1 /* $OpenBSD: subr_hibernate.c,v 1.97 2014/07/16 07:42:51 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE RLE utility page 54 * 29*PAGE_SIZE start of hiballoc area 55 * 109*PAGE_SIZE end of hiballoc area (80 pages) 56 * ... unused 57 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 58 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 59 * 4*HIBERNATE_CHUNK_SIZE end of piglet 60 */ 61 62 /* Temporary vaddr ranges used during hibernate */ 63 vaddr_t hibernate_temp_page; 64 vaddr_t hibernate_copy_page; 65 vaddr_t hibernate_rle_page; 66 67 /* Hibernate info as read from disk during resume */ 68 union hibernate_info disk_hib; 69 paddr_t global_pig_start; 70 vaddr_t global_piglet_va; 71 72 /* #define HIB_DEBUG */ 73 #ifdef HIB_DEBUG 74 int hib_debug = 99; 75 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 76 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 77 #else 78 #define DPRINTF(x...) 79 #define DNPRINTF(n,x...) 80 #endif 81 82 #ifndef NO_PROPOLICE 83 extern long __guard_local; 84 #endif /* ! NO_PROPOLICE */ 85 86 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 87 int hibernate_calc_rle(paddr_t, paddr_t); 88 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 89 size_t *); 90 91 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 92 93 /* 94 * Hib alloc enforced alignment. 95 */ 96 #define HIB_ALIGN 8 /* bytes alignment */ 97 98 /* 99 * sizeof builtin operation, but with alignment constraint. 100 */ 101 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 102 103 struct hiballoc_entry { 104 size_t hibe_use; 105 size_t hibe_space; 106 RB_ENTRY(hiballoc_entry) hibe_entry; 107 }; 108 109 /* 110 * Sort hibernate memory ranges by ascending PA 111 */ 112 void 113 hibernate_sort_ranges(union hibernate_info *hib_info) 114 { 115 int i, j; 116 struct hibernate_memory_range *ranges; 117 paddr_t base, end; 118 119 ranges = hib_info->ranges; 120 121 for (i = 1; i < hib_info->nranges; i++) { 122 j = i; 123 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 124 base = ranges[j].base; 125 end = ranges[j].end; 126 ranges[j].base = ranges[j - 1].base; 127 ranges[j].end = ranges[j - 1].end; 128 ranges[j - 1].base = base; 129 ranges[j - 1].end = end; 130 j--; 131 } 132 } 133 } 134 135 /* 136 * Compare hiballoc entries based on the address they manage. 137 * 138 * Since the address is fixed, relative to struct hiballoc_entry, 139 * we just compare the hiballoc_entry pointers. 140 */ 141 static __inline int 142 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 143 { 144 return l < r ? -1 : (l > r); 145 } 146 147 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 148 149 /* 150 * Given a hiballoc entry, return the address it manages. 151 */ 152 static __inline void * 153 hib_entry_to_addr(struct hiballoc_entry *entry) 154 { 155 caddr_t addr; 156 157 addr = (caddr_t)entry; 158 addr += HIB_SIZEOF(struct hiballoc_entry); 159 return addr; 160 } 161 162 /* 163 * Given an address, find the hiballoc that corresponds. 164 */ 165 static __inline struct hiballoc_entry* 166 hib_addr_to_entry(void *addr_param) 167 { 168 caddr_t addr; 169 170 addr = (caddr_t)addr_param; 171 addr -= HIB_SIZEOF(struct hiballoc_entry); 172 return (struct hiballoc_entry*)addr; 173 } 174 175 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 176 177 /* 178 * Allocate memory from the arena. 179 * 180 * Returns NULL if no memory is available. 181 */ 182 void * 183 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 184 { 185 struct hiballoc_entry *entry, *new_entry; 186 size_t find_sz; 187 188 /* 189 * Enforce alignment of HIB_ALIGN bytes. 190 * 191 * Note that, because the entry is put in front of the allocation, 192 * 0-byte allocations are guaranteed a unique address. 193 */ 194 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 195 196 /* 197 * Find an entry with hibe_space >= find_sz. 198 * 199 * If the root node is not large enough, we switch to tree traversal. 200 * Because all entries are made at the bottom of the free space, 201 * traversal from the end has a slightly better chance of yielding 202 * a sufficiently large space. 203 */ 204 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 205 entry = RB_ROOT(&arena->hib_addrs); 206 if (entry != NULL && entry->hibe_space < find_sz) { 207 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 208 if (entry->hibe_space >= find_sz) 209 break; 210 } 211 } 212 213 /* 214 * Insufficient or too fragmented memory. 215 */ 216 if (entry == NULL) 217 return NULL; 218 219 /* 220 * Create new entry in allocated space. 221 */ 222 new_entry = (struct hiballoc_entry*)( 223 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 224 new_entry->hibe_space = entry->hibe_space - find_sz; 225 new_entry->hibe_use = alloc_sz; 226 227 /* 228 * Insert entry. 229 */ 230 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 231 panic("hib_alloc: insert failure"); 232 entry->hibe_space = 0; 233 234 /* Return address managed by entry. */ 235 return hib_entry_to_addr(new_entry); 236 } 237 238 /* 239 * Free a pointer previously allocated from this arena. 240 * 241 * If addr is NULL, this will be silently accepted. 242 */ 243 void 244 hib_free(struct hiballoc_arena *arena, void *addr) 245 { 246 struct hiballoc_entry *entry, *prev; 247 248 if (addr == NULL) 249 return; 250 251 /* 252 * Derive entry from addr and check it is really in this arena. 253 */ 254 entry = hib_addr_to_entry(addr); 255 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 256 panic("hib_free: freed item %p not in hib arena", addr); 257 258 /* 259 * Give the space in entry to its predecessor. 260 * 261 * If entry has no predecessor, change its used space into free space 262 * instead. 263 */ 264 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 265 if (prev != NULL && 266 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 267 prev->hibe_use + prev->hibe_space) == entry) { 268 /* Merge entry. */ 269 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 270 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 271 entry->hibe_use + entry->hibe_space; 272 } else { 273 /* Flip used memory to free space. */ 274 entry->hibe_space += entry->hibe_use; 275 entry->hibe_use = 0; 276 } 277 } 278 279 /* 280 * Initialize hiballoc. 281 * 282 * The allocator will manage memmory at ptr, which is len bytes. 283 */ 284 int 285 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 286 { 287 struct hiballoc_entry *entry; 288 caddr_t ptr; 289 size_t len; 290 291 RB_INIT(&arena->hib_addrs); 292 293 /* 294 * Hib allocator enforces HIB_ALIGN alignment. 295 * Fixup ptr and len. 296 */ 297 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 298 len = p_len - ((size_t)ptr - (size_t)p_ptr); 299 len &= ~((size_t)HIB_ALIGN - 1); 300 301 /* 302 * Insufficient memory to be able to allocate and also do bookkeeping. 303 */ 304 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 305 return ENOMEM; 306 307 /* 308 * Create entry describing space. 309 */ 310 entry = (struct hiballoc_entry*)ptr; 311 entry->hibe_use = 0; 312 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 313 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 314 315 return 0; 316 } 317 318 /* 319 * Zero all free memory. 