1 /* $OpenBSD: subr_hibernate.c,v 1.131 2022/01/07 02:26:53 guenther Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* Make sure the signature can fit in one block */ 39 CTASSERT(sizeof(union hibernate_info) <= DEV_BSIZE); 40 41 /* 42 * Hibernate piglet layout information 43 * 44 * The piglet is a scratch area of memory allocated by the suspending kernel. 45 * Its phys and virt addrs are recorded in the signature block. The piglet is 46 * used to guarantee an unused area of memory that can be used by the resuming 47 * kernel for various things. The piglet is excluded during unpack operations. 48 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 49 * 50 * Offset from piglet_base Purpose 51 * ---------------------------------------------------------------------------- 52 * 0 Private page for suspend I/O write functions 53 * 1*PAGE_SIZE I/O page used during hibernate suspend 54 * 2*PAGE_SIZE I/O page used during hibernate suspend 55 * 3*PAGE_SIZE copy page used during hibernate suspend 56 * 4*PAGE_SIZE final chunk ordering list (24 pages) 57 * 28*PAGE_SIZE RLE utility page 58 * 29*PAGE_SIZE start of hiballoc area 59 * 30*PAGE_SIZE preserved entropy 60 * 110*PAGE_SIZE end of hiballoc area (80 pages) 61 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 62 * ... unused 63 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 64 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 65 * 4*HIBERNATE_CHUNK_SIZE end of piglet 66 */ 67 68 /* Temporary vaddr ranges used during hibernate */ 69 vaddr_t hibernate_temp_page; 70 vaddr_t hibernate_copy_page; 71 vaddr_t hibernate_rle_page; 72 73 /* Hibernate info as read from disk during resume */ 74 union hibernate_info disk_hib; 75 76 /* 77 * Global copy of the pig start address. This needs to be a global as we 78 * switch stacks after computing it - it can't be stored on the stack. 79 */ 80 paddr_t global_pig_start; 81 82 /* 83 * Global copies of the piglet start addresses (PA/VA). We store these 84 * as globals to avoid having to carry them around as parameters, as the 85 * piglet is allocated early and freed late - its lifecycle extends beyond 86 * that of the hibernate info union which is calculated on suspend/resume. 87 */ 88 vaddr_t global_piglet_va; 89 paddr_t global_piglet_pa; 90 91 /* #define HIB_DEBUG */ 92 #ifdef HIB_DEBUG 93 int hib_debug = 99; 94 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 95 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 96 #else 97 #define DPRINTF(x...) 98 #define DNPRINTF(n,x...) 99 #endif 100 101 #ifndef NO_PROPOLICE 102 extern long __guard_local; 103 #endif /* ! NO_PROPOLICE */ 104 105 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 106 int hibernate_calc_rle(paddr_t, paddr_t); 107 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 108 size_t *); 109 110 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 111 112 /* 113 * Hib alloc enforced alignment. 114 */ 115 #define HIB_ALIGN 8 /* bytes alignment */ 116 117 /* 118 * sizeof builtin operation, but with alignment constraint. 119 */ 120 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 121 122 struct hiballoc_entry { 123 size_t hibe_use; 124 size_t hibe_space; 125 RBT_ENTRY(hiballoc_entry) hibe_entry; 126 }; 127 128 /* 129 * Sort hibernate memory ranges by ascending PA 130 */ 131 void 132 hibernate_sort_ranges(union hibernate_info *hib_info) 133 { 134 int i, j; 135 struct hibernate_memory_range *ranges; 136 paddr_t base, end; 137 138 ranges = hib_info->ranges; 139 140 for (i = 1; i < hib_info->nranges; i++) { 141 j = i; 142 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 143 base = ranges[j].base; 144 end = ranges[j].end; 145 ranges[j].base = ranges[j - 1].base; 146 ranges[j].end = ranges[j - 1].end; 147 ranges[j - 1].base = base; 148 ranges[j - 1].end = end; 149 j--; 150 } 151 } 152 } 153 154 /* 155 * Compare hiballoc entries based on the address they manage. 156 * 157 * Since the address is fixed, relative to struct hiballoc_entry, 158 * we just compare the hiballoc_entry pointers. 159 */ 160 static __inline int 161 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 162 { 163 vaddr_t vl = (vaddr_t)l; 164 vaddr_t vr = (vaddr_t)r; 165 166 return vl < vr ? -1 : (vl > vr); 167 } 168 169 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 170 171 /* 172 * Given a hiballoc entry, return the address it manages. 173 */ 174 static __inline void * 175 hib_entry_to_addr(struct hiballoc_entry *entry) 176 { 177 caddr_t addr; 178 179 addr = (caddr_t)entry; 180 addr += HIB_SIZEOF(struct hiballoc_entry); 181 return addr; 182 } 183 184 /* 185 * Given an address, find the hiballoc that corresponds. 186 */ 187 static __inline struct hiballoc_entry* 188 hib_addr_to_entry(void *addr_param) 189 { 190 caddr_t addr; 191 192 addr = (caddr_t)addr_param; 193 addr -= HIB_SIZEOF(struct hiballoc_entry); 194 return (struct hiballoc_entry*)addr; 195 } 196 197 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 198 199 /* 200 * Allocate memory from the arena. 201 * 202 * Returns NULL if no memory is available. 203 */ 204 void * 205 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 206 { 207 struct hiballoc_entry *entry, *new_entry; 208 size_t find_sz; 209 210 /* 211 * Enforce alignment of HIB_ALIGN bytes. 212 * 213 * Note that, because the entry is put in front of the allocation, 214 * 0-byte allocations are guaranteed a unique address. 215 */ 216 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 217 218 /* 219 * Find an entry with hibe_space >= find_sz. 220 * 221 * If the root node is not large enough, we switch to tree traversal. 222 * Because all entries are made at the bottom of the free space, 223 * traversal from the end has a slightly better chance of yielding 224 * a sufficiently large space. 225 */ 226 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 227 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 228 if (entry != NULL && entry->hibe_space < find_sz) { 229 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 230 if (entry->hibe_space >= find_sz) 231 break; 232 } 233 } 234 235 /* 236 * Insufficient or too fragmented memory. 237 */ 238 if (entry == NULL) 239 return NULL; 240 241 /* 242 * Create new entry in allocated space. 243 */ 244 new_entry = (struct hiballoc_entry*)( 245 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 246 new_entry->hibe_space = entry->hibe_space - find_sz; 247 new_entry->hibe_use = alloc_sz; 248 249 /* 250 * Insert entry. 251 */ 252 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 253 panic("hib_alloc: insert failure"); 254 entry->hibe_space = 0; 255 256 /* Return address managed by entry. */ 257 return hib_entry_to_addr(new_entry); 258 } 259 260 void 261 hib_getentropy(char **bufp, size_t *bufplen) 262 { 263 if (!bufp || !bufplen) 264 return; 265 266 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 267 *bufplen = PAGE_SIZE; 268 } 269 270 /* 271 * Free a pointer previously allocated from this arena. 272 * 273 * If addr is NULL, this will be silently accepted. 274 */ 275 void 276 hib_free(struct hiballoc_arena *arena, void *addr) 277 { 278 struct hiballoc_entry *entry, *prev; 279 280 if (addr == NULL) 281 return; 282 283 /* 284 * Derive entry from addr and check it is really in this arena. 285 */ 286 entry = hib_addr_to_entry(addr); 287 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 288 panic("hib_free: freed item %p not in hib arena", addr); 289 290 /* 291 * Give the space in entry to its predecessor. 