xref: /openbsd-src/sys/kern/subr_hibernate.c (revision 3a85c2af8af4b93b94f82d90d1bceeceb82ceb41)
1 /*	$OpenBSD: subr_hibernate.c,v 1.35 2012/06/20 17:31:55 mlarkin Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/types.h>
25 #include <sys/systm.h>
26 #include <sys/disklabel.h>
27 #include <sys/disk.h>
28 #include <sys/conf.h>
29 #include <sys/buf.h>
30 #include <sys/fcntl.h>
31 #include <sys/stat.h>
32 #include <uvm/uvm.h>
33 #include <machine/hibernate.h>
34 
35 /* Temporary vaddr ranges used during hibernate */
36 vaddr_t hibernate_temp_page;
37 vaddr_t hibernate_copy_page;
38 
39 /* Hibernate info as read from disk during resume */
40 union hibernate_info disk_hiber_info;
41 paddr_t global_pig_start;
42 vaddr_t global_piglet_va;
43 
44 /*
45  * Hib alloc enforced alignment.
46  */
47 #define HIB_ALIGN		8 /* bytes alignment */
48 
49 /*
50  * sizeof builtin operation, but with alignment constraint.
51  */
52 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
53 
54 struct hiballoc_entry {
55 	size_t			hibe_use;
56 	size_t			hibe_space;
57 	RB_ENTRY(hiballoc_entry) hibe_entry;
58 };
59 
60 /*
61  * Compare hiballoc entries based on the address they manage.
62  *
63  * Since the address is fixed, relative to struct hiballoc_entry,
64  * we just compare the hiballoc_entry pointers.
65  */
66 static __inline int
67 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
68 {
69 	return l < r ? -1 : (l > r);
70 }
71 
72 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
73 
74 /*
75  * Given a hiballoc entry, return the address it manages.
76  */
77 static __inline void *
78 hib_entry_to_addr(struct hiballoc_entry *entry)
79 {
80 	caddr_t addr;
81 
82 	addr = (caddr_t)entry;
83 	addr += HIB_SIZEOF(struct hiballoc_entry);
84 	return addr;
85 }
86 
87 /*
88  * Given an address, find the hiballoc that corresponds.
89  */
90 static __inline struct hiballoc_entry*
91 hib_addr_to_entry(void *addr_param)
92 {
93 	caddr_t addr;
94 
95 	addr = (caddr_t)addr_param;
96 	addr -= HIB_SIZEOF(struct hiballoc_entry);
97 	return (struct hiballoc_entry*)addr;
98 }
99 
100 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
101 
102 /*
103  * Allocate memory from the arena.
104  *
105  * Returns NULL if no memory is available.
106  */
107 void *
108 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
109 {
110 	struct hiballoc_entry *entry, *new_entry;
111 	size_t find_sz;
112 
113 	/*
114 	 * Enforce alignment of HIB_ALIGN bytes.
115 	 *
116 	 * Note that, because the entry is put in front of the allocation,
117 	 * 0-byte allocations are guaranteed a unique address.
118 	 */
119 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
120 
121 	/*
122 	 * Find an entry with hibe_space >= find_sz.
123 	 *
124 	 * If the root node is not large enough, we switch to tree traversal.
125 	 * Because all entries are made at the bottom of the free space,
126 	 * traversal from the end has a slightly better chance of yielding
127 	 * a sufficiently large space.
128 	 */
129 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
130 	entry = RB_ROOT(&arena->hib_addrs);
131 	if (entry != NULL && entry->hibe_space < find_sz) {
132 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
133 			if (entry->hibe_space >= find_sz)
134 				break;
135 		}
136 	}
137 
138 	/*
139 	 * Insufficient or too fragmented memory.
140 	 */
141 	if (entry == NULL)
142 		return NULL;
143 
144 	/*
145 	 * Create new entry in allocated space.