320 */ 321 void 322 uvm_pmr_zero_everything(void) 323 { 324 struct uvm_pmemrange *pmr; 325 struct vm_page *pg; 326 int i; 327 328 uvm_lock_fpageq(); 329 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 330 /* Zero single pages. */ 331 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 332 != NULL) { 333 uvm_pmr_remove(pmr, pg); 334 uvm_pagezero(pg); 335 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 336 uvmexp.zeropages++; 337 uvm_pmr_insert(pmr, pg, 0); 338 } 339 340 /* Zero multi page ranges. */ 341 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 342 != NULL) { 343 pg--; /* Size tree always has second page. */ 344 uvm_pmr_remove(pmr, pg); 345 for (i = 0; i < pg->fpgsz; i++) { 346 uvm_pagezero(&pg[i]); 347 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 348 uvmexp.zeropages++; 349 } 350 uvm_pmr_insert(pmr, pg, 0); 351 } 352 } 353 uvm_unlock_fpageq(); 354 } 355 356 /* 357 * Mark all memory as dirty. 358 * 359 * Used to inform the system that the clean memory isn't clean for some 360 * reason, for example because we just came back from hibernate. 361 */ 362 void 363 uvm_pmr_dirty_everything(void) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pg; 367 int i; 368 369 uvm_lock_fpageq(); 370 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 371 /* Dirty single pages. */ 372 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 373 != NULL) { 374 uvm_pmr_remove(pmr, pg); 375 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 376 uvm_pmr_insert(pmr, pg, 0); 377 } 378 379 /* Dirty multi page ranges. */ 380 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 381 != NULL) { 382 pg--; /* Size tree always has second page. */ 383 uvm_pmr_remove(pmr, pg); 384 for (i = 0; i < pg->fpgsz; i++) 385 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 386 uvm_pmr_insert(pmr, pg, 0); 387 } 388 } 389 390 uvmexp.zeropages = 0; 391 uvm_unlock_fpageq(); 392 } 393 394 /* 395 * Allocate the highest address that can hold sz. 396 * 397 * sz in bytes. 398 */ 399 int 400 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 401 { 402 struct uvm_pmemrange *pmr; 403 struct vm_page *pig_pg, *pg; 404 405 /* 406 * Convert sz to pages, since that is what pmemrange uses internally. 407 */ 408 sz = atop(round_page(sz)); 409 410 uvm_lock_fpageq(); 411 412 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 413 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 414 if (pig_pg->fpgsz >= sz) { 415 goto found; 416 } 417 } 418 } 419 420 /* 421 * Allocation failure. 422 */ 423 uvm_unlock_fpageq(); 424 return ENOMEM; 425 426 found: 427 /* Remove page from freelist. */ 428 uvm_pmr_remove_size(pmr, pig_pg); 429 pig_pg->fpgsz -= sz; 430 pg = pig_pg + pig_pg->fpgsz; 431 if (pig_pg->fpgsz == 0) 432 uvm_pmr_remove_addr(pmr, pig_pg); 433 else 434 uvm_pmr_insert_size(pmr, pig_pg); 435 436 uvmexp.free -= sz; 437 *addr = VM_PAGE_TO_PHYS(pg); 438 439 /* 440 * Update pg flags. 441 * 442 * Note that we trash the sz argument now. 443 */ 444 while (sz > 0) { 445 KASSERT(pg->pg_flags & PQ_FREE); 446 447 atomic_clearbits_int(&pg->pg_flags, PG_PMAPMASK); 448 449 if (pg->pg_flags & PG_ZERO) 450 uvmexp.zeropages -= sz; 451 atomic_clearbits_int(&pg->pg_flags, 452 PG_ZERO|PQ_FREE); 453 454 pg->uobject = NULL; 455 pg->uanon = NULL; 456 pg->pg_version++; 457 458 /* 459 * Next. 460 */ 461 pg++; 462 sz--; 463 } 464 465 /* Return. */ 466 uvm_unlock_fpageq(); 467 return 0; 468 } 469 470 /* 471 * Allocate a piglet area. 472 * 473 * This is as low as possible. 474 * Piglets are aligned. 475 * 476 * sz and align in bytes. 477 * 478 * The call will sleep for the pagedaemon to attempt to free memory. 479 * The pagedaemon may decide its not possible to free enough memory, causing 480 * the allocation to fail. 481 */ 482 int 483 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 484 { 485 paddr_t pg_addr, piglet_addr; 486 struct uvm_pmemrange *pmr; 487 struct vm_page *pig_pg, *pg; 488 struct pglist pageq; 489 int pdaemon_woken; 490 vaddr_t piglet_va; 491 492 /* Ensure align is a power of 2 */ 493 KASSERT((align & (align - 1)) == 0); 494 495 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 496 497 /* 498 * Fixup arguments: align must be at least PAGE_SIZE, 499 * sz will be converted to pagecount, since that is what 500 * pmemrange uses internally. 501 */ 502 if (align < PAGE_SIZE) 503 align = PAGE_SIZE; 504 sz = round_page(sz); 505 506 uvm_lock_fpageq(); 507 508 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 509 pmr_use) { 510 retry: 511 /* 512 * Search for a range with enough space. 513 * Use the address tree, to ensure the range is as low as 514 * possible. 515 */ 516 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 517 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 518 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 519 520 if (atop(pg_addr) + pig_pg->fpgsz >= 521 atop(piglet_addr) + atop(sz)) 522 goto found; 523 } 524 } 525 526 /* 527 * Try to coerce the pagedaemon into freeing memory 528 * for the piglet. 529 * 530 * pdaemon_woken is set to prevent the code from 531 * falling into an endless loop. 532 */ 533 if (!pdaemon_woken) { 534 pdaemon_woken = 1; 535 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 536 sz, UVM_PLA_FAILOK) == 0) 537 goto retry; 538 } 539 540 /* Return failure. */ 541 uvm_unlock_fpageq(); 542 return ENOMEM; 543 544 found: 545 /* 546 * Extract piglet from pigpen. 547 */ 548 TAILQ_INIT(&pageq); 549 uvm_pmr_extract_range(pmr, pig_pg, 550 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 551 552 *pa = piglet_addr; 553 uvmexp.free -= atop(sz); 554 555 /* 556 * Update pg flags. 557 * 558 * Note that we trash the sz argument now. 559 */ 560 TAILQ_FOREACH(pg, &pageq, pageq) { 561 KASSERT(pg->pg_flags & PQ_FREE); 562 563 atomic_clearbits_int(&pg->pg_flags, PG_PMAPMASK); 564 565 if (pg->pg_flags & PG_ZERO) 566 uvmexp.zeropages--; 567 atomic_clearbits_int(&pg->pg_flags, 568 PG_ZERO|PQ_FREE); 569 570 pg->uobject = NULL; 571 pg->uanon = NULL; 572 pg->pg_version++; 573 } 574 575 uvm_unlock_fpageq(); 576 577 /* 578 * Now allocate a va. 579 * Use direct mappings for the pages. 580 */ 581 582 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 583 if (!piglet_va) { 584 uvm_pglistfree(&pageq); 585 return ENOMEM; 586 } 587 588 /* 589 * Map piglet to va. 590 */ 591 TAILQ_FOREACH(pg, &pageq, pageq) { 592 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 593 piglet_va += PAGE_SIZE; 594 } 595 pmap_update(pmap_kernel()); 596 597 return 0; 598 } 599 600 /* 601 * Free a piglet area. 602 */ 603 void 604 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 605 { 606 paddr_t pa; 607 struct vm_page *pg; 608 609 /* 610 * Fix parameters. 611 */ 612 sz = round_page(sz); 613 614 /* 615 * Find the first page in piglet. 616 * Since piglets are contiguous, the first pg is all we need. 617 */ 618 if (!pmap_extract(pmap_kernel(), va, &pa)) 619 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 620 pg = PHYS_TO_VM_PAGE(pa); 621 if (pg == NULL) 622 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 623 624 /* 625 * Unmap. 626 */ 627 pmap_kremove(va, sz); 628 pmap_update(pmap_kernel()); 629 630 /* 631 * Free the physical and virtual memory. 632 */ 633 uvm_pmr_freepages(pg, atop(sz)); 634 km_free((void *)va, sz, &kv_any, &kp_none); 635 } 636 637 /* 638 * Physmem RLE compression support. 