292 * 293 * If entry has no predecessor, change its used space into free space 294 * instead. 295 */ 296 prev = RBT_PREV(hiballoc_addr, entry); 297 if (prev != NULL && 298 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 299 prev->hibe_use + prev->hibe_space) == entry) { 300 /* Merge entry. */ 301 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 302 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 303 entry->hibe_use + entry->hibe_space; 304 } else { 305 /* Flip used memory to free space. */ 306 entry->hibe_space += entry->hibe_use; 307 entry->hibe_use = 0; 308 } 309 } 310 311 /* 312 * Initialize hiballoc. 313 * 314 * The allocator will manage memory at ptr, which is len bytes. 315 */ 316 int 317 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 318 { 319 struct hiballoc_entry *entry; 320 caddr_t ptr; 321 size_t len; 322 323 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 324 325 /* 326 * Hib allocator enforces HIB_ALIGN alignment. 327 * Fixup ptr and len. 328 */ 329 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 330 len = p_len - ((size_t)ptr - (size_t)p_ptr); 331 len &= ~((size_t)HIB_ALIGN - 1); 332 333 /* 334 * Insufficient memory to be able to allocate and also do bookkeeping. 335 */ 336 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 337 return ENOMEM; 338 339 /* 340 * Create entry describing space. 341 */ 342 entry = (struct hiballoc_entry*)ptr; 343 entry->hibe_use = 0; 344 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 345 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 346 347 return 0; 348 } 349 350 /* 351 * Zero all free memory. 352 */ 353 void 354 uvm_pmr_zero_everything(void) 355 { 356 struct uvm_pmemrange *pmr; 357 struct vm_page *pg; 358 int i; 359 360 uvm_lock_fpageq(); 361 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 362 /* Zero single pages. */ 363 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 364 != NULL) { 365 uvm_pmr_remove(pmr, pg); 366 uvm_pagezero(pg); 367 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 368 uvmexp.zeropages++; 369 uvm_pmr_insert(pmr, pg, 0); 370 } 371 372 /* Zero multi page ranges. */ 373 while ((pg = RBT_ROOT(uvm_pmr_size, 374 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { 375 pg--; /* Size tree always has second page. */ 376 uvm_pmr_remove(pmr, pg); 377 for (i = 0; i < pg->fpgsz; i++) { 378 uvm_pagezero(&pg[i]); 379 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 380 uvmexp.zeropages++; 381 } 382 uvm_pmr_insert(pmr, pg, 0); 383 } 384 } 385 uvm_unlock_fpageq(); 386 } 387 388 /* 389 * Mark all memory as dirty. 390 * 391 * Used to inform the system that the clean memory isn't clean for some 392 * reason, for example because we just came back from hibernate. 393 */ 394 void 395 uvm_pmr_dirty_everything(void) 396 { 397 struct uvm_pmemrange *pmr; 398 struct vm_page *pg; 399 int i; 400 401 uvm_lock_fpageq(); 402 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 403 /* Dirty single pages. */ 404 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 405 != NULL) { 406 uvm_pmr_remove(pmr, pg); 407 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 408 uvm_pmr_insert(pmr, pg, 0); 409 } 410 411 /* Dirty multi page ranges. */ 412 while ((pg = RBT_ROOT(uvm_pmr_size, 413 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 414 pg--; /* Size tree always has second page. */ 415 uvm_pmr_remove(pmr, pg); 416 for (i = 0; i < pg->fpgsz; i++) 417 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 418 uvm_pmr_insert(pmr, pg, 0); 419 } 420 } 421 422 uvmexp.zeropages = 0; 423 uvm_unlock_fpageq(); 424 } 425 426 /* 427 * Allocate an area that can hold sz bytes and doesn't overlap with 428 * the piglet at piglet_pa. 429 */ 430 int 431 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 432 { 433 struct uvm_constraint_range pig_constraint; 434 struct kmem_pa_mode kp_pig = { 435 .kp_constraint = &pig_constraint, 436 .kp_maxseg = 1 437 }; 438 vaddr_t va; 439 440 sz = round_page(sz); 441 442 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 443 pig_constraint.ucr_high = -1; 444 445 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 446 if (va == 0) { 447 pig_constraint.ucr_low = 0; 448 pig_constraint.ucr_high = piglet_pa - 1; 449 450 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 451 if (va == 0) 452 return ENOMEM; 453 } 454 455 pmap_extract(pmap_kernel(), va, pa); 456 return 0; 457 } 458 459 /* 460 * Allocate a piglet area. 461 * 462 * This needs to be in DMA-safe memory. 463 * Piglets are aligned. 464 * 465 * sz and align in bytes. 466 * 467 * The call will sleep for the pagedaemon to attempt to free memory. 468 * The pagedaemon may decide its not possible to free enough memory, causing 469 * the allocation to fail. 470 */ 471 int 472 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 473 { 474 struct kmem_pa_mode kp_piglet = { 475 .kp_constraint = &dma_constraint, 476 .kp_align = align, 477 .kp_maxseg = 1 478 }; 479 480 /* Ensure align is a power of 2 */ 481 KASSERT((align & (align - 1)) == 0); 482 483 /* 484 * Fixup arguments: align must be at least PAGE_SIZE, 485 * sz will be converted to pagecount, since that is what 486 * pmemrange uses internally. 487 */ 488 if (align < PAGE_SIZE) 489 kp_piglet.kp_align = PAGE_SIZE; 490 491 sz = round_page(sz); 492 493 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 494 if (*va == 0) 495 return ENOMEM; 496 497 pmap_extract(pmap_kernel(), *va, pa); 498 return 0; 499 } 500 501 /* 502 * Free a piglet area. 503 */ 504 void 505 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 506 { 507 /* 508 * Fix parameters. 509 */ 510 sz = round_page(sz); 511 512 /* 513 * Free the physical and virtual memory. 514 */ 515 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 516 } 517 518 /* 519 * Physmem RLE compression support. 520 * 521 * Given a physical page address, return the number of pages starting at the 522 * address that are free. Clamps to the number of pages in 523 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 524 */ 525 int 526 uvm_page_rle(paddr_t addr) 527 { 528 struct vm_page *pg, *pg_end; 529 struct vm_physseg *vmp; 530 int pseg_idx, off_idx; 531 532 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 533 if (pseg_idx == -1) 534 return 0; 535 536 vmp = &vm_physmem[pseg_idx]; 537 pg = &vmp->pgs[off_idx]; 538 if (!(pg->pg_flags & PQ_FREE)) 539 return 0; 540 541 /* 542 * Search for the first non-free page after pg. 543 * Note that the page may not be the first page in a free pmemrange, 544 * therefore pg->fpgsz cannot be used. 545 */ 546 for (pg_end = pg; pg_end <= vmp->lastpg && 547 (pg_end->pg_flags & PQ_FREE) == PQ_FREE && 548 (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++) 549 ; 550 return pg_end - pg; 551 } 552 553 /* 554 * Calculate a hopefully unique version # for this kernel, based upon 555 * how it was linked. 