146 	 */
147 	new_entry = (struct hiballoc_entry*)(
148 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
149 	new_entry->hibe_space = entry->hibe_space - find_sz;
150 	new_entry->hibe_use = alloc_sz;
151 
152 	/*
153 	 * Insert entry.
154 	 */
155 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
156 		panic("hib_alloc: insert failure");
157 	entry->hibe_space = 0;
158 
159 	/* Return address managed by entry. */
160 	return hib_entry_to_addr(new_entry);
161 }
162 
163 /*
164  * Free a pointer previously allocated from this arena.
165  *
166  * If addr is NULL, this will be silently accepted.
167  */
168 void
169 hib_free(struct hiballoc_arena *arena, void *addr)
170 {
171 	struct hiballoc_entry *entry, *prev;
172 
173 	if (addr == NULL)
174 		return;
175 
176 	/*
177 	 * Derive entry from addr and check it is really in this arena.
178 	 */
179 	entry = hib_addr_to_entry(addr);
180 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
181 		panic("hib_free: freed item %p not in hib arena", addr);
182 
183 	/*
184 	 * Give the space in entry to its predecessor.
185 	 *
186 	 * If entry has no predecessor, change its used space into free space
187 	 * instead.
188 	 */
189 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
190 	if (prev != NULL &&
191 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
192 	    prev->hibe_use + prev->hibe_space) == entry) {
193 		/* Merge entry. */
194 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
195 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
196 		    entry->hibe_use + entry->hibe_space;
197 	} else {
198 		/* Flip used memory to free space. */
199 		entry->hibe_space += entry->hibe_use;
200 		entry->hibe_use = 0;
201 	}
202 }
203 
204 /*
205  * Initialize hiballoc.
206  *
207  * The allocator will manage memmory at ptr, which is len bytes.
208  */
209 int
210 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
211 {
212 	struct hiballoc_entry *entry;
213 	caddr_t ptr;
214 	size_t len;
215 
216 	RB_INIT(&arena->hib_addrs);
217 
218 	/*
219 	 * Hib allocator enforces HIB_ALIGN alignment.
220 	 * Fixup ptr and len.
221 	 */
222 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
223 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
224 	len &= ~((size_t)HIB_ALIGN - 1);
225 
226 	/*
227 	 * Insufficient memory to be able to allocate and also do bookkeeping.
228 	 */
229 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
230 		return ENOMEM;
231 
232 	/*
233 	 * Create entry describing space.
234 	 */
235 	entry = (struct hiballoc_entry*)ptr;
236 	entry->hibe_use = 0;
237 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
238 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
239 
240 	return 0;
241 }
242 
243 /*
244  * Zero all free memory.
245  */
246 void
247 uvm_pmr_zero_everything(void)
248 {
249 	struct uvm_pmemrange	*pmr;
250 	struct vm_page		*pg;
251 	int			 i;
252 
253 	uvm_lock_fpageq();
254 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
255 		/* Zero single pages. */
256 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
257 		    != NULL) {
258 			uvm_pmr_remove(pmr, pg);
259 			uvm_pagezero(pg);
260 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
261 			uvmexp.zeropages++;
262 			uvm_pmr_insert(pmr, pg, 0);
263 		}
264 
265 		/* Zero multi page ranges. */
266 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
267 		    != NULL) {
268 			pg--; /* Size tree always has second page. */
269 			uvm_pmr_remove(pmr, pg);
270 			for (i = 0; i < pg->fpgsz; i++) {
271 				uvm_pagezero(&pg[i]);
272 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
273 				uvmexp.zeropages++;
274 			}
275 			uvm_pmr_insert(pmr, pg, 0);
276 		}
277 	}
278 	uvm_unlock_fpageq();
279 }
280 
281 /*
282  * Mark all memory as dirty.
283  *
284  * Used to inform the system that the clean memory isn't clean for some
285  * reason, for example because we just came back from hibernate.
