 * reason, for example because we just came back from hibernate. 286 */ 287 void 288 uvm_pmr_dirty_everything(void) 289 { 290 struct uvm_pmemrange *pmr; 291 struct vm_page *pg; 292 int i; 293 294 uvm_lock_fpageq(); 295 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 296 /* Dirty single pages. */ 297 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 298 != NULL) { 299 uvm_pmr_remove(pmr, pg); 300 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 301 uvm_pmr_insert(pmr, pg, 0); 302 } 303 304 /* Dirty multi page ranges. */ 305 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 306 != NULL) { 307 pg--; /* Size tree always has second page. */ 308 uvm_pmr_remove(pmr, pg); 309 for (i = 0; i < pg->fpgsz; i++) 310 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvm_pmr_insert(pmr, pg, 0); 312 } 313 } 314 315 uvmexp.zeropages = 0; 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Allocate the highest address that can hold sz. 321 * 322 * sz in bytes. 323 */ 324 int 325 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 326 { 327 struct uvm_pmemrange *pmr; 328 struct vm_page *pig_pg, *pg; 329 330 /* 331 * Convert sz to pages, since that is what pmemrange uses internally. 332 */ 333 sz = atop(round_page(sz)); 334 335 uvm_lock_fpageq(); 336 337 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 338 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 339 if (pig_pg->fpgsz >= sz) { 340 goto found; 341 } 342 } 343 } 344 345 /* 346 * Allocation failure. 347 */ 348 uvm_unlock_fpageq(); 349 return ENOMEM; 350 351 found: 352 /* Remove page from freelist. */ 353 uvm_pmr_remove_size(pmr, pig_pg); 354 pig_pg->fpgsz -= sz; 355 pg = pig_pg + pig_pg->fpgsz; 356 if (pig_pg->fpgsz == 0) 357 uvm_pmr_remove_addr(pmr, pig_pg); 358 else 359 uvm_pmr_insert_size(pmr, pig_pg); 360 361 uvmexp.free -= sz; 362 *addr = VM_PAGE_TO_PHYS(pg); 363 364 /* 365 * Update pg flags. 366 * 367 * Note that we trash the sz argument now. 368 */ 369 while (sz > 0) { 370 KASSERT(pg->pg_flags & PQ_FREE); 371 372 atomic_clearbits_int(&pg->pg_flags, 373 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 374 375 if (pg->pg_flags & PG_ZERO) 376 uvmexp.zeropages -= sz; 377 atomic_clearbits_int(&pg->pg_flags, 378 PG_ZERO|PQ_FREE); 379 380 pg->uobject = NULL; 381 pg->uanon = NULL; 382 pg->pg_version++; 383 384 /* 385 * Next. 386 */ 387 pg++; 388 sz--; 389 } 390 391 /* Return. */ 392 uvm_unlock_fpageq(); 393 return 0; 394 } 395 396 /* 397 * Allocate a piglet area. 398 * 399 * This is as low as possible. 400 * Piglets are aligned. 401 * 402 * sz and align in bytes. 403 * 404 * The call will sleep for the pagedaemon to attempt to free memory. 405 * The pagedaemon may decide its not possible to free enough memory, causing 406 * the allocation to fail. 407 */ 408 int 409 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 410 { 411 paddr_t pg_addr, piglet_addr; 412 struct uvm_pmemrange *pmr; 413 struct vm_page *pig_pg, *pg; 414 struct pglist pageq; 415 int pdaemon_woken; 416 vaddr_t piglet_va; 417 418 KASSERT((align & (align - 1)) == 0); 419 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 420 421 /* 422 * Fixup arguments: align must be at least PAGE_SIZE, 423 * sz will be converted to pagecount, since that is what 424 * pmemrange uses internally. 425 */ 426 if (align < PAGE_SIZE) 427 align = PAGE_SIZE; 428 sz = round_page(sz); 429 430 uvm_lock_fpageq(); 431 432 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 433 pmr_use) { 434 retry: 435 /* 436 * Search for a range with enough space. 437 * Use the address tree, to ensure the range is as low as 438 * possible. 439 */ 440 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 441 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 442 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 443 444 if (atop(pg_addr) + pig_pg->fpgsz >= 445 atop(piglet_addr) + atop(sz)) 446 goto found; 447 } 448 } 449 450 /* 451 * Try to coerse the pagedaemon into freeing memory 452 * for the piglet. 453 * 454 * pdaemon_woken is set to prevent the code from 455 * falling into an endless loop. 456 */ 457 if (!pdaemon_woken) { 458 pdaemon_woken = 1; 459 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 460 sz, UVM_PLA_FAILOK) == 0) 461 goto retry; 462 } 463 464 /* Return failure. */ 465 uvm_unlock_fpageq(); 466 return ENOMEM; 467 468 found: 469 /* 470 * Extract piglet from pigpen. 471 */ 472 TAILQ_INIT(&pageq); 473 uvm_pmr_extract_range(pmr, pig_pg, 474 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 475 476 *pa = piglet_addr; 477 uvmexp.free -= atop(sz); 478 479 /* 480 * Update pg flags. 481 * 482 * Note that we trash the sz argument now. 483 */ 484 TAILQ_FOREACH(pg, &pageq, pageq) { 485 KASSERT(pg->pg_flags & PQ_FREE); 486 487 atomic_clearbits_int(&pg->pg_flags, 488 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 489 490 if (pg->pg_flags & PG_ZERO) 491 uvmexp.zeropages--; 492 atomic_clearbits_int(&pg->pg_flags, 493 PG_ZERO|PQ_FREE); 494 495 pg->uobject = NULL; 496 pg->uanon = NULL; 497 pg->pg_version++; 498 } 499 500 uvm_unlock_fpageq(); 501 502 /* 503 * Now allocate a va. 504 * Use direct mappings for the pages. 505 */ 506 507 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 508 if (!piglet_va) { 509 uvm_pglistfree(&pageq); 510 return ENOMEM; 511 } 512 513 /* 514 * Map piglet to va. 515 */ 516 TAILQ_FOREACH(pg, &pageq, pageq) { 517 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 518 piglet_va += PAGE_SIZE; 519 } 520 pmap_update(pmap_kernel()); 521 522 return 0; 523 } 524 525 /* 526 * Free a piglet area. 527 */ 528 void 529 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 530 { 531 paddr_t pa; 532 struct vm_page *pg; 533 534 /* 535 * Fix parameters. 536 */ 537 sz = round_page(sz); 538 539 /* 540 * Find the first page in piglet. 