556 */ 557 u_int32_t 558 hibsum(void) 559 { 560 return ((long)malloc ^ (long)km_alloc ^ (long)printf ^ (long)strlen); 561 } 562 563 564 /* 565 * Fills out the hibernate_info union pointed to by hib 566 * with information about this machine (swap signature block 567 * offsets, number of memory ranges, kernel in use, etc) 568 */ 569 int 570 get_hibernate_info(union hibernate_info *hib, int suspend) 571 { 572 struct disklabel dl; 573 char err_string[128], *dl_ret; 574 int part; 575 576 #ifndef NO_PROPOLICE 577 /* Save propolice guard */ 578 hib->guard = __guard_local; 579 #endif /* ! NO_PROPOLICE */ 580 581 /* Determine I/O function to use */ 582 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 583 if (hib->io_func == NULL) 584 return (1); 585 586 /* Calculate hibernate device */ 587 hib->dev = swdevt[0].sw_dev; 588 589 /* Read disklabel (used to calculate signature and image offsets) */ 590 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 591 592 if (dl_ret) { 593 printf("Hibernate error reading disklabel: %s\n", dl_ret); 594 return (1); 595 } 596 597 /* Make sure we have a swap partition. */ 598 part = DISKPART(hib->dev); 599 if (dl.d_npartitions <= part || 600 dl.d_partitions[part].p_fstype != FS_SWAP || 601 DL_GETPSIZE(&dl.d_partitions[part]) == 0) 602 return (1); 603 604 /* Magic number */ 605 hib->magic = HIBERNATE_MAGIC; 606 607 /* Calculate signature block location */ 608 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part]) - 609 sizeof(union hibernate_info)/DEV_BSIZE; 610 611 /* Stash kernel version information */ 612 memset(&hib->kernel_version, 0, 128); 613 bcopy(version, &hib->kernel_version, 614 min(strlen(version), sizeof(hib->kernel_version)-1)); 615 hib->kernel_sum = hibsum(); 616 617 if (suspend) { 618 /* Grab the previously-allocated piglet addresses */ 619 hib->piglet_va = global_piglet_va; 620 hib->piglet_pa = global_piglet_pa; 621 hib->io_page = (void *)hib->piglet_va; 622 623 /* 624 * Initialization of the hibernate IO function for drivers 625 * that need to do prep work (such as allocating memory or 626 * setting up data structures that cannot safely be done 627 * during suspend without causing side effects). There is 628 * a matching HIB_DONE call performed after the write is 629 * completed. 630 */ 631 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[part]), 632 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[part]), 633 HIB_INIT, hib->io_page)) 634 goto fail; 635 636 } else { 637 /* 638 * Resuming kernels use a regular private page for the driver 639 * No need to free this I/O page as it will vanish as part of 640 * the resume. 641 */ 642 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 643 if (!hib->io_page) 644 goto fail; 645 } 646 647 if (get_hibernate_info_md(hib)) 648 goto fail; 649 650 return (0); 651 652 fail: 653 return (1); 654 } 655 656 /* 657 * Allocate nitems*size bytes from the hiballoc area presently in use 658 */ 659 void * 660 hibernate_zlib_alloc(void *unused, int nitems, int size) 661 { 662 struct hibernate_zlib_state *hibernate_state; 663 664 hibernate_state = 665 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 666 667 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 668 } 669 670 /* 671 * Free the memory pointed to by addr in the hiballoc area presently in 672 * use 673 */ 674 void 675 hibernate_zlib_free(void *unused, void *addr) 676 { 677 struct hibernate_zlib_state *hibernate_state; 678 679 hibernate_state = 680 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 681 682 hib_free(&hibernate_state->hiballoc_arena, addr); 683 } 684 685 /* 686 * Inflate next page of data from the image stream. 687 * The rle parameter is modified on exit to contain the number of pages to 688 * skip in the output stream (or 0 if this page was inflated into). 689 * 690 * Returns 0 if the stream contains additional data, or 1 if the stream is 691 * finished. 692 */ 693 int 694 hibernate_inflate_page(int *rle) 695 { 696 struct hibernate_zlib_state *hibernate_state; 697 int i; 698 699 hibernate_state = 700 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 701 702 /* Set up the stream for RLE code inflate */ 703 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 704 hibernate_state->hib_stream.avail_out = sizeof(*rle); 705 706 /* Inflate RLE code */ 707 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 708 if (i != Z_OK && i != Z_STREAM_END) { 709 /* 710 * XXX - this will likely reboot/hang most machines 711 * since the console output buffer will be unmapped, 712 * but there's not much else we can do here. 713 */ 714 panic("rle inflate stream error"); 715 } 716 717 if (hibernate_state->hib_stream.avail_out != 0) { 718 /* 719 * XXX - this will likely reboot/hang most machines 720 * since the console output buffer will be unmapped, 721 * but there's not much else we can do here. 722 */ 723 panic("rle short inflate error"); 724 } 725 726 if (*rle < 0 || *rle > 1024) { 727 /* 728 * XXX - this will likely reboot/hang most machines 729 * since the console output buffer will be unmapped, 730 * but there's not much else we can do here. 731 */ 732 panic("invalid rle count"); 733 } 734 735 if (i == Z_STREAM_END) 736 return (1); 737 738 if (*rle != 0) 739 return (0); 740 741 /* Set up the stream for page inflate */ 742 hibernate_state->hib_stream.next_out = 743 (unsigned char *)HIBERNATE_INFLATE_PAGE; 744 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 745 746 /* Process next block of data */ 747 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 748 if (i != Z_OK && i != Z_STREAM_END) { 749 /* 750 * XXX - this will likely reboot/hang most machines 751 * since the console output buffer will be unmapped, 752 * but there's not much else we can do here. 753 */ 754 panic("inflate error"); 755 } 756 757 /* We should always have extracted a full page ... */ 758 if (hibernate_state->hib_stream.avail_out != 0) { 759 /* 760 * XXX - this will likely reboot/hang most machines 761 * since the console output buffer will be unmapped, 762 * but there's not much else we can do here. 763 */ 764 panic("incomplete page"); 765 } 766 767 return (i == Z_STREAM_END); 768 } 769 770 /* 771 * Inflate size bytes from src into dest, skipping any pages in 772 * [src..dest] that are special (see hibernate_inflate_skip) 773 * 774 * This function executes while using the resume-time stack 775 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 776 * will likely hang or reset the machine since the console output buffer 777 * will be unmapped. 778 */ 779 void 780 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 781 paddr_t src, size_t size) 782 { 783 int end_stream = 0, rle, skip; 784 struct hibernate_zlib_state *hibernate_state; 785 786 hibernate_state = 787 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 788 789 hibernate_state->hib_stream.next_in = (unsigned char *)src; 790 hibernate_state->hib_stream.avail_in = size; 791 792 do { 793 /* 794 * Is this a special page? If yes, redirect the 795 * inflate output to a scratch page (eg, discard it) 796 */ 797 skip = hibernate_inflate_skip(hib, dest); 798 if (skip == HIB_SKIP) { 799 hibernate_enter_resume_mapping( 800 HIBERNATE_INFLATE_PAGE, 801 HIBERNATE_INFLATE_PAGE, 0); 802 } else if (skip == HIB_MOVE) { 803 /* 804 * Special case : retguard region. This gets moved 805 * temporarily into the piglet region and copied into 806 * place immediately before resume 807 */ 808 hibernate_enter_resume_mapping( 809 HIBERNATE_INFLATE_PAGE, 810 hib->piglet_pa + (110 * PAGE_SIZE) + 811 hib->retguard_ofs, 0); 812 hib->retguard_ofs += PAGE_SIZE; 813 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 814 /* 815 * XXX - this will likely reboot/hang most 816 * machines since the console output 817 * buffer will be unmapped, but there's 818 * not much else we can do here. 819 */ 820 panic("retguard move error, out