639 * 640 * Given a physical page address, return the number of pages starting at the 641 * address that are free. Clamps to the number of pages in 642 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 643 */ 644 int 645 uvm_page_rle(paddr_t addr) 646 { 647 struct vm_page *pg, *pg_end; 648 struct vm_physseg *vmp; 649 int pseg_idx, off_idx; 650 651 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 652 if (pseg_idx == -1) 653 return 0; 654 655 vmp = &vm_physmem[pseg_idx]; 656 pg = &vmp->pgs[off_idx]; 657 if (!(pg->pg_flags & PQ_FREE)) 658 return 0; 659 660 /* 661 * Search for the first non-free page after pg. 662 * Note that the page may not be the first page in a free pmemrange, 663 * therefore pg->fpgsz cannot be used. 664 */ 665 for (pg_end = pg; pg_end <= vmp->lastpg && 666 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 667 ; 668 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 669 } 670 671 /* 672 * Fills out the hibernate_info union pointed to by hib 673 * with information about this machine (swap signature block 674 * offsets, number of memory ranges, kernel in use, etc) 675 */ 676 int 677 get_hibernate_info(union hibernate_info *hib, int suspend) 678 { 679 int chunktable_size; 680 struct disklabel dl; 681 char err_string[128], *dl_ret; 682 683 #ifndef NO_PROPOLICE 684 /* Save propolice guard */ 685 hib->guard = __guard_local; 686 #endif /* ! NO_PROPOLICE */ 687 688 /* Determine I/O function to use */ 689 hib->io_func = get_hibernate_io_function(); 690 if (hib->io_func == NULL) 691 return (1); 692 693 /* Calculate hibernate device */ 694 hib->dev = swdevt[0].sw_dev; 695 696 /* Read disklabel (used to calculate signature and image offsets) */ 697 dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128); 698 699 if (dl_ret) { 700 printf("Hibernate error reading disklabel: %s\n", dl_ret); 701 return (1); 702 } 703 704 /* Make sure we have a swap partition. */ 705 if (dl.d_partitions[1].p_fstype != FS_SWAP || 706 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 707 return (1); 708 709 /* Make sure the signature can fit in one block */ 710 if (sizeof(union hibernate_info) > DEV_BSIZE) 711 return (1); 712 713 /* Magic number */ 714 hib->magic = HIBERNATE_MAGIC; 715 716 /* Calculate signature block location */ 717 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 718 sizeof(union hibernate_info)/DEV_BSIZE; 719 720 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 721 722 /* Stash kernel version information */ 723 memset(&hib->kernel_version, 0, 128); 724 bcopy(version, &hib->kernel_version, 725 min(strlen(version), sizeof(hib->kernel_version)-1)); 726 727 if (suspend) { 728 /* Allocate piglet region */ 729 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 730 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE * 4, 731 HIBERNATE_CHUNK_SIZE)) { 732 printf("Hibernate failed to allocate the piglet\n"); 733 return (1); 734 } 735 hib->io_page = (void *)hib->piglet_va; 736 737 /* 738 * Initialization of the hibernate IO function for drivers 739 * that need to do prep work (such as allocating memory or 740 * setting up data structures that cannot safely be done 741 * during suspend without causing side effects). There is 742 * a matching HIB_DONE call performed after the write is 743 * completed. 744 */ 745 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 746 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 747 HIB_INIT, hib->io_page)) 748 goto fail; 749 750 } else { 751 /* 752 * Resuming kernels use a regular I/O page since we won't 753 * have access to the suspended kernel's piglet VA at this 754 * point. No need to free this I/O page as it will vanish 755 * as part of the resume. 756 */ 757 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 758 if (!hib->io_page) 759 return (1); 760 } 761 762 763 if (get_hibernate_info_md(hib)) 764 goto fail; 765 766 767 return (0); 768 fail: 769 if (suspend) 770 uvm_pmr_free_piglet(hib->piglet_va, 771 HIBERNATE_CHUNK_SIZE * 4); 772 773 return (1); 774 } 775 776 /* 777 * Allocate nitems*size bytes from the hiballoc area presently in use 778 */ 779 void * 780 hibernate_zlib_alloc(void *unused, int nitems, int size) 781 { 782 struct hibernate_zlib_state *hibernate_state; 783 784 hibernate_state = 785 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 786 787 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 788 } 789 790 /* 791 * Free the memory pointed to by addr in the hiballoc area presently in 792 * use 793 */ 794 void 795 hibernate_zlib_free(void *unused, void *addr) 796 { 797 struct hibernate_zlib_state *hibernate_state; 798 799 hibernate_state = 800 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 801 802 hib_free(&hibernate_state->hiballoc_arena, addr); 803 } 804 805 /* 806 * Inflate next page of data from the image stream. 807 * The rle parameter is modified on exit to contain the number of pages to 808 * skip in the output stream (or 0 if this page was inflated into). 809 * 810 * Returns 0 if the stream contains additional data, or 1 if the stream is 811 * finished. 812 */ 813 int 814 hibernate_inflate_page(int *rle) 815 { 816 struct hibernate_zlib_state *hibernate_state; 817 int i; 818 819 hibernate_state = 820 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 821 822 /* Set up the stream for RLE code inflate */ 823 hibernate_state->hib_stream.next_out = (char *)rle; 824 hibernate_state->hib_stream.avail_out = sizeof(*rle); 825 826 /* Inflate RLE code */ 827 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 828 if (i != Z_OK && i != Z_STREAM_END) { 829 /* 830 * XXX - this will likely reboot/hang most machines 831 * since the console output buffer will be unmapped, 832 * but there's not much else we can do here. 833 */ 834 panic("rle inflate stream error"); 835 } 836 837 if (hibernate_state->hib_stream.avail_out != 0) { 838 /* 839 * XXX - this will likely reboot/hang most machines 840 * since the console output buffer will be unmapped, 841 * but there's not much else we can do here. 842 */ 843 panic("rle short inflate error"); 844 } 845 846 if (*rle < 0 || *rle > 1024) { 847 /* 848 * XXX - this will likely reboot/hang most machines 849 * since the console output buffer will be unmapped, 850 * but there's not much else we can do here. 851 */ 852 panic("invalid rle count"); 853 } 854 855 if (i == Z_STREAM_END) 856 return (1); 857 858 if (*rle != 0) 859 return (0); 860 861 /* Set up the stream for page inflate */ 862 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 863 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 864 865 /* Process next block of data */ 866 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 867 if (i != Z_OK && i != Z_STREAM_END) { 868 /* 869 * XXX - this will likely reboot/hang most machines 870 * since the console output buffer will be unmapped, 871 * but there's not much else we can do here. 872 */ 873 panic("inflate error"); 874 } 875 876 /* We should always have extracted a full page ... */ 877 if (hibernate_state->hib_stream.avail_out != 0) { 878 /* 879 * XXX - this will likely reboot/hang most machines 880 * since the console output buffer will be unmapped, 881 * but there's not much else we can do here. 882 */ 883 panic("incomplete page"); 884 } 885 886 return (i == Z_STREAM_END); 887 } 888 889 /* 890 * Inflate size bytes from src into dest, skipping any pages in 891 * [src..dest] that are special (see hibernate_inflate_skip) 892 * 893 * This function executes while using the resume-time stack 894 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 895 * will likely hang or reset the machine since the console output buffer 896 * will be unmapped. 