541 * Since piglets are contiguous, the first pg is all we need. 542 */ 543 if (!pmap_extract(pmap_kernel(), va, &pa)) 544 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 545 pg = PHYS_TO_VM_PAGE(pa); 546 if (pg == NULL) 547 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 548 549 /* 550 * Unmap. 551 */ 552 pmap_kremove(va, sz); 553 pmap_update(pmap_kernel()); 554 555 /* 556 * Free the physical and virtual memory. 557 */ 558 uvm_pmr_freepages(pg, atop(sz)); 559 km_free((void *)va, sz, &kv_any, &kp_none); 560 } 561 562 /* 563 * Physmem RLE compression support. 564 * 565 * Given a physical page address, it will return the number of pages 566 * starting at the address, that are free. Clamps to the number of pages in 567 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 568 */ 569 int 570 uvm_page_rle(paddr_t addr) 571 { 572 struct vm_page *pg, *pg_end; 573 struct vm_physseg *vmp; 574 int pseg_idx, off_idx; 575 576 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 577 if (pseg_idx == -1) 578 return 0; 579 580 vmp = &vm_physmem[pseg_idx]; 581 pg = &vmp->pgs[off_idx]; 582 if (!(pg->pg_flags & PQ_FREE)) 583 return 0; 584 585 /* 586 * Search for the first non-free page after pg. 587 * Note that the page may not be the first page in a free pmemrange, 588 * therefore pg->fpgsz cannot be used. 589 */ 590 for (pg_end = pg; pg_end <= vmp->lastpg && 591 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 592 ; 593 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 594 } 595 596 /* 597 * Fills out the hibernate_info union pointed to by hiber_info 598 * with information about this machine (swap signature block 599 * offsets, number of memory ranges, kernel in use, etc) 600 */ 601 int 602 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 603 { 604 int chunktable_size; 605 struct disklabel dl; 606 char err_string[128], *dl_ret; 607 608 /* Determine I/O function to use */ 609 hiber_info->io_func = get_hibernate_io_function(); 610 if (hiber_info->io_func == NULL) 611 return (1); 612 613 /* Calculate hibernate device */ 614 hiber_info->device = swdevt[0].sw_dev; 615 616 /* Read disklabel (used to calculate signature and image offsets) */ 617 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 618 619 if (dl_ret) { 620 printf("Hibernate error reading disklabel: %s\n", dl_ret); 621 return (1); 622 } 623 624 hiber_info->secsize = dl.d_secsize; 625 626 /* Make sure the signature can fit in one block */ 627 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 628 629 /* Calculate swap offset from start of disk */ 630 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 631 632 /* Calculate signature block location */ 633 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 634 dl.d_partitions[1].p_size - 635 sizeof(union hibernate_info)/hiber_info->secsize; 636 637 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 638 639 /* Stash kernel version information */ 640 bzero(&hiber_info->kernel_version, 128); 641 bcopy(version, &hiber_info->kernel_version, 642 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 643 644 if (suspend) { 645 /* Allocate piglet region */ 646 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 647 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 648 HIBERNATE_CHUNK_SIZE)) { 649 printf("Hibernate failed to allocate the piglet\n"); 650 return (1); 651 } 652 hiber_info->io_page = (void *)hiber_info->piglet_va; 653 654 /* 655 * Initialize of the hibernate IO function (for drivers which 656 * need that) 657 */ 658 if (hiber_info->io_func(hiber_info->device, 0, 659 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 660 goto fail; 661 662 } else { 663 /* 664 * Resuming kernels use a regular I/O page since we won't 665 * have access to the suspended kernel's piglet VA at this 666 * point. No need to free this I/O page as it will vanish 667 * as part of the resume. 668 */ 669 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 670 if (!hiber_info->io_page) 671 return (1); 672 } 673 674 675 if (get_hibernate_info_md(hiber_info)) 676 goto fail; 677 678 /* Calculate memory image location */ 679 hiber_info->image_offset = dl.d_partitions[1].p_offset + 680 dl.d_partitions[1].p_size - 681 (hiber_info->image_size / hiber_info->secsize) - 682 sizeof(union hibernate_info)/hiber_info->secsize - 683 chunktable_size; 684 685 return (0); 686 fail: 687 if (suspend) 688 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 689 690 return (1); 691 } 692 693 /* 694 * Allocate nitems*size bytes from the hiballoc area presently in use 695 */ 696 void 697 *hibernate_zlib_alloc(void *unused, int nitems, int size) 698 { 699 struct hibernate_zlib_state *hibernate_state; 700 701 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 702 703 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 704 } 705 706 /* 707 * Free the memory pointed to by addr in the hiballoc area presently in 708 * use 709 */ 710 void 711 hibernate_zlib_free(void *unused, void *addr) 712 { 713 struct hibernate_zlib_state *hibernate_state; 714 715 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 716 717 hib_free(&hibernate_state->hiballoc_arena, addr); 718 } 719 720 /* 721 * Gets the next RLE value from the image stream 722 */ 723 int 724 hibernate_get_next_rle(void) 725 { 726 int rle, i; 727 struct hibernate_zlib_state *hibernate_state; 728 729 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 730 731 /* Read RLE code */ 732 hibernate_state->hib_stream.next_out = (char *)&rle; 733 hibernate_state->hib_stream.avail_out = sizeof(rle); 734 735 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 736 if (i != Z_OK && i != Z_STREAM_END) { 737 /* 738 * XXX - this will likely reboot/hang most machines, 739 * but there's not much else we can do here. 740 */ 741 panic("inflate rle error"); 742 } 743 744 /* Sanity check what RLE value we got */ 745 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 