of space"); 821 } 822 } else { 823 hibernate_enter_resume_mapping( 824 HIBERNATE_INFLATE_PAGE, dest, 0); 825 } 826 827 hibernate_flush(); 828 end_stream = hibernate_inflate_page(&rle); 829 830 if (rle == 0) 831 dest += PAGE_SIZE; 832 else 833 dest += (rle * PAGE_SIZE); 834 } while (!end_stream); 835 } 836 837 /* 838 * deflate from src into the I/O page, up to 'remaining' bytes 839 * 840 * Returns number of input bytes consumed, and may reset 841 * the 'remaining' parameter if not all the output space was consumed 842 * (this information is needed to know how much to write to disk) 843 */ 844 size_t 845 hibernate_deflate(union hibernate_info *hib, paddr_t src, 846 size_t *remaining) 847 { 848 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 849 struct hibernate_zlib_state *hibernate_state; 850 851 hibernate_state = 852 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 853 854 /* Set up the stream for deflate */ 855 hibernate_state->hib_stream.next_in = (unsigned char *)src; 856 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 857 hibernate_state->hib_stream.next_out = 858 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 859 hibernate_state->hib_stream.avail_out = *remaining; 860 861 /* Process next block of data */ 862 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 863 panic("hibernate zlib deflate error"); 864 865 /* Update pointers and return number of bytes consumed */ 866 *remaining = hibernate_state->hib_stream.avail_out; 867 return (PAGE_SIZE - (src & PAGE_MASK)) - 868 hibernate_state->hib_stream.avail_in; 869 } 870 871 /* 872 * Write the hibernation information specified in hiber_info 873 * to the location in swap previously calculated (last block of 874 * swap), called the "signature block". 875 */ 876 int 877 hibernate_write_signature(union hibernate_info *hib) 878 { 879 /* Write hibernate info to disk */ 880 return (hib->io_func(hib->dev, hib->sig_offset, 881 (vaddr_t)hib, DEV_BSIZE, HIB_W, 882 hib->io_page)); 883 } 884 885 /* 886 * Write the memory chunk table to the area in swap immediately 887 * preceding the signature block. The chunk table is stored 888 * in the piglet when this function is called. Returns errno. 889 */ 890 int 891 hibernate_write_chunktable(union hibernate_info *hib) 892 { 893 vaddr_t hibernate_chunk_table_start; 894 size_t hibernate_chunk_table_size; 895 int i, err; 896 897 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 898 899 hibernate_chunk_table_start = hib->piglet_va + 900 HIBERNATE_CHUNK_SIZE; 901 902 /* Write chunk table */ 903 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 904 if ((err = hib->io_func(hib->dev, 905 hib->chunktable_offset + (i/DEV_BSIZE), 906 (vaddr_t)(hibernate_chunk_table_start + i), 907 MAXPHYS, HIB_W, hib->io_page))) { 908 DPRINTF("chunktable write error: %d\n", err); 909 return (err); 910 } 911 } 912 913 return (0); 914 } 915 916 /* 917 * Write an empty hiber_info to the swap signature block, which is 918 * guaranteed to not match any valid hib. 919 */ 920 int 921 hibernate_clear_signature(void) 922 { 923 union hibernate_info blank_hiber_info; 924 union hibernate_info hib; 925 926 /* Zero out a blank hiber_info */ 927 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 928 929 /* Get the signature block location */ 930 if (get_hibernate_info(&hib, 0)) 931 return (1); 932 933 /* Write (zeroed) hibernate info to disk */ 934 DPRINTF("clearing hibernate signature block location: %lld\n", 935 hib.sig_offset); 936 if (hibernate_block_io(&hib, 937 hib.sig_offset, 938 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 939 printf("Warning: could not clear hibernate signature\n"); 940 941 return (0); 942 } 943 944 /* 945 * Compare two hibernate_infos to determine if they are the same (eg, 946 * we should be performing a hibernate resume on this machine. 947 * Not all fields are checked - just enough to verify that the machine 948 * has the same memory configuration and kernel as the one that 949 * wrote the signature previously. 950 */ 951 int 952 hibernate_compare_signature(union hibernate_info *mine, 953 union hibernate_info *disk) 954 { 955 u_int i; 956 957 if (mine->nranges != disk->nranges) { 958 printf("unhibernate failed: memory layout changed\n"); 959 return (1); 960 } 961 962 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 963 printf("unhibernate failed: original kernel changed\n"); 964 return (1); 965 } 966 967 if (hibsum() != disk->kernel_sum) { 968 printf("unhibernate failed: original kernel changed\n"); 969 return (1); 970 } 971 972 for (i = 0; i < mine->nranges; i++) { 973 if ((mine->ranges[i].base != disk->ranges[i].base) || 974 (mine->ranges[i].end != disk->ranges[i].end) ) { 975 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 976 i, 977 (void *)mine->ranges[i].base, 978 (void *)mine->ranges[i].end, 979 (void *)disk->ranges[i].base, 980 (void *)disk->ranges[i].end); 981 printf("unhibernate failed: memory size changed\n"); 982 return (1); 983 } 984 } 985 986 return (0); 987 } 988 989 /* 990 * Transfers xfer_size bytes between the hibernate device specified in 991 * hib_info at offset blkctr and the vaddr specified at dest. 992 * 993 * Separate offsets and pages are used to handle misaligned reads (reads 994 * that span a page boundary). 995 * 996 * blkctr specifies a relative offset (relative to the start of swap), 997 * not an absolute disk offset 998 * 999 */ 1000 int 1001 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1002 size_t xfer_size, vaddr_t dest, int iswrite) 1003 { 1004 struct buf *bp; 1005 struct bdevsw *bdsw; 1006 int error; 1007 1008 bp = geteblk(xfer_size); 1009 bdsw = &bdevsw[major(hib->dev)]; 1010 1011 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1012 if (error) { 1013 printf("hibernate_block_io open failed\n"); 1014 return (1); 1015 } 1016 1017 if (iswrite) 1018 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1019 1020 bp->b_bcount = xfer_size; 1021 bp->b_blkno = blkctr; 1022 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1023 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1024 bp->b_dev = hib->dev; 1025 (*bdsw->d_strategy)(bp); 1026 1027 error = biowait(bp); 1028 if (error) { 1029 printf("hib block_io biowait error %d blk %lld size %zu\n", 1030 error, (long long)blkctr, xfer_size); 1031 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1032 curproc); 1033 if (error) 1034 printf("hibernate_block_io error close failed\n"); 1035 return (1); 1036 } 1037 1038 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1039 if (error) { 1040 printf("hibernate_block_io close failed\n"); 1041 return (1); 1042 } 1043 1044 if (!iswrite) 1045 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1046 1047 bp->b_flags |= B_INVAL; 1048 brelse(bp); 1049 1050 return (0); 1051 } 1052 1053 /* 1054 * Preserve one page worth of random data, generated from the resuming 1055 * kernel's arc4random. After resume, this preserved entropy can be used 1056 * to further improve the un-hibernated machine's entropy pool. This 1057 * random data is stored in the piglet, which is preserved across the 1058 * unpack operation, and is restored later in the resume process (see 1059 * hib_getentropy) 1060 */ 1061 void 1062 hibernate_preserve_entropy(union hibernate_info *hib) 1063 { 1064 void *entropy; 1065 1066 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1067 1068 if (!entropy) 1069 return; 1070 1071 