897 */ 898 void 899 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 900 paddr_t src, size_t size) 901 { 902 int end_stream = 0, rle; 903 struct hibernate_zlib_state *hibernate_state; 904 905 hibernate_state = 906 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 907 908 hibernate_state->hib_stream.next_in = (char *)src; 909 hibernate_state->hib_stream.avail_in = size; 910 911 do { 912 /* 913 * Is this a special page? If yes, redirect the 914 * inflate output to a scratch page (eg, discard it) 915 */ 916 if (hibernate_inflate_skip(hib, dest)) { 917 hibernate_enter_resume_mapping( 918 HIBERNATE_INFLATE_PAGE, 919 HIBERNATE_INFLATE_PAGE, 0); 920 } else { 921 hibernate_enter_resume_mapping( 922 HIBERNATE_INFLATE_PAGE, dest, 0); 923 } 924 925 hibernate_flush(); 926 end_stream = hibernate_inflate_page(&rle); 927 928 if (rle == 0) 929 dest += PAGE_SIZE; 930 else 931 dest += (rle * PAGE_SIZE); 932 } while (!end_stream); 933 } 934 935 /* 936 * deflate from src into the I/O page, up to 'remaining' bytes 937 * 938 * Returns number of input bytes consumed, and may reset 939 * the 'remaining' parameter if not all the output space was consumed 940 * (this information is needed to know how much to write to disk 941 */ 942 size_t 943 hibernate_deflate(union hibernate_info *hib, paddr_t src, 944 size_t *remaining) 945 { 946 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 947 struct hibernate_zlib_state *hibernate_state; 948 949 hibernate_state = 950 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 951 952 /* Set up the stream for deflate */ 953 hibernate_state->hib_stream.next_in = (caddr_t)src; 954 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 955 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 956 (PAGE_SIZE - *remaining); 957 hibernate_state->hib_stream.avail_out = *remaining; 958 959 /* Process next block of data */ 960 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 961 panic("hibernate zlib deflate error"); 962 963 /* Update pointers and return number of bytes consumed */ 964 *remaining = hibernate_state->hib_stream.avail_out; 965 return (PAGE_SIZE - (src & PAGE_MASK)) - 966 hibernate_state->hib_stream.avail_in; 967 } 968 969 /* 970 * Write the hibernation information specified in hiber_info 971 * to the location in swap previously calculated (last block of 972 * swap), called the "signature block". 973 */ 974 int 975 hibernate_write_signature(union hibernate_info *hib) 976 { 977 /* Write hibernate info to disk */ 978 return (hib->io_func(hib->dev, hib->sig_offset, 979 (vaddr_t)hib, DEV_BSIZE, HIB_W, 980 hib->io_page)); 981 } 982 983 /* 984 * Write the memory chunk table to the area in swap immediately 985 * preceding the signature block. The chunk table is stored 986 * in the piglet when this function is called. Returns errno. 987 */ 988 int 989 hibernate_write_chunktable(union hibernate_info *hib) 990 { 991 struct hibernate_disk_chunk *chunks; 992 vaddr_t hibernate_chunk_table_start; 993 size_t hibernate_chunk_table_size; 994 int i, err; 995 996 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 997 998 hibernate_chunk_table_start = hib->piglet_va + 999 HIBERNATE_CHUNK_SIZE; 1000 1001 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1002 HIBERNATE_CHUNK_SIZE); 1003 1004 /* Write chunk table */ 1005 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 1006 if ((err = hib->io_func(hib->dev, 1007 hib->chunktable_offset + (i/DEV_BSIZE), 1008 (vaddr_t)(hibernate_chunk_table_start + i), 1009 MAXPHYS, HIB_W, hib->io_page))) { 1010 DPRINTF("chunktable write error: %d\n", err); 1011 return (err); 1012 } 1013 } 1014 1015 return (0); 1016 } 1017 1018 /* 1019 * Write an empty hiber_info to the swap signature block, which is 1020 * guaranteed to not match any valid hib. 1021 */ 1022 int 1023 hibernate_clear_signature(void) 1024 { 1025 union hibernate_info blank_hiber_info; 1026 union hibernate_info hib; 1027 1028 /* Zero out a blank hiber_info */ 1029 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 1030 1031 /* Get the signature block location */ 1032 if (get_hibernate_info(&hib, 0)) 1033 return (1); 1034 1035 /* Write (zeroed) hibernate info to disk */ 1036 DPRINTF("clearing hibernate signature block location: %lld\n", 1037 hib.sig_offset); 1038 if (hibernate_block_io(&hib, 1039 hib.sig_offset, 1040 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 1041 printf("Warning: could not clear hibernate signature\n"); 1042 1043 return (0); 1044 } 1045 1046 /* 1047 * Check chunk range overlap when calculating whether or not to copy a 1048 * compressed chunk to the piglet area before decompressing. 1049 * 1050 * returns zero if the ranges do not overlap, non-zero otherwise. 1051 */ 1052 int 1053 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1054 { 1055 /* case A : end of r1 overlaps start of r2 */ 1056 if (r1s < r2s && r1e > r2s) 1057 return (1); 1058 1059 /* case B : r1 entirely inside r2 */ 1060 if (r1s >= r2s && r1e <= r2e) 1061 return (1); 1062 1063 /* case C : r2 entirely inside r1 */ 1064 if (r2s >= r1s && r2e <= r1e) 1065 return (1); 1066 1067 /* case D : end of r2 overlaps start of r1 */ 1068 if (r2s < r1s && r2e > r1s) 1069 return (1); 1070 1071 return (0); 1072 } 1073 1074 /* 1075 * Compare two hibernate_infos to determine if they are the same (eg, 1076 * we should be performing a hibernate resume on this machine. 1077 * Not all fields are checked - just enough to verify that the machine 1078 * has the same memory configuration and kernel as the one that 1079 * wrote the signature previously. 1080 */ 1081 int 1082 hibernate_compare_signature(union hibernate_info *mine, 1083 union hibernate_info *disk) 1084 { 1085 u_int i; 1086 1087 if (mine->nranges != disk->nranges) { 1088 DPRINTF("hibernate memory range count mismatch\n"); 1089 return (1); 1090 } 1091 1092 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1093 DPRINTF("hibernate kernel version mismatch\n"); 1094 return (1); 1095 } 1096 1097 for (i = 0; i < mine->nranges; i++) { 1098 if ((mine->ranges[i].base != disk->ranges[i].base) || 1099 (mine->ranges[i].end != disk->ranges[i].end) ) { 1100 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1101 i, 1102 (void *)mine->ranges[i].base, 1103 (void *)mine->ranges[i].end, 1104 (void *)disk->ranges[i].base, 1105 (void *)disk->ranges[i].end); 1106 return (1); 1107 } 1108 } 1109 1110 return (0); 1111 } 1112 1113 /* 1114 * Transfers xfer_size bytes between the hibernate device specified in 1115 * hib_info at offset blkctr and the vaddr specified at dest. 1116 * 1117 * Separate offsets and pages are used to handle misaligned reads (reads 1118 * that span a page boundary). 