286  */
287 void
288 uvm_pmr_dirty_everything(void)
289 {
290 	struct uvm_pmemrange	*pmr;
291 	struct vm_page		*pg;
292 	int			 i;
293 
294 	uvm_lock_fpageq();
295 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
296 		/* Dirty single pages. */
297 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
298 		    != NULL) {
299 			uvm_pmr_remove(pmr, pg);
300 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
301 			uvm_pmr_insert(pmr, pg, 0);
302 		}
303 
304 		/* Dirty multi page ranges. */
305 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
306 		    != NULL) {
307 			pg--; /* Size tree always has second page. */
308 			uvm_pmr_remove(pmr, pg);
309 			for (i = 0; i < pg->fpgsz; i++)
310 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
311 			uvm_pmr_insert(pmr, pg, 0);
312 		}
313 	}
314 
315 	uvmexp.zeropages = 0;
316 	uvm_unlock_fpageq();
317 }
318 
319 /*
320  * Allocate the highest address that can hold sz.
321  *
322  * sz in bytes.
323  */
324 int
325 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
326 {
327 	struct uvm_pmemrange	*pmr;
328 	struct vm_page		*pig_pg, *pg;
329 
330 	/*
331 	 * Convert sz to pages, since that is what pmemrange uses internally.
332 	 */
333 	sz = atop(round_page(sz));
334 
335 	uvm_lock_fpageq();
336 
337 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
338 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
339 			if (pig_pg->fpgsz >= sz) {
340 				goto found;
341 			}
342 		}
343 	}
344 
345 	/*
346 	 * Allocation failure.
347 	 */
348 	uvm_unlock_fpageq();
349 	return ENOMEM;
350 
351 found:
352 	/* Remove page from freelist. */
353 	uvm_pmr_remove_size(pmr, pig_pg);
354 	pig_pg->fpgsz -= sz;
355 	pg = pig_pg + pig_pg->fpgsz;
356 	if (pig_pg->fpgsz == 0)
357 		uvm_pmr_remove_addr(pmr, pig_pg);
358 	else
359 		uvm_pmr_insert_size(pmr, pig_pg);
360 
361 	uvmexp.free -= sz;
362 	*addr = VM_PAGE_TO_PHYS(pg);
363 
364 	/*
365 	 * Update pg flags.
366 	 *
367 	 * Note that we trash the sz argument now.
368 	 */
369 	while (sz > 0) {
370 		KASSERT(pg->pg_flags & PQ_FREE);
371 
372 		atomic_clearbits_int(&pg->pg_flags,
373 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
374 
375 		if (pg->pg_flags & PG_ZERO)
376 			uvmexp.zeropages -= sz;
377 		atomic_clearbits_int(&pg->pg_flags,
378 		    PG_ZERO|PQ_FREE);
379 
380 		pg->uobject = NULL;
381 		pg->uanon = NULL;
382 		pg->pg_version++;
383 
384 		/*
385 		 * Next.
386 		 */
387 		pg++;
388 		sz--;
389 	}
390 
391 	/* Return. */
392 	uvm_unlock_fpageq();
393 	return 0;
394 }
395 
396 /*
397  * Allocate a piglet area.
398  *
399  * This is as low as possible.
400  * Piglets are aligned.
401  *
402  * sz and align in bytes.
403  *
404  * The call will sleep for the pagedaemon to attempt to free memory.
405  * The pagedaemon may decide its not possible to free enough memory, causing
406  * the allocation to fail.
407  */
408 int
409 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
410 {
411 	paddr_t			 pg_addr, piglet_addr;
412 	struct uvm_pmemrange	*pmr;
413 	struct vm_page		*pig_pg, *pg;
414 	struct pglist		 pageq;
415 	int			 pdaemon_woken;
416 	vaddr_t			 piglet_va;
417 
418 	KASSERT((align & (align - 1)) == 0);
419 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
420 
421 	/*
422 	 * Fixup arguments: align must be at least PAGE_SIZE,
423 	 * sz will be converted to pagecount, since that is what
424 	 * pmemrange uses internally.