746 panic("invalid RLE code"); 747 748 if (i == Z_STREAM_END) 749 rle = -1; 750 751 return rle; 752 } 753 754 /* 755 * Inflate next page of data from the image stream 756 */ 757 int 758 hibernate_inflate_page(void) 759 { 760 struct hibernate_zlib_state *hibernate_state; 761 int i; 762 763 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 764 765 /* Set up the stream for inflate */ 766 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 767 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 768 769 /* Process next block of data */ 770 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 771 if (i != Z_OK && i != Z_STREAM_END) { 772 /* 773 * XXX - this will likely reboot/hang most machines, 774 * but there's not much else we can do here. 775 */ 776 777 panic("inflate error"); 778 } 779 780 /* We should always have extracted a full page ... */ 781 if (hibernate_state->hib_stream.avail_out != 0) 782 panic("incomplete page"); 783 784 return (i == Z_STREAM_END); 785 } 786 787 /* 788 * Inflate size bytes from src into dest, skipping any pages in 789 * [src..dest] that are special (see hibernate_inflate_skip) 790 * 791 * This function executes while using the resume-time stack 792 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 793 * will likely hang or reset the machine. 794 */ 795 void 796 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 797 paddr_t src, size_t size) 798 { 799 int rle, end_stream = 0 ; 800 struct hibernate_zlib_state *hibernate_state; 801 802 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 803 804 hibernate_state->hib_stream.next_in = (char *)src; 805 hibernate_state->hib_stream.avail_in = size; 806 807 do { 808 /* Flush cache and TLB */ 809 hibernate_flush(); 810 811 /* Consume RLE skipped pages */ 812 do { 813 rle = hibernate_get_next_rle(); 814 if (rle == -1) { 815 end_stream = 1; 816 goto next_page; 817 } 818 819 if (rle != 0) 820 dest += (rle * PAGE_SIZE); 821 822 } while (rle != 0); 823 824 /* 825 * Is this a special page? If yes, redirect the 826 * inflate output to a scratch page (eg, discard it) 827 */ 828 if (hibernate_inflate_skip(hiber_info, dest)) { 829 hibernate_enter_resume_mapping( 830 HIBERNATE_INFLATE_PAGE, 831 HIBERNATE_INFLATE_PAGE, 0); 832 } else { 833 hibernate_enter_resume_mapping( 834 HIBERNATE_INFLATE_PAGE, dest, 0); 835 } 836 837 hibernate_flush(); 838 end_stream = hibernate_inflate_page(); 839 840 next_page: 841 dest += PAGE_SIZE; 842 } while (!end_stream); 843 } 844 845 /* 846 * deflate from src into the I/O page, up to 'remaining' bytes 847 * 848 * Returns number of input bytes consumed, and may reset 849 * the 'remaining' parameter if not all the output space was consumed 850 * (this information is needed to know how much to write to disk 851 */ 852 size_t 853 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 854 size_t *remaining) 855 { 856 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 857 struct hibernate_zlib_state *hibernate_state; 858 859 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 860 861 /* Set up the stream for deflate */ 862 hibernate_state->hib_stream.next_in = (caddr_t)src; 863 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 864 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 865 (PAGE_SIZE - *remaining); 866 hibernate_state->hib_stream.avail_out = *remaining; 867 868 /* Process next block of data */ 869 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 870 panic("hibernate zlib deflate error"); 871 872 /* Update pointers and return number of bytes consumed */ 873 *remaining = hibernate_state->hib_stream.avail_out; 874 return (PAGE_SIZE - (src & PAGE_MASK)) - 875 hibernate_state->hib_stream.avail_in; 876 } 877 878 /* 879 * Write the hibernation information specified in hiber_info 880 * to the location in swap previously calculated (last block of 881 * swap), called the "signature block". 882 * 883 * Write the memory chunk table to the area in swap immediately 884 * preceding the signature block. 885 */ 886 int 887 hibernate_write_signature(union hibernate_info *hiber_info) 888 { 889 /* Write hibernate info to disk */ 890 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 891 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 892 hiber_info->io_page)); 893 } 894 895 /* 896 * Write the memory chunk table to the area in swap immediately 897 * preceding the signature block. The chunk table is stored 898 * in the piglet when this function is called. 899 */ 900 int 901 hibernate_write_chunktable(union hibernate_info *hiber_info) 902 { 903 struct hibernate_disk_chunk *chunks; 904 vaddr_t hibernate_chunk_table_start; 905 size_t hibernate_chunk_table_size; 906 daddr_t chunkbase; 907 int i; 908 909 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 910 911 chunkbase = hiber_info->sig_offset - 912 (hibernate_chunk_table_size / hiber_info->secsize); 913 914 hibernate_chunk_table_start = hiber_info->piglet_va + 915 HIBERNATE_CHUNK_SIZE; 916 917 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 918 HIBERNATE_CHUNK_SIZE); 919 920 /* Write chunk table */ 921 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 922 if (hiber_info->io_func(hiber_info->device, 923 chunkbase + (i/hiber_info->secsize), 924 (vaddr_t)(hibernate_chunk_table_start + i), 925 MAXPHYS, HIB_W, hiber_info->io_page)) 926 return (1); 927 } 928 929 return (0); 930 } 931 932 /* 933 * Write an empty hiber_info to the swap signature block, which is 934 * guaranteed to not match any valid hiber_info. 935 */ 936 int 937 hibernate_clear_signature(void) 938 { 939 union hibernate_info blank_hiber_info; 940 union hibernate_info hiber_info; 941 942 /* Zero out a blank hiber_info */ 943 bzero(&blank_hiber_info, sizeof(hiber_info)); 944 945 if (get_hibernate_info(&hiber_info, 0)) 946 return (1); 947 948 /* Write (zeroed) hibernate info to disk */ 949 if (hibernate_block_io(&hiber_info, 950 hiber_info.sig_offset - hiber_info.swap_offset, 951 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 952 panic("error hibernate write 6"); 953 954 return (0); 955 } 956 957 /* 958 * Check chunk range overlap when calculating whether or not to copy a 959 * compressed chunk to the piglet area before decompressing. 