1119 * 1120 * blkctr specifies a relative offset (relative to the start of swap), 1121 * not an absolute disk offset 1122 * 1123 */ 1124 int 1125 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1126 size_t xfer_size, vaddr_t dest, int iswrite) 1127 { 1128 struct buf *bp; 1129 struct bdevsw *bdsw; 1130 int error; 1131 1132 bp = geteblk(xfer_size); 1133 bdsw = &bdevsw[major(hib->dev)]; 1134 1135 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1136 if (error) { 1137 printf("hibernate_block_io open failed\n"); 1138 return (1); 1139 } 1140 1141 if (iswrite) 1142 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1143 1144 bp->b_bcount = xfer_size; 1145 bp->b_blkno = blkctr; 1146 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1147 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1148 bp->b_dev = hib->dev; 1149 (*bdsw->d_strategy)(bp); 1150 1151 error = biowait(bp); 1152 if (error) { 1153 printf("hib block_io biowait error %d blk %lld size %zu\n", 1154 error, (long long)blkctr, xfer_size); 1155 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1156 curproc); 1157 if (error) 1158 printf("hibernate_block_io error close failed\n"); 1159 return (1); 1160 } 1161 1162 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1163 if (error) { 1164 printf("hibernate_block_io close failed\n"); 1165 return (1); 1166 } 1167 1168 if (!iswrite) 1169 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1170 1171 bp->b_flags |= B_INVAL; 1172 brelse(bp); 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Reads the signature block from swap, checks against the current machine's 1179 * information. If the information matches, perform a resume by reading the 1180 * saved image into the pig area, and unpacking. 1181 */ 1182 void 1183 hibernate_resume(void) 1184 { 1185 union hibernate_info hib; 1186 int s; 1187 1188 /* Get current running machine's hibernate info */ 1189 memset(&hib, 0, sizeof(hib)); 1190 if (get_hibernate_info(&hib, 0)) { 1191 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1192 return; 1193 } 1194 1195 /* Read hibernate info from disk */ 1196 s = splbio(); 1197 1198 DPRINTF("reading hibernate signature block location: %lld\n", 1199 hib.sig_offset); 1200 1201 if (hibernate_block_io(&hib, 1202 hib.sig_offset, 1203 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1204 DPRINTF("error in hibernate read"); 1205 splx(s); 1206 return; 1207 } 1208 1209 /* Check magic number */ 1210 if (disk_hib.magic != HIBERNATE_MAGIC) { 1211 DPRINTF("wrong magic number in hibernate signature: %x\n", 1212 disk_hib.magic); 1213 splx(s); 1214 return; 1215 } 1216 1217 /* 1218 * We (possibly) found a hibernate signature. Clear signature first, 1219 * to prevent accidental resume or endless resume cycles later. 1220 */ 1221 if (hibernate_clear_signature()) { 1222 DPRINTF("error clearing hibernate signature block\n"); 1223 splx(s); 1224 return; 1225 } 1226 1227 /* 1228 * If on-disk and in-memory hibernate signatures match, 1229 * this means we should do a resume from hibernate. 1230 */ 1231 if (hibernate_compare_signature(&hib, &disk_hib)) { 1232 DPRINTF("mismatched hibernate signature block\n"); 1233 splx(s); 1234 return; 1235 } 1236 1237 #ifdef MULTIPROCESSOR 1238 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1239 DPRINTF("hibernate: quiescing APs\n"); 1240 hibernate_quiesce_cpus(); 1241 #endif /* MULTIPROCESSOR */ 1242 1243 /* Read the image from disk into the image (pig) area */ 1244 if (hibernate_read_image(&disk_hib)) 1245 goto fail; 1246 1247 DPRINTF("hibernate: quiescing devices\n"); 1248 if (config_suspend(device_mainbus(), DVACT_QUIESCE) != 0) 1249 goto fail; 1250 1251 (void) splhigh(); 1252 hibernate_disable_intr_machdep(); 1253 cold = 1; 1254 1255 DPRINTF("hibernate: suspending devices\n"); 1256 if (config_suspend(device_mainbus(), DVACT_SUSPEND) != 0) { 1257 cold = 0; 1258 hibernate_enable_intr_machdep(); 1259 goto fail; 1260 } 1261 1262 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1263 VM_PROT_ALL); 1264 pmap_activate(curproc); 1265 1266 printf("Unpacking image...\n"); 1267 1268 /* Switch stacks */ 1269 DPRINTF("hibernate: switching stacks\n"); 1270 hibernate_switch_stack_machdep(); 1271 1272 #ifndef NO_PROPOLICE 1273 /* Start using suspended kernel's propolice guard */ 1274 __guard_local = disk_hib.guard; 1275 #endif /* ! NO_PROPOLICE */ 1276 1277 /* Unpack and resume */ 1278 hibernate_unpack_image(&disk_hib); 1279 1280 fail: 1281 splx(s); 1282 printf("\nUnable to resume hibernated image\n"); 1283 } 1284 1285 /* 1286 * Unpack image from pig area to original location by looping through the 1287 * list of output chunks in the order they should be restored (fchunks). 1288 * 1289 * Note that due to the stack smash protector and the fact that we have 1290 * switched stacks, it is not permitted to return from this function. 1291 */ 1292 void 1293 hibernate_unpack_image(union hibernate_info *hib) 1294 { 1295 struct hibernate_disk_chunk *chunks; 1296 union hibernate_info local_hib; 1297 paddr_t image_cur = global_pig_start; 1298 short i, *fchunks; 1299 char *pva; 1300 struct hibernate_zlib_state *hibernate_state; 1301 1302 hibernate_state = 1303 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1304 1305 /* Piglet will be identity mapped (VA == PA) */ 1306 pva = (char *)hib->piglet_pa; 1307 1308 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1309 1310 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1311 1312 /* Can't use hiber_info that's passed in after this point */ 1313 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1314 1315 /* VA == PA */ 1316 local_hib.piglet_va = local_hib.piglet_pa; 1317 1318 /* 1319 * Point of no return. Once we pass this point, only kernel code can 1320 * be accessed. No global variables or other kernel data structures 1321 * are guaranteed to be coherent after unpack starts. 1322 * 1323 * The image is now in high memory (pig area), we unpack from the pig 1324 * to the correct location in memory. We'll eventually end up copying 1325 * on top of ourself, but we are assured the kernel code here is the 1326 * same between the hibernated and resuming kernel, and we are running 1327 * on our own stack, so the overwrite is ok. 1328 */ 1329 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1330 hibernate_activate_resume_pt_machdep(); 1331 1332 for (i = 0; i < local_hib.chunk_ctr; i++) { 1333 /* Reset zlib for inflate */ 1334 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1335 panic("hibernate failed to reset zlib for inflate"); 1336 1337 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1338 image_cur); 1339 1340 image_cur += chunks[fchunks[i]].compressed_size; 1341 1342 } 1343 1344 /* 1345 * Resume the loaded kernel by jumping to the MD resume vector. 