425 	 */
426 	if (align < PAGE_SIZE)
427 		align = PAGE_SIZE;
428 	sz = round_page(sz);
429 
430 	uvm_lock_fpageq();
431 
432 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
433 	    pmr_use) {
434 retry:
435 		/*
436 		 * Search for a range with enough space.
437 		 * Use the address tree, to ensure the range is as low as
438 		 * possible.
439 		 */
440 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
441 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
442 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
443 
444 			if (atop(pg_addr) + pig_pg->fpgsz >=
445 			    atop(piglet_addr) + atop(sz))
446 				goto found;
447 		}
448 	}
449 
450 	/*
451 	 * Try to coerse the pagedaemon into freeing memory
452 	 * for the piglet.
453 	 *
454 	 * pdaemon_woken is set to prevent the code from
455 	 * falling into an endless loop.
456 	 */
457 	if (!pdaemon_woken) {
458 		pdaemon_woken = 1;
459 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
460 		    sz, UVM_PLA_FAILOK) == 0)
461 			goto retry;
462 	}
463 
464 	/* Return failure. */
465 	uvm_unlock_fpageq();
466 	return ENOMEM;
467 
468 found:
469 	/*
470 	 * Extract piglet from pigpen.
471 	 */
472 	TAILQ_INIT(&pageq);
473 	uvm_pmr_extract_range(pmr, pig_pg,
474 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
475 
476 	*pa = piglet_addr;
477 	uvmexp.free -= atop(sz);
478 
479 	/*
480 	 * Update pg flags.
481 	 *
482 	 * Note that we trash the sz argument now.
483 	 */
484 	TAILQ_FOREACH(pg, &pageq, pageq) {
485 		KASSERT(pg->pg_flags & PQ_FREE);
486 
487 		atomic_clearbits_int(&pg->pg_flags,
488 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
489 
490 		if (pg->pg_flags & PG_ZERO)
491 			uvmexp.zeropages--;
492 		atomic_clearbits_int(&pg->pg_flags,
493 		    PG_ZERO|PQ_FREE);
494 
495 		pg->uobject = NULL;
496 		pg->uanon = NULL;
497 		pg->pg_version++;
498 	}
499 
500 	uvm_unlock_fpageq();
501 
502 	/*
503 	 * Now allocate a va.
504 	 * Use direct mappings for the pages.
505 	 */
506 
507 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
508 	if (!piglet_va) {
509 		uvm_pglistfree(&pageq);
510 		return ENOMEM;
511 	}
512 
513 	/*
514 	 * Map piglet to va.
515 	 */
516 	TAILQ_FOREACH(pg, &pageq, pageq) {
517 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
518 		piglet_va += PAGE_SIZE;
519 	}
520 	pmap_update(pmap_kernel());
521 
522 	return 0;
523 }
524 
525 /*
526  * Free a piglet area.
527  */
528 void
529 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
530 {
531 	paddr_t			 pa;
532 	struct vm_page		*pg;
533 
534 	/*
535 	 * Fix parameters.
536 	 */
537 	sz = round_page(sz);
538 
539 	/*
540 	 * Find the first page in piglet.
541 	 * Since piglets are contiguous, the first pg is all we need.
542 	 */
543 	if (!pmap_extract(pmap_kernel(), va, &pa))
544 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
545 	pg = PHYS_TO_VM_PAGE(pa);
546 	if (pg == NULL)
547 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
548 
549 	/*
550 	 * Unmap.
551 	 */
552 	pmap_kremove(va, sz);
553 	pmap_update(pmap_kernel());
554 
555 	/*
556 	 * Free the physical and virtual memory.
557 	 */
558 	uvm_pmr_freepages(pg, atop(sz));
559 	km_free((void *)va, sz, &kv_any, &kp_none);
560 }
561 
562 /*
563  * Physmem RLE compression support.