960 * 961 * returns zero if the ranges do not overlap, non-zero otherwise. 962 */ 963 int 964 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 965 { 966 /* case A : end of r1 overlaps start of r2 */ 967 if (r1s < r2s && r1e > r2s) 968 return (1); 969 970 /* case B : r1 entirely inside r2 */ 971 if (r1s >= r2s && r1e <= r2e) 972 return (1); 973 974 /* case C : r2 entirely inside r1 */ 975 if (r2s >= r1s && r2e <= r1e) 976 return (1); 977 978 /* case D : end of r2 overlaps start of r1 */ 979 if (r2s < r1s && r2e > r1s) 980 return (1); 981 982 return (0); 983 } 984 985 /* 986 * Compare two hibernate_infos to determine if they are the same (eg, 987 * we should be performing a hibernate resume on this machine. 988 * Not all fields are checked - just enough to verify that the machine 989 * has the same memory configuration and kernel as the one that 990 * wrote the signature previously. 991 */ 992 int 993 hibernate_compare_signature(union hibernate_info *mine, 994 union hibernate_info *disk) 995 { 996 u_int i; 997 998 if (mine->nranges != disk->nranges) 999 return (1); 1000 1001 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 1002 return (1); 1003 1004 for (i = 0; i < mine->nranges; i++) { 1005 if ((mine->ranges[i].base != disk->ranges[i].base) || 1006 (mine->ranges[i].end != disk->ranges[i].end) ) 1007 return (1); 1008 } 1009 1010 return (0); 1011 } 1012 1013 /* 1014 * Transfers xfer_size bytes between the hibernate device specified in 1015 * hib_info at offset blkctr and the vaddr specified at dest. 1016 * 1017 * Separate offsets and pages are used to handle misaligned reads (reads 1018 * that span a page boundary). 1019 * 1020 * blkctr specifies a relative offset (relative to the start of swap), 1021 * not an absolute disk offset 1022 * 1023 */ 1024 int 1025 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1026 size_t xfer_size, vaddr_t dest, int iswrite) 1027 { 1028 struct buf *bp; 1029 struct bdevsw *bdsw; 1030 int error; 1031 1032 bp = geteblk(xfer_size); 1033 bdsw = &bdevsw[major(hib_info->device)]; 1034 1035 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1036 if (error) { 1037 printf("hibernate_block_io open failed\n"); 1038 return (1); 1039 } 1040 1041 if (iswrite) 1042 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1043 1044 bp->b_bcount = xfer_size; 1045 bp->b_blkno = blkctr; 1046 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1047 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1048 bp->b_dev = hib_info->device; 1049 bp->b_cylinder = 0; 1050 (*bdsw->d_strategy)(bp); 1051 1052 error = biowait(bp); 1053 if (error) { 1054 printf("hibernate_block_io biowait failed %d\n", error); 1055 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1056 curproc); 1057 if (error) 1058 printf("hibernate_block_io error close failed\n"); 1059 return (1); 1060 } 1061 1062 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1063 if (error) { 1064 printf("hibernate_block_io close failed\n"); 1065 return (1); 1066 } 1067 1068 if (!iswrite) 1069 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1070 1071 bp->b_flags |= B_INVAL; 1072 brelse(bp); 1073 1074 return (0); 1075 } 1076 1077 /* 1078 * Reads the signature block from swap, checks against the current machine's 1079 * information. If the information matches, perform a resume by reading the 1080 * saved image into the pig area, and unpacking. 1081 */ 1082 void 1083 hibernate_resume(void) 1084 { 1085 union hibernate_info hiber_info; 1086 int s; 1087 1088 /* Get current running machine's hibernate info */ 1089 bzero(&hiber_info, sizeof(hiber_info)); 1090 if (get_hibernate_info(&hiber_info, 0)) 1091 return; 1092 1093 /* Read hibernate info from disk */ 1094 s = splbio(); 1095 1096 if (hibernate_block_io(&hiber_info, 1097 hiber_info.sig_offset - hiber_info.swap_offset, 1098 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1099 panic("error in hibernate read"); 1100 1101 /* 1102 * If on-disk and in-memory hibernate signatures match, 1103 * this means we should do a resume from hibernate. 1104 */ 1105 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1106 return; 1107 1108 uvm_pmr_zero_everything(); 1109 1110 /* Read the image from disk into the image (pig) area */ 1111 if (hibernate_read_image(&disk_hiber_info)) 1112 goto fail; 1113 1114 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1115 goto fail; 1116 1117 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) 1118 goto fail; 1119 1120 /* Point of no return ... */ 1121 1122 disable_intr(); 1123 cold = 1; 1124 1125 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); 1126 pmap_activate(curproc); 1127 1128 /* Switch stacks */ 1129 hibernate_switch_stack_machdep(); 1130 1131 /* 1132 * Image is now in high memory (pig area), copy to correct location 1133 * in memory. We'll eventually end up copying on top of ourself, but 1134 * we are assured the kernel code here is the same between the 1135 * hibernated and resuming kernel, and we are running on our own 1136 * stack, so the overwrite is ok. 1137 */ 1138 hibernate_unpack_image(&disk_hiber_info); 1139 1140 /* 1141 * Resume the loaded kernel by jumping to the MD resume vector. 1142 * We won't be returning from this call. 1143 */ 1144 hibernate_resume_machdep(); 1145 1146 fail: 1147 printf("Unable to resume hibernated image\n"); 1148 } 1149 1150 /* 1151 * Unpack image from pig area to original location by looping through the 1152 * list of output chunks in the order they should be restored (fchunks). 