1346 * We won't be returning from this call. 1347 */ 1348 hibernate_resume_machdep(); 1349 } 1350 1351 /* 1352 * Bounce a compressed image chunk to the piglet, entering mappings for the 1353 * copied pages as needed 1354 */ 1355 void 1356 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1357 { 1358 size_t ct, ofs; 1359 paddr_t src = img_cur; 1360 vaddr_t dest = piglet; 1361 1362 /* Copy first partial page */ 1363 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1364 ofs = (src & PAGE_MASK); 1365 1366 if (ct < PAGE_SIZE) { 1367 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1368 (src - ofs), 0); 1369 hibernate_flush(); 1370 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1371 src += ct; 1372 dest += ct; 1373 } 1374 1375 /* Copy remaining pages */ 1376 while (src < size + img_cur) { 1377 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1378 hibernate_flush(); 1379 ct = PAGE_SIZE; 1380 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1381 hibernate_flush(); 1382 src += ct; 1383 dest += ct; 1384 } 1385 } 1386 1387 /* 1388 * Process a chunk by bouncing it to the piglet, followed by unpacking 1389 */ 1390 void 1391 hibernate_process_chunk(union hibernate_info *hib, 1392 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1393 { 1394 char *pva = (char *)hib->piglet_va; 1395 1396 hibernate_copy_chunk_to_piglet(img_cur, 1397 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1398 hibernate_inflate_region(hib, chunk->base, 1399 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1400 chunk->compressed_size); 1401 } 1402 1403 /* 1404 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1405 * inaddr and range_end. 1406 */ 1407 int 1408 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1409 { 1410 int rle; 1411 1412 rle = uvm_page_rle(inaddr); 1413 KASSERT(rle >= 0 && rle <= MAX_RLE); 1414 1415 /* Clamp RLE to range end */ 1416 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1417 rle = (range_end - inaddr) / PAGE_SIZE; 1418 1419 return (rle); 1420 } 1421 1422 /* 1423 * Write the RLE byte for page at 'inaddr' to the output stream. 1424 * Returns the number of pages to be skipped at 'inaddr'. 1425 */ 1426 int 1427 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1428 paddr_t range_end, daddr_t *blkctr, 1429 size_t *out_remaining) 1430 { 1431 int rle, err, *rleloc; 1432 struct hibernate_zlib_state *hibernate_state; 1433 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1434 1435 hibernate_state = 1436 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1437 1438 rle = hibernate_calc_rle(inaddr, range_end); 1439 1440 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1441 *rleloc = rle; 1442 1443 /* Deflate the RLE byte into the stream */ 1444 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1445 1446 /* Did we fill the output page? If so, flush to disk */ 1447 if (*out_remaining == 0) { 1448 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1449 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1450 hib->io_page))) { 1451 DPRINTF("hib write error %d\n", err); 1452 return (err); 1453 } 1454 1455 *blkctr += PAGE_SIZE / DEV_BSIZE; 1456 *out_remaining = PAGE_SIZE; 1457 1458 /* If we didn't deflate the entire RLE byte, finish it now */ 1459 if (hibernate_state->hib_stream.avail_in != 0) 1460 hibernate_deflate(hib, 1461 (vaddr_t)hibernate_state->hib_stream.next_in, 1462 out_remaining); 1463 } 1464 1465 return (rle); 1466 } 1467 1468 /* 1469 * Write a compressed version of this machine's memory to disk, at the 1470 * precalculated swap offset: 1471 * 1472 * end of swap - signature block size - chunk table size - memory size 1473 * 1474 * The function begins by looping through each phys mem range, cutting each 1475 * one into MD sized chunks. These chunks are then compressed individually 1476 * and written out to disk, in phys mem order. Some chunks might compress 1477 * more than others, and for this reason, each chunk's size is recorded 1478 * in the chunk table, which is written to disk after the image has 1479 * properly been compressed and written (in hibernate_write_chunktable). 1480 * 1481 * When this function is called, the machine is nearly suspended - most 1482 * devices are quiesced/suspended, interrupts are off, and cold has 1483 * been set. This means that there can be no side effects once the 1484 * write has started, and the write function itself can also have no 1485 * side effects. This also means no printfs are permitted (since printf 1486 * has side effects.) 1487 * 1488 * Return values : 1489 * 1490 * 0 - success 1491 * EIO - I/O error occurred writing the chunks 1492 * EINVAL - Failed to write a complete range 1493 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1494 */ 1495 int 1496 hibernate_write_chunks(union hibernate_info *hib) 1497 { 1498 paddr_t range_base, range_end, inaddr, temp_inaddr; 1499 size_t nblocks, out_remaining, used; 1500 struct hibernate_disk_chunk *chunks; 1501 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1502 daddr_t blkctr = 0; 1503 int i, rle, err; 1504 struct hibernate_zlib_state *hibernate_state; 1505 1506 hibernate_state = 1507 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1508 1509 hib->chunk_ctr = 0; 1510 1511 /* 1512 * Allocate VA for the temp and copy page. 1513 * 1514 * These will become part of the suspended kernel and will 1515 * be freed in hibernate_free, upon resume. 1516 */ 1517 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1518 &kp_none, &kd_nowait); 1519 if (!hibernate_temp_page) { 1520 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1521 return (ENOMEM); 1522 } 1523 1524 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1525 &kp_none, &kd_nowait); 1526 if (!hibernate_copy_page) { 1527 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1528 return (ENOMEM); 1529 } 1530 1531 hibernate_rle_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1532 &kp_none, &kd_nowait); 1533 if (!hibernate_rle_page) { 1534 DPRINTF("out of memory allocating hibernate_rle_page\n"); 1535 return (ENOMEM); 1536 } 1537 1538 /* 1539 * Map the utility VAs to the piglet. See the piglet map at the 1540 * top of this file for piglet layout information. 1541 */ 1542 pmap_kenter_pa(hibernate_copy_page, 1543 (hib->piglet_pa + 3 * PAGE_SIZE), VM_PROT_ALL); 1544 pmap_kenter_pa(hibernate_rle_page, 1545 (hib->piglet_pa + 28 * PAGE_SIZE), VM_PROT_ALL); 1546 1547 pmap_activate(curproc); 1548 1549 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1550 HIBERNATE_CHUNK_SIZE); 1551 1552 /* Calculate the chunk regions */ 1553 for (i = 0; i < hib->nranges; i++) { 1554 range_base = hib->ranges[i].base; 1555 range_end = hib->ranges[i].end; 1556 1557 inaddr = range_base; 1558 1559 while (inaddr < range_end) { 1560 chunks[hib->chunk_ctr].base = inaddr; 1561 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1562 chunks[hib->chunk_ctr].end = inaddr + 1563 HIBERNATE_CHUNK_SIZE; 1564 else 1565 chunks[hib->chunk_ctr].end = range_end; 1566 1567 inaddr += HIBERNATE_CHUNK_SIZE; 1568 hib->chunk_ctr ++; 1569 } 1570 } 1571 1572 uvm_pmr_dirty_everything(); 1573 uvm_pmr_zero_everything(); 1574 1575 /* Compress and write the chunks in the chunktable */ 1576 for (i = 0; i < hib->chunk_ctr; i++) { 1577 range_base = chunks[i].base; 1578 range_end = chunks[i].end; 1579 1580 chunks[i].offset = blkctr + hib->image_offset; 1581 1582 /* Reset zlib for deflate */ 1583 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1584 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1585 return (ENOMEM); 1586 } 1587 1588 inaddr = range_base; 1589 1590 /* 1591 * For each range, loop through its phys mem region 1592 * and write out the chunks (the last chunk might be 1593 * smaller than the chunk size). 1594 */ 1595 while (inaddr < range_end) { 1596 out_remaining = PAGE_SIZE; 1597 while (out_remaining > 0 && inaddr < range_end) { 1598 /* 1599 * Adjust for regions that are not evenly 1600 * divisible by PAGE_SIZE or overflowed 1601 * pages from the previous iteration. 