564  *
565  * Given a physical page address, it will return the number of pages
566  * starting at the address, that are free.  Clamps to the number of pages in
567  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
568  */
569 int
570 uvm_page_rle(paddr_t addr)
571 {
572 	struct vm_page		*pg, *pg_end;
573 	struct vm_physseg	*vmp;
574 	int			 pseg_idx, off_idx;
575 
576 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
577 	if (pseg_idx == -1)
578 		return 0;
579 
580 	vmp = &vm_physmem[pseg_idx];
581 	pg = &vmp->pgs[off_idx];
582 	if (!(pg->pg_flags & PQ_FREE))
583 		return 0;
584 
585 	/*
586 	 * Search for the first non-free page after pg.
587 	 * Note that the page may not be the first page in a free pmemrange,
588 	 * therefore pg->fpgsz cannot be used.
589 	 */
590 	for (pg_end = pg; pg_end <= vmp->lastpg &&
591 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
592 		;
593 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
594 }
595 
596 /*
597  * Fills out the hibernate_info union pointed to by hiber_info
598  * with information about this machine (swap signature block
599  * offsets, number of memory ranges, kernel in use, etc)
600  */
601 int
602 get_hibernate_info(union hibernate_info *hiber_info, int suspend)
603 {
604 	int chunktable_size;
605 	struct disklabel dl;
606 	char err_string[128], *dl_ret;
607 
608 	/* Determine I/O function to use */
609 	hiber_info->io_func = get_hibernate_io_function();
610 	if (hiber_info->io_func == NULL)
611 		return (1);
612 
613 	/* Calculate hibernate device */
614 	hiber_info->device = swdevt[0].sw_dev;
615 
616 	/* Read disklabel (used to calculate signature and image offsets) */
617 	dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128);
618 
619 	if (dl_ret) {
620 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
621 		return (1);
622 	}
623 
624 	hiber_info->secsize = dl.d_secsize;
625 
626 	/* Make sure the signature can fit in one block */
627 	KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1);
628 
629 	/* Calculate swap offset from start of disk */
630 	hiber_info->swap_offset = dl.d_partitions[1].p_offset;
631 
632 	/* Calculate signature block location */
633 	hiber_info->sig_offset = dl.d_partitions[1].p_offset +
634 	    dl.d_partitions[1].p_size -
635 	    sizeof(union hibernate_info)/hiber_info->secsize;
636 
637 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
638 
639 	/* Stash kernel version information */
640 	bzero(&hiber_info->kernel_version, 128);
641 	bcopy(version, &hiber_info->kernel_version,
642 	    min(strlen(version), sizeof(hiber_info->kernel_version)-1));
643 
644 	if (suspend) {
645 		/* Allocate piglet region */
646 		if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va,
647 		    &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
648 		    HIBERNATE_CHUNK_SIZE)) {
649 			printf("Hibernate failed to allocate the piglet\n");
650 			return (1);
651 		}
652 		hiber_info->io_page = (void *)hiber_info->piglet_va;
653 	} else {
654 		/*
655 		 * Resuming kernels use a regular I/O page since we won't
656 		 * have access to the suspended kernel's piglet VA at this
657 		 * point. No need to free this I/O page as it will vanish
658 		 * as part of the resume.
659 		 */
660 		hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
661 		if (!hiber_info->io_page)
662 			return (1);
663 	}
664 
665 
666 	/*
667 	 * Initialize of the hibernate IO function (for drivers which
668 	 * need that)
669 	 */
670 	if (hiber_info->io_func(hiber_info->device, 0,
671 	    (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page))
672 		goto fail;
673 
674 	if (get_hibernate_info_md(hiber_info))
675 		goto fail;
676 
677 	/* Calculate memory image location */
678 	hiber_info->image_offset = dl.d_partitions[1].p_offset +
679 	    dl.d_partitions[1].p_size -
680 	    (hiber_info->image_size / hiber_info->secsize) -
681 	    sizeof(union hibernate_info)/hiber_info->secsize -
682 	    chunktable_size;
683 
684 	return (0);
685 fail:
686 	if (suspend)
687 		uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3);
688 
689 	return (1);
690 }
691 
692 /*
693  * Allocate nitems*size bytes from the hiballoc area presently in use
694  */
695 void
696 *hibernate_zlib_alloc(void *unused, int nitems, int size)
697 {
698 	struct hibernate_zlib_state *hibernate_state;
699 
700 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
701 
702 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
703 }
704 
705 /*
706  * Free the memory pointed to by addr in the hiballoc area presently in
707  * use
708  */
709 void
710 hibernate_zlib_free(void *unused, void *addr)
711 {
712 	struct hibernate_zlib_state *hibernate_state;
713 
714 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
715 
716 	hib_free(&hibernate_state->hiballoc_arena, addr);
717 }
718 
719 /*
720  * Inflate size bytes from src into dest, skipping any pages in
721  * [src..dest] that are special (see hibernate_inflate_skip)
722  *
723  * This function executes while using the resume-time stack
724  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
725  * will likely hang or reset the machine.