pmap_activate(curproc); 1072 pmap_kenter_pa((vaddr_t)entropy, 1073 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1074 PROT_READ | PROT_WRITE); 1075 1076 arc4random_buf((void *)entropy, PAGE_SIZE); 1077 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1078 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1079 } 1080 1081 #ifndef NO_PROPOLICE 1082 vaddr_t 1083 hibernate_unprotect_ssp(void) 1084 { 1085 struct kmem_dyn_mode kd_avoidalias; 1086 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1087 paddr_t pa; 1088 1089 pmap_extract(pmap_kernel(), va, &pa); 1090 1091 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1092 kd_avoidalias.kd_prefer = pa; 1093 kd_avoidalias.kd_waitok = 1; 1094 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1095 if (!va) 1096 panic("hibernate_unprotect_ssp"); 1097 1098 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1099 pmap_update(pmap_kernel()); 1100 1101 return va; 1102 } 1103 1104 void 1105 hibernate_reprotect_ssp(vaddr_t va) 1106 { 1107 pmap_kremove(va, PAGE_SIZE); 1108 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1109 } 1110 #endif /* NO_PROPOLICE */ 1111 1112 /* 1113 * Reads the signature block from swap, checks against the current machine's 1114 * information. If the information matches, perform a resume by reading the 1115 * saved image into the pig area, and unpacking. 1116 * 1117 * Must be called with interrupts enabled. 1118 */ 1119 void 1120 hibernate_resume(void) 1121 { 1122 union hibernate_info hib; 1123 int s; 1124 #ifndef NO_PROPOLICE 1125 vsize_t off = (vaddr_t)&__guard_local - 1126 trunc_page((vaddr_t)&__guard_local); 1127 vaddr_t guard_va; 1128 #endif 1129 1130 /* Get current running machine's hibernate info */ 1131 memset(&hib, 0, sizeof(hib)); 1132 if (get_hibernate_info(&hib, 0)) { 1133 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1134 return; 1135 } 1136 1137 /* Read hibernate info from disk */ 1138 s = splbio(); 1139 1140 DPRINTF("reading hibernate signature block location: %lld\n", 1141 hib.sig_offset); 1142 1143 if (hibernate_block_io(&hib, 1144 hib.sig_offset, 1145 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1146 DPRINTF("error in hibernate read"); 1147 splx(s); 1148 return; 1149 } 1150 1151 /* Check magic number */ 1152 if (disk_hib.magic != HIBERNATE_MAGIC) { 1153 DPRINTF("wrong magic number in hibernate signature: %x\n", 1154 disk_hib.magic); 1155 splx(s); 1156 return; 1157 } 1158 1159 /* 1160 * We (possibly) found a hibernate signature. Clear signature first, 1161 * to prevent accidental resume or endless resume cycles later. 1162 */ 1163 if (hibernate_clear_signature()) { 1164 DPRINTF("error clearing hibernate signature block\n"); 1165 splx(s); 1166 return; 1167 } 1168 1169 /* 1170 * If on-disk and in-memory hibernate signatures match, 1171 * this means we should do a resume from hibernate. 1172 */ 1173 if (hibernate_compare_signature(&hib, &disk_hib)) { 1174 DPRINTF("mismatched hibernate signature block\n"); 1175 splx(s); 1176 return; 1177 } 1178 disk_hib.dev = hib.dev; 1179 1180 #ifdef MULTIPROCESSOR 1181 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1182 DPRINTF("hibernate: quiescing APs\n"); 1183 hibernate_quiesce_cpus(); 1184 #endif /* MULTIPROCESSOR */ 1185 1186 /* Read the image from disk into the image (pig) area */ 1187 if (hibernate_read_image(&disk_hib)) 1188 goto fail; 1189 1190 DPRINTF("hibernate: quiescing devices\n"); 1191 if (config_suspend_all(DVACT_QUIESCE) != 0) 1192 goto fail; 1193 1194 #ifndef NO_PROPOLICE 1195 guard_va = hibernate_unprotect_ssp(); 1196 #endif /* NO_PROPOLICE */ 1197 1198 (void) splhigh(); 1199 hibernate_disable_intr_machdep(); 1200 cold = 1; 1201 1202 DPRINTF("hibernate: suspending devices\n"); 1203 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1204 cold = 0; 1205 hibernate_enable_intr_machdep(); 1206 #ifndef NO_PROPOLICE 1207 hibernate_reprotect_ssp(guard_va); 1208 #endif /* ! NO_PROPOLICE */ 1209 goto fail; 1210 } 1211 1212 hibernate_preserve_entropy(&disk_hib); 1213 1214 printf("Unpacking image...\n"); 1215 1216 /* Switch stacks */ 1217 DPRINTF("hibernate: switching stacks\n"); 1218 hibernate_switch_stack_machdep(); 1219 1220 #ifndef NO_PROPOLICE 1221 /* Start using suspended kernel's propolice guard */ 1222 *(long *)(guard_va + off) = disk_hib.guard; 1223 hibernate_reprotect_ssp(guard_va); 1224 #endif /* ! NO_PROPOLICE */ 1225 1226 /* Unpack and resume */ 1227 hibernate_unpack_image(&disk_hib); 1228 1229 fail: 1230 splx(s); 1231 printf("\nUnable to resume hibernated image\n"); 1232 } 1233 1234 /* 1235 * Unpack image from pig area to original location by looping through the 1236 * list of output chunks in the order they should be restored (fchunks). 1237 * 1238 * Note that due to the stack smash protector and the fact that we have 1239 * switched stacks, it is not permitted to return from this function. 1240 */ 1241 void 1242 hibernate_unpack_image(union hibernate_info *hib) 1243 { 1244 struct hibernate_disk_chunk *chunks; 1245 union hibernate_info local_hib; 1246 paddr_t image_cur = global_pig_start; 1247 short i, *fchunks; 1248 char *pva; 1249 1250 /* Piglet will be identity mapped (VA == PA) */ 1251 pva = (char *)hib->piglet_pa; 1252 1253 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1254 1255 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1256 1257 /* Can't use hiber_info that's passed in after this point */ 1258 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1259 local_hib.retguard_ofs = 0; 1260 1261 /* VA == PA */ 1262 local_hib.piglet_va = local_hib.piglet_pa; 1263 1264 /* 1265 * Point of no return. Once we pass this point, only kernel code can 1266 * be accessed. No global variables or other kernel data structures 1267 * are guaranteed to be coherent after unpack starts. 1268 * 1269 * The image is now in high memory (pig area), we unpack from the pig 1270 * to the correct location in memory. We'll eventually end up copying 1271 * on top of ourself, but we are assured the kernel code here is the 1272 * same between the hibernated and resuming kernel, and we are running 1273 * on our own stack, so the overwrite is ok. 1274 */ 1275 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1276 hibernate_activate_resume_pt_machdep(); 1277 1278 for (i = 0; i < local_hib.chunk_ctr; i++) { 1279 /* Reset zlib for inflate */ 1280 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1281 panic("hibernate failed to reset zlib for inflate"); 1282 1283 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1284 image_cur); 1285 1286 image_cur += chunks[fchunks[i]].compressed_size; 1287 1288 } 1289 1290 /* 1291 * Resume the loaded kernel by jumping to the MD resume vector. 1292 * We won't be returning from this call. We pass the location of 1293 * the retguard save area so the MD code can replace it before 1294 * resuming. See the piglet layout at the top of this file for 1295 * more information on the layout of the piglet area. 1296 * 1297 * We use 'global_piglet_va' here since by the time we are at 1298 * this point, we have already unpacked the image, and we want 1299 * the suspended kernel's view of what the piglet was, before 1300 * suspend occurred (since we will need to use that in the retguard 1301 * copy code in hibernate_resume_machdep.) 