1602 */ 1603 temp_inaddr = (inaddr & PAGE_MASK) + 1604 hibernate_copy_page; 1605 1606 /* Deflate from temp_inaddr to IO page */ 1607 if (inaddr != range_end) { 1608 if (inaddr % PAGE_SIZE == 0) { 1609 rle = hibernate_write_rle(hib, 1610 inaddr, 1611 range_end, 1612 &blkctr, 1613 &out_remaining); 1614 } 1615 1616 if (rle == 0) { 1617 pmap_kenter_pa(hibernate_temp_page, 1618 inaddr & PMAP_PA_MASK, 1619 VM_PROT_ALL); 1620 1621 pmap_activate(curproc); 1622 1623 bcopy((caddr_t)hibernate_temp_page, 1624 (caddr_t)hibernate_copy_page, 1625 PAGE_SIZE); 1626 inaddr += hibernate_deflate(hib, 1627 temp_inaddr, 1628 &out_remaining); 1629 } else { 1630 inaddr += rle * PAGE_SIZE; 1631 if (inaddr > range_end) 1632 inaddr = range_end; 1633 } 1634 1635 } 1636 1637 if (out_remaining == 0) { 1638 /* Filled up the page */ 1639 nblocks = PAGE_SIZE / DEV_BSIZE; 1640 1641 if ((err = hib->io_func(hib->dev, 1642 blkctr + hib->image_offset, 1643 (vaddr_t)hibernate_io_page, 1644 PAGE_SIZE, HIB_W, hib->io_page))) { 1645 DPRINTF("hib write error %d\n", 1646 err); 1647 return (err); 1648 } 1649 1650 blkctr += nblocks; 1651 } 1652 } 1653 } 1654 1655 if (inaddr != range_end) { 1656 DPRINTF("deflate range ended prematurely\n"); 1657 return (EINVAL); 1658 } 1659 1660 /* 1661 * End of range. Round up to next secsize bytes 1662 * after finishing compress 1663 */ 1664 if (out_remaining == 0) 1665 out_remaining = PAGE_SIZE; 1666 1667 /* Finish compress */ 1668 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1669 hibernate_state->hib_stream.avail_in = 0; 1670 hibernate_state->hib_stream.next_out = 1671 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1672 1673 /* We have an extra output page available for finalize */ 1674 hibernate_state->hib_stream.avail_out = 1675 out_remaining + PAGE_SIZE; 1676 1677 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1678 Z_STREAM_END) { 1679 DPRINTF("deflate error in output stream: %d\n", err); 1680 return (err); 1681 } 1682 1683 out_remaining = hibernate_state->hib_stream.avail_out; 1684 1685 used = 2*PAGE_SIZE - out_remaining; 1686 nblocks = used / DEV_BSIZE; 1687 1688 /* Round up to next block if needed */ 1689 if (used % DEV_BSIZE != 0) 1690 nblocks ++; 1691 1692 /* Write final block(s) for this chunk */ 1693 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1694 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1695 HIB_W, hib->io_page))) { 1696 DPRINTF("hib final write error %d\n", err); 1697 return (err); 1698 } 1699 1700 blkctr += nblocks; 1701 1702 chunks[i].compressed_size = (blkctr + hib->image_offset - 1703 chunks[i].offset) * DEV_BSIZE; 1704 } 1705 1706 hib->chunktable_offset = hib->image_offset + blkctr; 1707 return (0); 1708 } 1709 1710 /* 1711 * Reset the zlib stream state and allocate a new hiballoc area for either 1712 * inflate or deflate. This function is called once for each hibernate chunk. 1713 * Calling hiballoc_init multiple times is acceptable since the memory it is 1714 * provided is unmanaged memory (stolen). We use the memory provided to us 1715 * by the piglet allocated via the supplied hib. 1716 */ 1717 int 1718 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1719 { 1720 vaddr_t hibernate_zlib_start; 1721 size_t hibernate_zlib_size; 1722 char *pva = (char *)hib->piglet_va; 1723 struct hibernate_zlib_state *hibernate_state; 1724 1725 hibernate_state = 1726 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1727 1728 if (!deflate) 1729 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1730 1731 /* 1732 * See piglet layout information at the start of this file for 1733 * information on the zlib page assignments. 1734 */ 1735 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1736 hibernate_zlib_size = 80 * PAGE_SIZE; 1737 1738 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1739 memset(hibernate_state, 0, PAGE_SIZE); 1740 1741 /* Set up stream structure */ 1742 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1743 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1744 1745 /* Initialize the hiballoc arena for zlib allocs/frees */ 1746 hiballoc_init(&hibernate_state->hiballoc_arena, 1747 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1748 1749 if (deflate) { 1750 return deflateInit(&hibernate_state->hib_stream, 1751 Z_BEST_SPEED); 1752 } else 1753 return inflateInit(&hibernate_state->hib_stream); 1754 } 1755 1756 /* 1757 * Reads the hibernated memory image from disk, whose location and 1758 * size are recorded in hib. Begin by reading the persisted 1759 * chunk table, which records the original chunk placement location 1760 * and compressed size for each. Next, allocate a pig region of 1761 * sufficient size to hold the compressed image. Next, read the 1762 * chunks into the pig area (calling hibernate_read_chunks to do this), 1763 * and finally, if all of the above succeeds, clear the hibernate signature. 1764 * The function will then return to hibernate_resume, which will proceed 1765 * to unpack the pig image to the correct place in memory. 1766 */ 1767 int 1768 hibernate_read_image(union hibernate_info *hib) 1769 { 1770 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1771 paddr_t image_start, image_end, pig_start, pig_end; 1772 struct hibernate_disk_chunk *chunks; 1773 daddr_t blkctr; 1774 vaddr_t chunktable = (vaddr_t)NULL; 1775 paddr_t piglet_chunktable = hib->piglet_pa + 1776 HIBERNATE_CHUNK_SIZE; 1777 int i, status; 1778 1779 status = 0; 1780 pmap_activate(curproc); 1781 1782 /* Calculate total chunk table size in disk blocks */ 1783 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1784 1785 blkctr = hib->chunktable_offset; 1786 1787 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1788 &kp_none, &kd_nowait); 1789 1790 if (!chunktable) 1791 return (1); 1792 1793 /* Map chunktable pages */ 1794 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1795 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1796 VM_PROT_ALL); 1797 pmap_update(pmap_kernel()); 1798 1799 /* Read the chunktable from disk into the piglet chunktable */ 1800 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1801 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1802 hibernate_block_io(hib, blkctr, MAXPHYS, 1803 chunktable + i, 0); 1804 1805 blkctr = hib->image_offset; 1806 compressed_size = 0; 1807 1808 chunks = (struct hibernate_disk_chunk *)chunktable; 1809 1810 for (i = 0; i < hib->chunk_ctr; i++) 1811 compressed_size += chunks[i].compressed_size; 1812 1813 disk_size = compressed_size; 1814 1815 printf("unhibernating @ block %lld length %lu bytes\n", 1816 hib->sig_offset - chunktable_size, 1817 compressed_size); 1818 1819 /* Allocate the pig area */ 1820 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1821 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) { 1822 status = 1; 1823 goto unmap; 1824 } 1825 1826 pig_end = pig_start + pig_sz; 1827 1828 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1829 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1830 image_start = image_end - disk_size; 1831 1832 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1833 chunks); 1834 1835 /* Prepare the resume time pmap/page table */ 1836 hibernate_populate_resume_pt(hib, image_start, image_end); 1837 1838 unmap: 1839 /* Unmap chunktable pages */ 1840 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1841 pmap_update(pmap_kernel()); 1842 1843 return (status); 1844 } 1845 1846 /* 1847 * Read the hibernated memory chunks from disk (chunk information at this 1848 * point is stored in the piglet) into the pig area specified by 1849 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1850 * only chunk with overlap possibilities. 