726  */
727 void
728 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest,
729     paddr_t src, size_t size)
730 {
731 	int i, rle;
732 	struct hibernate_zlib_state *hibernate_state;
733 
734 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
735 
736 	hibernate_state->hib_stream.next_in = (char *)src;
737 	hibernate_state->hib_stream.avail_in = size;
738 
739 	do {
740 		/* Flush cache and TLB */
741 		hibernate_flush();
742 
743 		do {
744 			/* Read RLE code */
745 			hibernate_state->hib_stream.next_out = (char *)&rle;
746 			hibernate_state->hib_stream.avail_out = sizeof(rle);
747 
748 			i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH);
749 			if (i != Z_OK && i != Z_STREAM_END) {
750 				/*
751 				 * XXX - this will likely reboot/hang most machines,
752 				 *       but there's not much else we can do here.
753 				 */
754 				panic("inflate rle error");
755 			}
756 
757 			/* Sanity check what RLE value we got */
758 			if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0)
759 				panic("inflate rle error 3");
760 
761 			if (rle != 0)
762 				dest += (rle * PAGE_SIZE);
763 			if (i == Z_STREAM_END)
764 				goto next_page;
765 
766 		} while (rle != 0);
767 
768 		/*
769 		 * Is this a special page? If yes, redirect the
770 		 * inflate output to a scratch page (eg, discard it)
771 		 */
772 		if (hibernate_inflate_skip(hiber_info, dest)) {
773 			hibernate_enter_resume_mapping(
774 			    HIBERNATE_INFLATE_PAGE,
775 			    HIBERNATE_INFLATE_PAGE, 0);
776 		} else {
777 			hibernate_enter_resume_mapping(
778 			    HIBERNATE_INFLATE_PAGE, dest, 0);
779 		}
780 
781 		hibernate_flush();
782 
783 		/* Set up the stream for inflate */
784 		hibernate_state->hib_stream.next_out =
785 		    (char *)HIBERNATE_INFLATE_PAGE;
786 		hibernate_state->hib_stream.avail_out = PAGE_SIZE;
787 
788 		/* Process next block of data */
789 		i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
790 		if (i != Z_OK && i != Z_STREAM_END) {
791 			/*
792 			 * XXX - this will likely reboot/hang most machines,
793 			 *       but there's not much else we can do here.
794 			 */
795 
796  			panic("inflate error");
797 		}
798 
799 next_page:
800 		dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out;
801 	} while (i != Z_STREAM_END);
802 }
803 
804 /*
805  * deflate from src into the I/O page, up to 'remaining' bytes
806  *
807  * Returns number of input bytes consumed, and may reset
808  * the 'remaining' parameter if not all the output space was consumed
809  * (this information is needed to know how much to write to disk
810  */
811 size_t
812 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src,
813     size_t *remaining)
814 {
815 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
816 	struct hibernate_zlib_state *hibernate_state;
817 
818 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
819 
820 	/* Set up the stream for deflate */
821 	hibernate_state->hib_stream.next_in = (caddr_t)src;
822 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
823 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
824 	    (PAGE_SIZE - *remaining);
825 	hibernate_state->hib_stream.avail_out = *remaining;
826 
827 	/* Process next block of data */
828 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
829 		panic("hibernate zlib deflate error");
830 
831 	/* Update pointers and return number of bytes consumed */
832 	*remaining = hibernate_state->hib_stream.avail_out;
833 	return (PAGE_SIZE - (src & PAGE_MASK)) -
834 	    hibernate_state->hib_stream.avail_in;
835 }
836 
837 /*
838  * Write the hibernation information specified in hiber_info
839  * to the location in swap previously calculated (last block of
840  * swap), called the "signature block".