1302 */ 1303 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1304 } 1305 1306 /* 1307 * Bounce a compressed image chunk to the piglet, entering mappings for the 1308 * copied pages as needed 1309 */ 1310 void 1311 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1312 { 1313 size_t ct, ofs; 1314 paddr_t src = img_cur; 1315 vaddr_t dest = piglet; 1316 1317 /* Copy first partial page */ 1318 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1319 ofs = (src & PAGE_MASK); 1320 1321 if (ct < PAGE_SIZE) { 1322 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1323 (src - ofs), 0); 1324 hibernate_flush(); 1325 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1326 src += ct; 1327 dest += ct; 1328 } 1329 1330 /* Copy remaining pages */ 1331 while (src < size + img_cur) { 1332 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1333 hibernate_flush(); 1334 ct = PAGE_SIZE; 1335 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1336 hibernate_flush(); 1337 src += ct; 1338 dest += ct; 1339 } 1340 } 1341 1342 /* 1343 * Process a chunk by bouncing it to the piglet, followed by unpacking 1344 */ 1345 void 1346 hibernate_process_chunk(union hibernate_info *hib, 1347 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1348 { 1349 char *pva = (char *)hib->piglet_va; 1350 1351 hibernate_copy_chunk_to_piglet(img_cur, 1352 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1353 hibernate_inflate_region(hib, chunk->base, 1354 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1355 chunk->compressed_size); 1356 } 1357 1358 /* 1359 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1360 * inaddr and range_end. 1361 */ 1362 int 1363 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1364 { 1365 int rle; 1366 1367 rle = uvm_page_rle(inaddr); 1368 KASSERT(rle >= 0 && rle <= MAX_RLE); 1369 1370 /* Clamp RLE to range end */ 1371 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1372 rle = (range_end - inaddr) / PAGE_SIZE; 1373 1374 return (rle); 1375 } 1376 1377 /* 1378 * Write the RLE byte for page at 'inaddr' to the output stream. 1379 * Returns the number of pages to be skipped at 'inaddr'. 1380 */ 1381 int 1382 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1383 paddr_t range_end, daddr_t *blkctr, 1384 size_t *out_remaining) 1385 { 1386 int rle, err, *rleloc; 1387 struct hibernate_zlib_state *hibernate_state; 1388 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1389 1390 hibernate_state = 1391 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1392 1393 rle = hibernate_calc_rle(inaddr, range_end); 1394 1395 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1396 *rleloc = rle; 1397 1398 /* Deflate the RLE byte into the stream */ 1399 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1400 1401 /* Did we fill the output page? If so, flush to disk */ 1402 if (*out_remaining == 0) { 1403 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1404 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1405 hib->io_page))) { 1406 DPRINTF("hib write error %d\n", err); 1407 return (err); 1408 } 1409 1410 *blkctr += PAGE_SIZE / DEV_BSIZE; 1411 *out_remaining = PAGE_SIZE; 1412 1413 /* If we didn't deflate the entire RLE byte, finish it now */ 1414 if (hibernate_state->hib_stream.avail_in != 0) 1415 hibernate_deflate(hib, 1416 (vaddr_t)hibernate_state->hib_stream.next_in, 1417 out_remaining); 1418 } 1419 1420 return (rle); 1421 } 1422 1423 /* 1424 * Write a compressed version of this machine's memory to disk, at the 1425 * precalculated swap offset: 1426 * 1427 * end of swap - signature block size - chunk table size - memory size 1428 * 1429 * The function begins by looping through each phys mem range, cutting each 1430 * one into MD sized chunks. These chunks are then compressed individually 1431 * and written out to disk, in phys mem order. Some chunks might compress 1432 * more than others, and for this reason, each chunk's size is recorded 1433 * in the chunk table, which is written to disk after the image has 1434 * properly been compressed and written (in hibernate_write_chunktable). 1435 * 1436 * When this function is called, the machine is nearly suspended - most 1437 * devices are quiesced/suspended, interrupts are off, and cold has 1438 * been set. This means that there can be no side effects once the 1439 * write has started, and the write function itself can also have no 1440 * side effects. This also means no printfs are permitted (since printf 1441 * has side effects.) 1442 * 1443 * Return values : 1444 * 1445 * 0 - success 1446 * EIO - I/O error occurred writing the chunks 1447 * EINVAL - Failed to write a complete range 1448 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1449 */ 1450 int 1451 hibernate_write_chunks(union hibernate_info *hib) 1452 { 1453 paddr_t range_base, range_end, inaddr, temp_inaddr; 1454 size_t nblocks, out_remaining, used; 1455 struct hibernate_disk_chunk *chunks; 1456 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1457 daddr_t blkctr = 0; 1458 int i, rle, err; 1459 struct hibernate_zlib_state *hibernate_state; 1460 1461 hibernate_state = 1462 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1463 1464 hib->chunk_ctr = 0; 1465 1466 /* 1467 * Map the utility VAs to the piglet. See the piglet map at the 1468 * top of this file for piglet layout information. 1469 */ 1470 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1471 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1472 1473 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1474 HIBERNATE_CHUNK_SIZE); 1475 1476 /* Calculate the chunk regions */ 1477 for (i = 0; i < hib->nranges; i++) { 1478 range_base = hib->ranges[i].base; 1479 range_end = hib->ranges[i].end; 1480 1481 inaddr = range_base; 1482 1483 while (inaddr < range_end) { 1484 chunks[hib->chunk_ctr].base = inaddr; 1485 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1486 chunks[hib->chunk_ctr].end = inaddr + 1487 HIBERNATE_CHUNK_SIZE; 1488 else 1489 chunks[hib->chunk_ctr].end = range_end; 1490 1491 inaddr += HIBERNATE_CHUNK_SIZE; 1492 hib->chunk_ctr ++; 1493 } 1494 } 1495 1496 uvm_pmr_dirty_everything(); 1497 uvm_pmr_zero_everything(); 1498 1499 /* Compress and write the chunks in the chunktable */ 1500 for (i = 0; i < hib->chunk_ctr; i++) { 1501 range_base = chunks[i].base; 1502 range_end = chunks[i].end; 1503 1504 chunks[i].offset = blkctr + hib->image_offset; 1505 1506 /* Reset zlib for deflate */ 1507 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1508 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1509 return (ENOMEM); 1510 } 1511 1512 inaddr = range_base; 1513 1514 /* 1515 * For each range, loop through its phys mem region 1516 * and write out the chunks (the last chunk might be 1517 * smaller than the chunk size). 1518 */ 1519 while (inaddr < range_end) { 1520 out_remaining = PAGE_SIZE; 1521 while (out_remaining > 0 && inaddr < range_end) { 1522 /* 1523 * Adjust for regions that are not evenly 1524 * divisible by PAGE_SIZE or overflowed 1525 * pages from the previous iteration. 