1153 * This ordering is used to avoid having inflate overwrite a chunk in the 1154 * middle of processing that chunk. This will, of course, happen during the 1155 * final output chunk, where we copy the chunk to the piglet area first, 1156 * before inflating. 1157 */ 1158 void 1159 hibernate_unpack_image(union hibernate_info *hiber_info) 1160 { 1161 struct hibernate_disk_chunk *chunks; 1162 union hibernate_info local_hiber_info; 1163 paddr_t image_cur = global_pig_start; 1164 int *fchunks, i; 1165 char *pva = (char *)hiber_info->piglet_va; 1166 struct hibernate_zlib_state *hibernate_state; 1167 1168 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1169 1170 /* Mask off based on arch-specific piglet page size */ 1171 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1172 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1173 1174 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1175 1176 /* Can't use hiber_info that's passed in after this point */ 1177 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1178 1179 hibernate_activate_resume_pt_machdep(); 1180 1181 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1182 /* Reset zlib for inflate */ 1183 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1184 panic("hibernate failed to reset zlib for inflate"); 1185 1186 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1187 image_cur); 1188 1189 image_cur += chunks[fchunks[i]].compressed_size; 1190 1191 } 1192 } 1193 1194 /* 1195 * Process a chunk by ensuring its proper placement, followed by unpacking 1196 */ 1197 void 1198 hibernate_process_chunk(union hibernate_info *hiber_info, 1199 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1200 { 1201 char *pva = (char *)hiber_info->piglet_va; 1202 1203 /* 1204 * If there is a conflict, copy the chunk to the piglet area 1205 * before unpacking it to its original location. 1206 */ 1207 if ((chunk->flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1208 hibernate_inflate_region(hiber_info, chunk->base, 1209 img_cur, chunk->compressed_size); 1210 else { 1211 bcopy((caddr_t)img_cur, 1212 pva + (HIBERNATE_CHUNK_SIZE * 2), 1213 chunk->compressed_size); 1214 hibernate_inflate_region(hiber_info, chunk->base, 1215 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1216 chunk->compressed_size); 1217 } 1218 } 1219 1220 /* 1221 * Write a compressed version of this machine's memory to disk, at the 1222 * precalculated swap offset: 1223 * 1224 * end of swap - signature block size - chunk table size - memory size 1225 * 1226 * The function begins by looping through each phys mem range, cutting each 1227 * one into MD sized chunks. These chunks are then compressed individually 1228 * and written out to disk, in phys mem order. Some chunks might compress 1229 * more than others, and for this reason, each chunk's size is recorded 1230 * in the chunk table, which is written to disk after the image has 1231 * properly been compressed and written (in hibernate_write_chunktable). 1232 * 1233 * When this function is called, the machine is nearly suspended - most 1234 * devices are quiesced/suspended, interrupts are off, and cold has 1235 * been set. This means that there can be no side effects once the 1236 * write has started, and the write function itself can also have no 1237 * side effects. This also means no printfs are permitted (since it 1238 * has side effects.) 1239 */ 1240 int 1241 hibernate_write_chunks(union hibernate_info *hiber_info) 1242 { 1243 paddr_t range_base, range_end, inaddr, temp_inaddr; 1244 size_t nblocks, out_remaining, used; 1245 struct hibernate_disk_chunk *chunks; 1246 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1247 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1248 int i, rle; 1249 struct hibernate_zlib_state *hibernate_state; 1250 1251 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1252 1253 hiber_info->chunk_ctr = 0; 1254 1255 /* 1256 * Allocate VA for the temp and copy page. 1257 * These will becomee part of the suspended kernel and will 1258 * be freed in hibernate_free, upon resume. 1259 */ 1260 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1261 &kp_none, &kd_nowait); 1262 if (!hibernate_temp_page) 1263 return (1); 1264 1265 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1266 &kp_none, &kd_nowait); 1267 if (!hibernate_copy_page) 1268 return (1); 1269 1270 pmap_kenter_pa(hibernate_copy_page, 1271 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1272 1273 /* XXX - not needed on all archs */ 1274 pmap_activate(curproc); 1275 1276 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1277 HIBERNATE_CHUNK_SIZE); 1278 1279 /* Calculate the chunk regions */ 1280 for (i = 0; i < hiber_info->nranges; i++) { 1281 range_base = hiber_info->ranges[i].base; 1282 range_end = hiber_info->ranges[i].end; 1283 1284 inaddr = range_base; 1285 1286 while (inaddr < range_end) { 1287 chunks[hiber_info->chunk_ctr].base = inaddr; 1288 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1289 chunks[hiber_info->chunk_ctr].end = inaddr + 1290 HIBERNATE_CHUNK_SIZE; 1291 else 1292 chunks[hiber_info->chunk_ctr].end = range_end; 1293 1294 inaddr += HIBERNATE_CHUNK_SIZE; 1295 hiber_info->chunk_ctr ++; 1296 } 1297 } 1298 1299 /* Compress and write the chunks in the chunktable */ 1300 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1301 range_base = chunks[i].base; 1302 range_end = chunks[i].end; 1303 1304 chunks[i].offset = blkctr; 1305 1306 /* Reset zlib for deflate */ 1307 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1308 return (1); 1309 1310 inaddr = range_base; 1311 1312 /* 1313 * For each range, loop through its phys mem region 1314 * and write out the chunks (the last chunk might be 1315 * smaller than the chunk size). 