1851 */ 1852 int 1853 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1854 paddr_t pig_end, size_t image_compr_size, 1855 struct hibernate_disk_chunk *chunks) 1856 { 1857 paddr_t img_cur, piglet_base; 1858 daddr_t blkctr; 1859 size_t processed, compressed_size, read_size; 1860 int nchunks, nfchunks, num_io_pages; 1861 vaddr_t tempva, hibernate_fchunk_area; 1862 short *fchunks, i, j; 1863 1864 tempva = (vaddr_t)NULL; 1865 hibernate_fchunk_area = (vaddr_t)NULL; 1866 nfchunks = 0; 1867 piglet_base = hib->piglet_pa; 1868 global_pig_start = pig_start; 1869 1870 pmap_activate(curproc); 1871 1872 /* 1873 * These mappings go into the resuming kernel's page table, and are 1874 * used only during image read. They dissappear from existence 1875 * when the suspended kernel is unpacked on top of us. 1876 */ 1877 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1878 &kd_nowait); 1879 if (!tempva) 1880 return (1); 1881 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1882 &kp_none, &kd_nowait); 1883 if (!hibernate_fchunk_area) 1884 return (1); 1885 1886 /* Final output chunk ordering VA */ 1887 fchunks = (short *)hibernate_fchunk_area; 1888 1889 /* Map the chunk ordering region */ 1890 for(i = 0; i < 24 ; i++) 1891 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1892 piglet_base + ((4 + i) * PAGE_SIZE), VM_PROT_ALL); 1893 pmap_update(pmap_kernel()); 1894 1895 nchunks = hib->chunk_ctr; 1896 1897 /* Initially start all chunks as unplaced */ 1898 for (i = 0; i < nchunks; i++) 1899 chunks[i].flags = 0; 1900 1901 /* 1902 * Search the list for chunks that are outside the pig area. These 1903 * can be placed first in the final output list. 1904 */ 1905 for (i = 0; i < nchunks; i++) { 1906 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1907 fchunks[nfchunks] = i; 1908 nfchunks++; 1909 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1910 } 1911 } 1912 1913 /* 1914 * Walk the ordering, place the chunks in ascending memory order. 1915 */ 1916 for (i = 0; i < nchunks; i++) { 1917 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1918 fchunks[nfchunks] = i; 1919 nfchunks++; 1920 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1921 } 1922 } 1923 1924 img_cur = pig_start; 1925 1926 for (i = 0; i < nfchunks; i++) { 1927 blkctr = chunks[fchunks[i]].offset; 1928 processed = 0; 1929 compressed_size = chunks[fchunks[i]].compressed_size; 1930 1931 while (processed < compressed_size) { 1932 if (compressed_size - processed >= MAXPHYS) 1933 read_size = MAXPHYS; 1934 else 1935 read_size = compressed_size - processed; 1936 1937 /* 1938 * We're reading read_size bytes, offset from the 1939 * start of a page by img_cur % PAGE_SIZE, so the 1940 * end will be read_size + (img_cur % PAGE_SIZE) 1941 * from the start of the first page. Round that 1942 * up to the next page size. 1943 */ 1944 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1945 + PAGE_SIZE - 1) / PAGE_SIZE; 1946 1947 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1948 1949 /* Map pages for this read */ 1950 for (j = 0; j < num_io_pages; j ++) 1951 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1952 img_cur + j * PAGE_SIZE, VM_PROT_ALL); 1953 1954 pmap_update(pmap_kernel()); 1955 1956 hibernate_block_io(hib, blkctr, read_size, 1957 tempva + (img_cur & PAGE_MASK), 0); 1958 1959 blkctr += (read_size / DEV_BSIZE); 1960 1961 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1962 pmap_update(pmap_kernel()); 1963 1964 processed += read_size; 1965 img_cur += read_size; 1966 } 1967 } 1968 1969 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1970 pmap_update(pmap_kernel()); 1971 1972 return (0); 1973 } 1974 1975 /* 1976 * Hibernating a machine comprises the following operations: 1977 * 1. Calculating this machine's hibernate_info information 1978 * 2. Allocating a piglet and saving the piglet's physaddr 1979 * 3. Calculating the memory chunks 1980 * 4. Writing the compressed chunks to disk 1981 * 5. Writing the chunk table 1982 * 6. Writing the signature block (hibernate_info) 1983 * 1984 * On most architectures, the function calling hibernate_suspend would 1985 * then power off the machine using some MD-specific implementation. 1986 */ 1987 int 1988 hibernate_suspend(void) 1989 { 1990 union hibernate_info hib; 1991 u_long start, end; 1992 1993 /* 1994 * Calculate memory ranges, swap offsets, etc. 1995 * This also allocates a piglet whose physaddr is stored in 1996 * hib->piglet_pa and vaddr stored in hib->piglet_va 1997 */ 1998 if (get_hibernate_info(&hib, 1)) { 1999 DPRINTF("failed to obtain hibernate info\n"); 2000 return (1); 2001 } 2002 2003 /* Find a page-addressed region in swap [start,end] */ 2004 if (uvm_hibswap(hib.dev, &start, &end)) { 2005 printf("hibernate: cannot find any swap\n"); 2006 return (1); 2007 } 2008 2009 if (end - start < 1000) { 2010 printf("hibernate: insufficient swap (%lu is too small)\n", 2011 end - start); 2012 return (1); 2013 } 2014 2015 /* Calculate block offsets in swap */ 2016 hib.image_offset = ctod(start); 2017 2018 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 2019 hib.image_offset, ctod(end) - ctod(start)); 2020 2021 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 2022 VM_PROT_ALL); 2023 pmap_activate(curproc); 2024 2025 /* Stash the piglet VA so we can free it in the resuming kernel */ 2026 global_piglet_va = hib.piglet_va; 2027 2028 DPRINTF("hibernate: writing chunks\n"); 2029 if (hibernate_write_chunks(&hib)) { 2030 DPRINTF("hibernate_write_chunks failed\n"); 2031 return (1); 2032 } 2033 2034 DPRINTF("hibernate: writing chunktable\n"); 2035 if (hibernate_write_chunktable(&hib)) { 2036 DPRINTF("hibernate_write_chunktable failed\n"); 2037 return (1); 2038 } 2039 2040 DPRINTF("hibernate: writing signature\n"); 2041 if (hibernate_write_signature(&hib)) { 2042 DPRINTF("hibernate_write_signature failed\n"); 2043 return (1); 2044 } 2045 2046 /* Allow the disk to settle */ 2047 delay(500000); 2048 2049 /* 2050 * Give the device-specific I/O function a notification that we're 2051 * done, and that it can clean up or shutdown as needed. 2052 */ 2053 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 2054 2055 return (0); 2056 } 2057 2058 /* 2059 * Free items allocated by hibernate_suspend() 2060 */ 2061 void 2062 hibernate_free(void) 2063 { 2064 if (global_piglet_va) 2065 uvm_pmr_free_piglet(global_piglet_va, 2066 4 * HIBERNATE_CHUNK_SIZE); 2067 2068 if (hibernate_copy_page) 2069 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 2070 if (hibernate_temp_page) 2071 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2072 if (hibernate_rle_page) 2073 pmap_kremove(hibernate_rle_page, PAGE_SIZE); 2074 2075 pmap_update(pmap_kernel()); 2076 2077 if (hibernate_copy_page) 2078 km_free((void *)hibernate_copy_page, PAGE_SIZE, 2079 &kv_any, &kp_none); 2080 if (hibernate_temp_page) 2081 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2082 &kv_any, &kp_none); 2083 if (hibernate_rle_page) 2084 km_free((void *)hibernate_rle_page, PAGE_SIZE, 2085 &kv_any, &kp_none); 2086 2087 global_piglet_va = 0; 2088 hibernate_copy_page = 0; 2089 hibernate_temp_page = 0; 2090 hibernate_rle_page = 0; 2091 } 2092