1526 */ 1527 temp_inaddr = (inaddr & PAGE_MASK) + 1528 hibernate_copy_page; 1529 1530 /* Deflate from temp_inaddr to IO page */ 1531 if (inaddr != range_end) { 1532 if (inaddr % PAGE_SIZE == 0) { 1533 rle = hibernate_write_rle(hib, 1534 inaddr, 1535 range_end, 1536 &blkctr, 1537 &out_remaining); 1538 } 1539 1540 if (rle == 0) { 1541 pmap_kenter_pa(hibernate_temp_page, 1542 inaddr & PMAP_PA_MASK, 1543 PROT_READ); 1544 1545 bcopy((caddr_t)hibernate_temp_page, 1546 (caddr_t)hibernate_copy_page, 1547 PAGE_SIZE); 1548 inaddr += hibernate_deflate(hib, 1549 temp_inaddr, 1550 &out_remaining); 1551 } else { 1552 inaddr += rle * PAGE_SIZE; 1553 if (inaddr > range_end) 1554 inaddr = range_end; 1555 } 1556 1557 } 1558 1559 if (out_remaining == 0) { 1560 /* Filled up the page */ 1561 nblocks = PAGE_SIZE / DEV_BSIZE; 1562 1563 if ((err = hib->io_func(hib->dev, 1564 blkctr + hib->image_offset, 1565 (vaddr_t)hibernate_io_page, 1566 PAGE_SIZE, HIB_W, hib->io_page))) { 1567 DPRINTF("hib write error %d\n", 1568 err); 1569 return (err); 1570 } 1571 1572 blkctr += nblocks; 1573 } 1574 } 1575 } 1576 1577 if (inaddr != range_end) { 1578 DPRINTF("deflate range ended prematurely\n"); 1579 return (EINVAL); 1580 } 1581 1582 /* 1583 * End of range. Round up to next secsize bytes 1584 * after finishing compress 1585 */ 1586 if (out_remaining == 0) 1587 out_remaining = PAGE_SIZE; 1588 1589 /* Finish compress */ 1590 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1591 hibernate_state->hib_stream.avail_in = 0; 1592 hibernate_state->hib_stream.next_out = 1593 (unsigned char *)hibernate_io_page + 1594 (PAGE_SIZE - out_remaining); 1595 1596 /* We have an extra output page available for finalize */ 1597 hibernate_state->hib_stream.avail_out = 1598 out_remaining + PAGE_SIZE; 1599 1600 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1601 Z_STREAM_END) { 1602 DPRINTF("deflate error in output stream: %d\n", err); 1603 return (err); 1604 } 1605 1606 out_remaining = hibernate_state->hib_stream.avail_out; 1607 1608 used = 2 * PAGE_SIZE - out_remaining; 1609 nblocks = used / DEV_BSIZE; 1610 1611 /* Round up to next block if needed */ 1612 if (used % DEV_BSIZE != 0) 1613 nblocks ++; 1614 1615 /* Write final block(s) for this chunk */ 1616 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1617 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1618 HIB_W, hib->io_page))) { 1619 DPRINTF("hib final write error %d\n", err); 1620 return (err); 1621 } 1622 1623 blkctr += nblocks; 1624 1625 chunks[i].compressed_size = (blkctr + hib->image_offset - 1626 chunks[i].offset) * DEV_BSIZE; 1627 } 1628 1629 hib->chunktable_offset = hib->image_offset + blkctr; 1630 return (0); 1631 } 1632 1633 /* 1634 * Reset the zlib stream state and allocate a new hiballoc area for either 1635 * inflate or deflate. This function is called once for each hibernate chunk. 1636 * Calling hiballoc_init multiple times is acceptable since the memory it is 1637 * provided is unmanaged memory (stolen). We use the memory provided to us 1638 * by the piglet allocated via the supplied hib. 1639 */ 1640 int 1641 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1642 { 1643 vaddr_t hibernate_zlib_start; 1644 size_t hibernate_zlib_size; 1645 char *pva = (char *)hib->piglet_va; 1646 struct hibernate_zlib_state *hibernate_state; 1647 1648 hibernate_state = 1649 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1650 1651 if (!deflate) 1652 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1653 1654 /* 1655 * See piglet layout information at the start of this file for 1656 * information on the zlib page assignments. 1657 */ 1658 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1659 hibernate_zlib_size = 80 * PAGE_SIZE; 1660 1661 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1662 memset(hibernate_state, 0, PAGE_SIZE); 1663 1664 /* Set up stream structure */ 1665 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1666 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1667 1668 /* Initialize the hiballoc arena for zlib allocs/frees */ 1669 hiballoc_init(&hibernate_state->hiballoc_arena, 1670 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1671 1672 if (deflate) { 1673 return deflateInit(&hibernate_state->hib_stream, 1674 Z_BEST_SPEED); 1675 } else 1676 return inflateInit(&hibernate_state->hib_stream); 1677 } 1678 1679 /* 1680 * Reads the hibernated memory image from disk, whose location and 1681 * size are recorded in hib. Begin by reading the persisted 1682 * chunk table, which records the original chunk placement location 1683 * and compressed size for each. Next, allocate a pig region of 1684 * sufficient size to hold the compressed image. Next, read the 1685 * chunks into the pig area (calling hibernate_read_chunks to do this), 1686 * and finally, if all of the above succeeds, clear the hibernate signature. 1687 * The function will then return to hibernate_resume, which will proceed 1688 * to unpack the pig image to the correct place in memory. 1689 */ 1690 int 1691 hibernate_read_image(union hibernate_info *hib) 1692 { 1693 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1694 paddr_t image_start, image_end, pig_start, pig_end; 1695 struct hibernate_disk_chunk *chunks; 1696 daddr_t blkctr; 1697 vaddr_t chunktable = (vaddr_t)NULL; 1698 paddr_t piglet_chunktable = hib->piglet_pa + 1699 HIBERNATE_CHUNK_SIZE; 1700 int i, status; 1701 1702 status = 0; 1703 pmap_activate(curproc); 1704 1705 /* Calculate total chunk table size in disk blocks */ 1706 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1707 1708 blkctr = hib->chunktable_offset; 1709 1710 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1711 &kp_none, &kd_nowait); 1712 1713 if (!chunktable) 1714 return (1); 1715 1716 /* Map chunktable pages */ 1717 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1718 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1719 PROT_READ | PROT_WRITE); 1720 pmap_update(pmap_kernel()); 1721 1722 /* Read the chunktable from disk into the piglet chunktable */ 1723 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1724 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1725 hibernate_block_io(hib, blkctr, MAXPHYS, 1726 chunktable + i, 0); 1727 1728 blkctr = hib->image_offset; 1729 compressed_size = 0; 1730 1731 chunks = (struct hibernate_disk_chunk *)chunktable; 1732 1733 for (i = 0; i < hib->chunk_ctr; i++) 1734 compressed_size += chunks[i].compressed_size; 1735 1736 disk_size = compressed_size; 1737 1738 printf("unhibernating @ block %lld length %luMB\n", 1739 hib->sig_offset - chunktable_size, 1740 compressed_size / (1024 * 1024)); 1741 1742 /* Allocate the pig area */ 1743 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1744 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1745 status = 1; 1746 goto unmap; 1747 } 1748 1749 pig_end = pig_start + pig_sz; 1750 1751 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1752 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1753 image_start = image_end - disk_size; 1754 1755 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1756 chunks); 1757 1758 /* Prepare the resume time pmap/page table */ 1759 hibernate_populate_resume_pt(hib, image_start, image_end); 1760 1761 unmap: 1762 /* Unmap chunktable pages */ 1763 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1764 pmap_update(pmap_kernel()); 1765 1766 return (status); 1767 } 1768 1769 /* 1770 * Read the hibernated memory chunks from disk (chunk information at this 1771 * point is stored in the piglet) into the pig area specified by 1772 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1773 * only chunk with overlap possibilities. 