1316 */ 1317 while (inaddr < range_end) { 1318 out_remaining = PAGE_SIZE; 1319 while (out_remaining > 0 && inaddr < range_end) { 1320 1321 /* 1322 * Adjust for regions that are not evenly 1323 * divisible by PAGE_SIZE or overflowed 1324 * pages from the previous iteration. 1325 */ 1326 temp_inaddr = (inaddr & PAGE_MASK) + 1327 hibernate_copy_page; 1328 1329 if (hibernate_inflate_skip(hiber_info, inaddr)) 1330 rle = 1; 1331 else 1332 rle = uvm_page_rle(inaddr); 1333 1334 while (rle != 0 && inaddr < range_end) { 1335 hibernate_state->hib_stream.next_in = 1336 (char *)&rle; 1337 hibernate_state->hib_stream.avail_in = 1338 sizeof(rle); 1339 hibernate_state->hib_stream.next_out = 1340 (caddr_t)hibernate_io_page + 1341 (PAGE_SIZE - out_remaining); 1342 hibernate_state->hib_stream.avail_out = 1343 out_remaining; 1344 1345 if (deflate(&hibernate_state->hib_stream, 1346 Z_PARTIAL_FLUSH) != Z_OK) 1347 return (1); 1348 1349 out_remaining = 1350 hibernate_state->hib_stream.avail_out; 1351 inaddr += (rle * PAGE_SIZE); 1352 if (inaddr > range_end) 1353 inaddr = range_end; 1354 else 1355 rle = uvm_page_rle(inaddr); 1356 } 1357 1358 if (out_remaining == 0) { 1359 /* Filled up the page */ 1360 nblocks = PAGE_SIZE / hiber_info->secsize; 1361 1362 if (hiber_info->io_func(hiber_info->device, 1363 blkctr, (vaddr_t)hibernate_io_page, 1364 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1365 return (1); 1366 1367 blkctr += nblocks; 1368 out_remaining = PAGE_SIZE; 1369 } 1370 1371 /* Write '0' RLE code */ 1372 if (inaddr < range_end) { 1373 hibernate_state->hib_stream.next_in = 1374 (char *)&rle; 1375 hibernate_state->hib_stream.avail_in = 1376 sizeof(rle); 1377 hibernate_state->hib_stream.next_out = 1378 (caddr_t)hibernate_io_page + 1379 (PAGE_SIZE - out_remaining); 1380 hibernate_state->hib_stream.avail_out = 1381 out_remaining; 1382 1383 if (deflate(&hibernate_state->hib_stream, 1384 Z_PARTIAL_FLUSH) != Z_OK) 1385 return (1); 1386 1387 out_remaining = 1388 hibernate_state->hib_stream.avail_out; 1389 } 1390 1391 if (out_remaining == 0) { 1392 /* Filled up the page */ 1393 nblocks = PAGE_SIZE / hiber_info->secsize; 1394 1395 if (hiber_info->io_func(hiber_info->device, 1396 blkctr, (vaddr_t)hibernate_io_page, 1397 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1398 return (1); 1399 1400 blkctr += nblocks; 1401 out_remaining = PAGE_SIZE; 1402 } 1403 1404 /* Deflate from temp_inaddr to IO page */ 1405 if (inaddr != range_end) { 1406 pmap_kenter_pa(hibernate_temp_page, 1407 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1408 1409 /* XXX - not needed on all archs */ 1410 pmap_activate(curproc); 1411 1412 bcopy((caddr_t)hibernate_temp_page, 1413 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1414 inaddr += hibernate_deflate(hiber_info, 1415 temp_inaddr, &out_remaining); 1416 } 1417 } 1418 1419 if (out_remaining == 0) { 1420 /* Filled up the page */ 1421 nblocks = PAGE_SIZE / hiber_info->secsize; 1422 1423 if (hiber_info->io_func(hiber_info->device, 1424 blkctr, (vaddr_t)hibernate_io_page, 1425 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1426 return (1); 1427 1428 blkctr += nblocks; 1429 } 1430 } 1431 1432 if (inaddr != range_end) 1433 return (1); 1434 1435 /* 1436 * End of range. Round up to next secsize bytes 1437 * after finishing compress 1438 */ 1439 if (out_remaining == 0) 1440 out_remaining = PAGE_SIZE; 1441 1442 /* Finish compress */ 1443 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1444 hibernate_state->hib_stream.avail_in = 0; 1445 hibernate_state->hib_stream.next_out = 1446 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1447 hibernate_state->hib_stream.avail_out = out_remaining; 1448 1449 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1450 Z_STREAM_END) 1451 return (1); 1452 1453 out_remaining = hibernate_state->hib_stream.avail_out; 1454 1455 used = PAGE_SIZE - out_remaining; 1456 nblocks = used / hiber_info->secsize; 1457 1458 /* Round up to next block if needed */ 1459 if (used % hiber_info->secsize != 0) 1460 nblocks ++; 1461 1462 /* Write final block(s) for this chunk */ 1463 if (hiber_info->io_func(hiber_info->device, blkctr, 1464 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1465 HIB_W, hiber_info->io_page)) 1466 return (1); 1467 1468 blkctr += nblocks; 1469 1470 offset = blkctr; 1471 chunks[i].compressed_size = (offset - chunks[i].offset) * 1472 hiber_info->secsize; 1473 } 1474 1475 return (0); 1476 } 1477 1478 /* 1479 * Reset the zlib stream state and allocate a new hiballoc area for either 1480 * inflate or deflate. This function is called once for each hibernate chunk. 1481 * Calling hiballoc_init multiple times is acceptable since the memory it is 1482 * provided is unmanaged memory (stolen). We use the memory provided to us 1483 * by the piglet allocated via the supplied hiber_info. 1484 */ 1485 int 1486 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1487 { 1488 vaddr_t hibernate_zlib_start; 1489 size_t hibernate_zlib_size; 1490 char *pva = (char *)hiber_info->piglet_va; 1491 struct hibernate_zlib_state *hibernate_state; 1492 1493 hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1494 1495 if(!deflate) 1496 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1497 1498 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1499 hibernate_zlib_size = 80 * PAGE_SIZE; 1500 1501 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1502 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1503 1504 /* Set up stream structure */ 1505 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1506 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1507 1508 /* Initialize the hiballoc arena for zlib allocs/frees */ 1509 hiballoc_init(&hibernate_state->hiballoc_arena, 1510 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1511 1512 if (deflate) { 1513 return deflateInit(&hibernate_state->hib_stream, 1514 Z_BEST_SPEED); 1515 } else 1516 return inflateInit(&hibernate_state->hib_stream); 1517 } 1518 1519 /* 1520 * Reads the hibernated memory image from disk, whose location and 1521 * size are recorded in hiber_info. Begin by reading the persisted 1522 * chunk table, which records the original chunk placement location 1523 * and compressed size for each. Next, allocate a pig region of 1524 * sufficient size to hold the compressed image. Next, read the 1525 * chunks into the pig area (calling hibernate_read_chunks to do this), 1526 * and finally, if all of the above succeeds, clear the hibernate signature. 