1774 */ 1775 int 1776 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1777 paddr_t pig_end, size_t image_compr_size, 1778 struct hibernate_disk_chunk *chunks) 1779 { 1780 paddr_t img_cur, piglet_base; 1781 daddr_t blkctr; 1782 size_t processed, compressed_size, read_size; 1783 int nchunks, nfchunks, num_io_pages; 1784 vaddr_t tempva, hibernate_fchunk_area; 1785 short *fchunks, i, j; 1786 1787 tempva = (vaddr_t)NULL; 1788 hibernate_fchunk_area = (vaddr_t)NULL; 1789 nfchunks = 0; 1790 piglet_base = hib->piglet_pa; 1791 global_pig_start = pig_start; 1792 1793 /* 1794 * These mappings go into the resuming kernel's page table, and are 1795 * used only during image read. They disappear from existence 1796 * when the suspended kernel is unpacked on top of us. 1797 */ 1798 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1799 &kd_nowait); 1800 if (!tempva) 1801 return (1); 1802 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1803 &kp_none, &kd_nowait); 1804 if (!hibernate_fchunk_area) 1805 return (1); 1806 1807 /* Final output chunk ordering VA */ 1808 fchunks = (short *)hibernate_fchunk_area; 1809 1810 /* Map the chunk ordering region */ 1811 for(i = 0; i < 24 ; i++) 1812 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1813 piglet_base + ((4 + i) * PAGE_SIZE), 1814 PROT_READ | PROT_WRITE); 1815 pmap_update(pmap_kernel()); 1816 1817 nchunks = hib->chunk_ctr; 1818 1819 /* Initially start all chunks as unplaced */ 1820 for (i = 0; i < nchunks; i++) 1821 chunks[i].flags = 0; 1822 1823 /* 1824 * Search the list for chunks that are outside the pig area. These 1825 * can be placed first in the final output list. 1826 */ 1827 for (i = 0; i < nchunks; i++) { 1828 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1829 fchunks[nfchunks] = i; 1830 nfchunks++; 1831 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1832 } 1833 } 1834 1835 /* 1836 * Walk the ordering, place the chunks in ascending memory order. 1837 */ 1838 for (i = 0; i < nchunks; i++) { 1839 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1840 fchunks[nfchunks] = i; 1841 nfchunks++; 1842 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1843 } 1844 } 1845 1846 img_cur = pig_start; 1847 1848 for (i = 0; i < nfchunks; i++) { 1849 blkctr = chunks[fchunks[i]].offset; 1850 processed = 0; 1851 compressed_size = chunks[fchunks[i]].compressed_size; 1852 1853 while (processed < compressed_size) { 1854 if (compressed_size - processed >= MAXPHYS) 1855 read_size = MAXPHYS; 1856 else 1857 read_size = compressed_size - processed; 1858 1859 /* 1860 * We're reading read_size bytes, offset from the 1861 * start of a page by img_cur % PAGE_SIZE, so the 1862 * end will be read_size + (img_cur % PAGE_SIZE) 1863 * from the start of the first page. Round that 1864 * up to the next page size. 1865 */ 1866 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1867 + PAGE_SIZE - 1) / PAGE_SIZE; 1868 1869 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1870 1871 /* Map pages for this read */ 1872 for (j = 0; j < num_io_pages; j ++) 1873 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1874 img_cur + j * PAGE_SIZE, 1875 PROT_READ | PROT_WRITE); 1876 1877 pmap_update(pmap_kernel()); 1878 1879 hibernate_block_io(hib, blkctr, read_size, 1880 tempva + (img_cur & PAGE_MASK), 0); 1881 1882 blkctr += (read_size / DEV_BSIZE); 1883 1884 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1885 pmap_update(pmap_kernel()); 1886 1887 processed += read_size; 1888 img_cur += read_size; 1889 } 1890 } 1891 1892 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1893 pmap_update(pmap_kernel()); 1894 1895 return (0); 1896 } 1897 1898 /* 1899 * Hibernating a machine comprises the following operations: 1900 * 1. Calculating this machine's hibernate_info information 1901 * 2. Allocating a piglet and saving the piglet's physaddr 1902 * 3. Calculating the memory chunks 1903 * 4. Writing the compressed chunks to disk 1904 * 5. Writing the chunk table 1905 * 6. Writing the signature block (hibernate_info) 1906 * 1907 * On most architectures, the function calling hibernate_suspend would 1908 * then power off the machine using some MD-specific implementation. 1909 */ 1910 int 1911 hibernate_suspend(void) 1912 { 1913 union hibernate_info hib; 1914 u_long start, end; 1915 1916 /* 1917 * Calculate memory ranges, swap offsets, etc. 1918 * This also allocates a piglet whose physaddr is stored in 1919 * hib->piglet_pa and vaddr stored in hib->piglet_va 1920 */ 1921 if (get_hibernate_info(&hib, 1)) { 1922 DPRINTF("failed to obtain hibernate info\n"); 1923 return (1); 1924 } 1925 1926 /* Find a page-addressed region in swap [start,end] */ 1927 if (uvm_hibswap(hib.dev, &start, &end)) { 1928 printf("hibernate: cannot find any swap\n"); 1929 return (1); 1930 } 1931 1932 if (end - start < 1000) { 1933 printf("hibernate: insufficient swap (%lu is too small)\n", 1934 end - start); 1935 return (1); 1936 } 1937 1938 /* Calculate block offsets in swap */ 1939 hib.image_offset = ctod(start); 1940 1941 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1942 hib.image_offset, ctod(end) - ctod(start)); 1943 1944 pmap_activate(curproc); 1945 DPRINTF("hibernate: writing chunks\n"); 1946 if (hibernate_write_chunks(&hib)) { 1947 DPRINTF("hibernate_write_chunks failed\n"); 1948 return (1); 1949 } 1950 1951 DPRINTF("hibernate: writing chunktable\n"); 1952 if (hibernate_write_chunktable(&hib)) { 1953 DPRINTF("hibernate_write_chunktable failed\n"); 1954 return (1); 1955 } 1956 1957 DPRINTF("hibernate: writing signature\n"); 1958 if (hibernate_write_signature(&hib)) { 1959 DPRINTF("hibernate_write_signature failed\n"); 1960 return (1); 1961 } 1962 1963 /* Allow the disk to settle */ 1964 delay(500000); 1965 1966 /* 1967 * Give the device-specific I/O function a notification that we're 1968 * done, and that it can clean up or shutdown as needed. 1969 */ 1970 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1971 return (0); 1972 } 1973 1974 int 1975 hibernate_alloc(void) 1976 { 1977 KASSERT(global_piglet_va == 0); 1978 KASSERT(hibernate_temp_page == 0); 1979 1980 pmap_activate(curproc); 1981 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1982 PROT_READ | PROT_WRITE); 1983 1984 /* Allocate a piglet, store its addresses in the supplied globals */ 1985 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1986 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1987 goto unmap; 1988 1989 /* 1990 * Allocate VA for the temp page. 1991 * 1992 * This will become part of the suspended kernel and will 1993 * be freed in hibernate_free, upon resume (or hibernate 1994 * failure) 1995 */ 1996 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1997 &kp_none, &kd_nowait); 1998 if (!hibernate_temp_page) { 1999 uvm_pmr_free_piglet(global_piglet_va, 2000 4 * HIBERNATE_CHUNK_SIZE); 2001 global_piglet_va = 0; 2002 goto unmap; 2003 } 2004 return (0); 2005 unmap: 2006 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2007 pmap_update(pmap_kernel()); 2008 return (ENOMEM); 2009 } 2010 2011 /* 2012 * Free items allocated by hibernate_alloc() 2013 */ 2014 void 2015 hibernate_free(void) 2016 { 2017 pmap_activate(curproc); 2018 2019 if (global_piglet_va) 2020 uvm_pmr_free_piglet(global_piglet_va, 2021 4 * HIBERNATE_CHUNK_SIZE); 2022 2023 if (hibernate_temp_page) { 2024 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2025 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2026 &kv_any, &kp_none); 2027 } 2028 2029 global_piglet_va = 0; 2030 hibernate_temp_page = 0; 2031 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2032 pmap_update(pmap_kernel()); 2033 } 2034