1527 * The function will then return to hibernate_resume, which will proceed 1528 * to unpack the pig image to the correct place in memory. 1529 */ 1530 int 1531 hibernate_read_image(union hibernate_info *hiber_info) 1532 { 1533 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1534 paddr_t image_start, image_end, pig_start, pig_end; 1535 struct hibernate_disk_chunk *chunks; 1536 daddr_t blkctr; 1537 vaddr_t chunktable = (vaddr_t)NULL; 1538 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1539 HIBERNATE_CHUNK_SIZE; 1540 int i; 1541 1542 pmap_activate(curproc); 1543 1544 /* Calculate total chunk table size in disk blocks */ 1545 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1546 1547 blkctr = hiber_info->sig_offset - chunktable_size - 1548 hiber_info->swap_offset; 1549 1550 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1551 &kp_none, &kd_nowait); 1552 1553 if (!chunktable) 1554 return (1); 1555 1556 /* Read the chunktable from disk into the piglet chunktable */ 1557 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1558 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1559 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1560 pmap_update(pmap_kernel()); 1561 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1562 chunktable + i, 0); 1563 } 1564 1565 blkctr = hiber_info->image_offset; 1566 compressed_size = 0; 1567 1568 chunks = (struct hibernate_disk_chunk *)chunktable; 1569 1570 for (i = 0; i < hiber_info->chunk_ctr; i++) 1571 compressed_size += chunks[i].compressed_size; 1572 1573 disk_size = compressed_size; 1574 1575 /* Allocate the pig area */ 1576 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1577 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1578 return (1); 1579 1580 pig_end = pig_start + pig_sz; 1581 1582 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1583 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1584 image_start = pig_start; 1585 1586 image_start = image_end - disk_size; 1587 1588 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1589 chunks); 1590 1591 pmap_kremove(chunktable, PAGE_SIZE); 1592 pmap_update(pmap_kernel()); 1593 1594 /* Prepare the resume time pmap/page table */ 1595 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1596 1597 /* Read complete, clear the signature and return */ 1598 return hibernate_clear_signature(); 1599 } 1600 1601 /* 1602 * Read the hibernated memory chunks from disk (chunk information at this 1603 * point is stored in the piglet) into the pig area specified by 1604 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1605 * only chunk with overlap possibilities. 1606 */ 1607 int 1608 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1609 paddr_t pig_end, size_t image_compr_size, 1610 struct hibernate_disk_chunk *chunks) 1611 { 1612 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1613 paddr_t copy_start, copy_end, piglet_cur; 1614 paddr_t piglet_base = hib_info->piglet_pa; 1615 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1616 daddr_t blkctr; 1617 size_t processed, compressed_size, read_size; 1618 int i, j, overlap, found, nchunks; 1619 int nochunks = 0, nfchunks = 0, npchunks = 0; 1620 int *ochunks, *pchunks, *fchunks; 1621 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1622 1623 global_pig_start = pig_start; 1624 1625 /* XXX - dont need this on all archs */ 1626 pmap_activate(curproc); 1627 1628 /* 1629 * These mappings go into the resuming kernel's page table, and are 1630 * used only during image read. They dissappear from existence 1631 * when the suspended kernel is unpacked on top of us. 1632 */ 1633 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1634 if (!tempva) 1635 return (1); 1636 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1637 &kp_none, &kd_nowait); 1638 if (!hibernate_fchunk_area) 1639 return (1); 1640 1641 /* Temporary output chunk ordering VA */ 1642 ochunks = (int *)hibernate_fchunk_area; 1643 1644 /* Piglet chunk ordering VA */ 1645 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1646 1647 /* Final chunk ordering VA */ 1648 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1649 1650 /* Map the chunk ordering region */ 1651 pmap_kenter_pa(hibernate_fchunk_area, 1652 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1653 pmap_update(pmap_kernel()); 1654 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1655 VM_PROT_ALL); 1656 pmap_update(pmap_kernel()); 1657 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1658 VM_PROT_ALL); 1659 pmap_update(pmap_kernel()); 1660 1661 nchunks = hib_info->chunk_ctr; 1662 1663 /* Initially start all chunks as unplaced */ 1664 for (i = 0; i < nchunks; i++) 1665 chunks[i].flags = 0; 1666 1667 /* 1668 * Search the list for chunks that are outside the pig area. These 1669 * can be placed first in the final output list. 1670 */ 1671 for (i = 0; i < nchunks; i++) { 1672 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1673 ochunks[nochunks] = i; 1674 fchunks[nfchunks] = i; 1675 nochunks++; 1676 nfchunks++; 1677 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1678 } 1679 } 1680 1681 /* 1682 * Walk the ordering, place the chunks in ascending memory order. 1683 * Conflicts might arise, these are handled next. 1684 */ 1685 do { 1686 img_index = -1; 1687 found = 0; 1688 j = -1; 1689 for (i = 0; i < nchunks; i++) 1690 if (chunks[i].base < img_index && 1691 chunks[i].flags == 0 ) { 1692 j = i; 1693 img_index = chunks[i].base; 1694 } 1695 1696 if (j != -1) { 1697 found = 1; 1698 ochunks[nochunks] = (short)j; 1699 nochunks++; 1700 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1701 } 1702 } while (found); 1703 1704 img_index = pig_start; 1705 1706 /* 1707 * Identify chunk output conflicts (chunks whose pig load area 1708 * corresponds to their original memory placement location) 1709 */ 1710 for (i = 0; i < nochunks ; i++) { 1711 overlap = 0; 1712 r1s = img_index; 1713 r1e = img_index + chunks[ochunks[i]].compressed_size; 1714 r2s = chunks[ochunks[i]].base; 1715 r2e = chunks[ochunks[i]].end; 1716 1717 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1718 if (overlap) 1719 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1720 img_index += chunks[ochunks[i]].compressed_size; 1721 } 1722 1723 /* 1724 * Prepare the final output chunk list. Calculate an output 1725 * inflate strategy for overlapping chunks if needed. 1726 */ 1727 img_index = pig_start; 1728 for (i = 0; i < nochunks ; i++) { 1729 /* 1730 * If a conflict is detected, consume enough compressed 1731 * output chunks to fill the piglet 1732 */ 1733 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1734 copy_start = piglet_base; 1735 copy_end = piglet_end; 1736 piglet_cur = piglet_base; 1737 npchunks = 0; 1738 j = i; 1739 1740 while (copy_start < copy_end && j < nochunks) { 1741 piglet_cur += chunks[ochunks[j]].compressed_size; 1742 pchunks[npchunks] = ochunks[j]; 1743 npchunks++; 1744 copy_start += chunks[ochunks[j]].compressed_size; 1745 img_index += chunks[ochunks[j]].compressed_size; 1746 i++; 1747 j++; 1748 } 1749 1750 piglet_cur = piglet_base; 1751 for (j = 0; j < npchunks; j++) { 1752 piglet_cur += chunks[pchunks[j]].compressed_size; 1753 fchunks[nfchunks] = pchunks[j]; 1754 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1755 nfchunks++; 1756 } 1757 } else { 1758 /* 1759 * No conflict, chunk can be added without copying 1760 */ 1761 if ((chunks[ochunks[i]].flags & 1762 HIBERNATE_CHUNK_USED) == 0) { 1763 fchunks[nfchunks] = ochunks[i]; 1764 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1765 nfchunks++; 1766 } 1767 img_index += chunks[ochunks[i]].compressed_size; 1768 } 1769 } 1770 1771 img_index = pig_start; 1772 for (i = 0; i < nfchunks; i++) { 1773 piglet_cur = piglet_base; 1774 img_index += chunks[fchunks[i]].compressed_size; 1775 } 1776 1777 img_cur = pig_start; 1778 1779 for (i = 0; i < nfchunks; i++) { 1780 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1781 processed = 0; 1782 compressed_size = chunks[fchunks[i]].compressed_size; 1783 1784 while (processed < compressed_size) { 1785 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1786 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1787 VM_PROT_ALL); 1788 pmap_update(pmap_kernel()); 1789 1790 if (compressed_size - processed >= PAGE_SIZE) 1791 read_size = PAGE_SIZE; 1792 else 1793 read_size = compressed_size - processed; 1794 1795 hibernate_block_io(hib_info, blkctr, read_size, 1796 tempva + (img_cur & PAGE_MASK), 0); 1797 1798 blkctr += (read_size / hib_info->secsize); 1799 1800 hibernate_flush(); 1801 pmap_kremove(tempva, PAGE_SIZE); 1802 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1803 processed += read_size; 1804 img_cur += read_size; 1805 } 1806 } 1807 1808 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1809 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1810 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1811 pmap_update(pmap_kernel()); 1812 1813 return (0); 1814 } 1815 1816 /* 1817 * Hibernating a machine comprises the following operations: 1818 * 1. Calculating this machine's hibernate_info information 1819 * 2. Allocating a piglet and saving the piglet's physaddr 1820 * 3. Calculating the memory chunks 1821 * 4. Writing the compressed chunks to disk 1822 * 5. Writing the chunk table 1823 * 6. Writing the signature block (hibernate_info) 1824 * 1825 * On most architectures, the function calling hibernate_suspend would 1826 * then power off the machine using some MD-specific implementation. 1827 */ 1828 int 1829 hibernate_suspend(void) 1830 { 1831 union hibernate_info hib_info; 1832 1833 /* 1834 * Calculate memory ranges, swap offsets, etc. 1835 * This also allocates a piglet whose physaddr is stored in 1836 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1837 */ 1838 if (get_hibernate_info(&hib_info, 1)) 1839 return (1); 1840 1841 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); 1842 pmap_activate(curproc); 1843 1844 /* Stash the piglet VA so we can free it in the resuming kernel */ 1845 global_piglet_va = hib_info.piglet_va; 1846 1847 if (hibernate_write_chunks(&hib_info)) 1848 return (1); 1849 1850 if (hibernate_write_chunktable(&hib_info)) 1851 return (1); 1852 1853 if (hibernate_write_signature(&hib_info)) 1854 return (1); 1855 1856 delay(500000); 1857 return (0); 1858 } 1859 1860 /* 1861 * Free items allocated by hibernate_suspend() 1862 */ 1863 void 1864 hibernate_free(void) 1865 { 1866 if (global_piglet_va) 1867 uvm_pmr_free_piglet(global_piglet_va, 1868 3*HIBERNATE_CHUNK_SIZE); 1869 1870 if (hibernate_copy_page) 1871 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1872 if (hibernate_temp_page) 1873 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1874 1875 pmap_update(pmap_kernel()); 1876 1877 if (hibernate_copy_page) 1878 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1879 &kv_any, &kp_none); 1880 if (hibernate_temp_page) 1881 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1882 &kv_any, &kp_none); 1883 1884 global_piglet_va = 0; 1885 hibernate_copy_page = 0; 1886 hibernate_temp_page = 0; 1887 } 1888