841  *
842  * Write the memory chunk table to the area in swap immediately
843  * preceding the signature block.
844  */
845 int
846 hibernate_write_signature(union hibernate_info *hiber_info)
847 {
848 	/* Write hibernate info to disk */
849 	return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset,
850 	    (vaddr_t)hiber_info, hiber_info->secsize, HIB_W,
851 	    hiber_info->io_page));
852 }
853 
854 /*
855  * Write the memory chunk table to the area in swap immediately
856  * preceding the signature block. The chunk table is stored
857  * in the piglet when this function is called.
858  */
859 int
860 hibernate_write_chunktable(union hibernate_info *hiber_info)
861 {
862 	struct hibernate_disk_chunk *chunks;
863 	vaddr_t hibernate_chunk_table_start;
864 	size_t hibernate_chunk_table_size;
865 	daddr_t chunkbase;
866 	int i;
867 
868 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
869 
870 	chunkbase = hiber_info->sig_offset -
871 	    (hibernate_chunk_table_size / hiber_info->secsize);
872 
873 	hibernate_chunk_table_start = hiber_info->piglet_va +
874 	    HIBERNATE_CHUNK_SIZE;
875 
876 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
877 	    HIBERNATE_CHUNK_SIZE);
878 
879 	/* Write chunk table */
880 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
881 		if (hiber_info->io_func(hiber_info->device,
882 		    chunkbase + (i/hiber_info->secsize),
883 		    (vaddr_t)(hibernate_chunk_table_start + i),
884 		    MAXPHYS, HIB_W, hiber_info->io_page))
885 			return (1);
886 	}
887 
888 	return (0);
889 }
890 
891 /*
892  * Write an empty hiber_info to the swap signature block, which is
893  * guaranteed to not match any valid hiber_info.
894  */
895 int
896 hibernate_clear_signature(void)
897 {
898 	union hibernate_info blank_hiber_info;
899 	union hibernate_info hiber_info;
900 
901 	/* Zero out a blank hiber_info */
902 	bzero(&blank_hiber_info, sizeof(hiber_info));
903 
904 	if (get_hibernate_info(&hiber_info, 0))
905 		return (1);
906 
907 	/* Write (zeroed) hibernate info to disk */
908 	/* XXX - use regular kernel write routine for this */
909 	if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset,
910 	    (vaddr_t)&blank_hiber_info, hiber_info.secsize, HIB_W,
911 	    hiber_info.io_page))
912 		panic("error hibernate write 6");
913 
914 	return (0);
915 }
916 
917 /*
918  * Check chunk range overlap when calculating whether or not to copy a
919  * compressed chunk to the piglet area before decompressing.
920  *
921  * returns zero if the ranges do not overlap, non-zero otherwise.
922  */
923 int
924 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
925 {
926 	/* case A : end of r1 overlaps start of r2 */
927 	if (r1s < r2s && r1e > r2s)
928 		return (1);
929 
930 	/* case B : r1 entirely inside r2 */
931 	if (r1s >= r2s && r1e <= r2e)
932 		return (1);
933 
934 	/* case C : r2 entirely inside r1 */
935 	if (r2s >= r1s && r2e <= r1e)
936 		return (1);
937 
938 	/* case D : end of r2 overlaps start of r1 */
939 	if (r2s < r1s && r2e > r1s)
940 		return (1);
941 
942 	return (0);
943 }
944 
945 /*
946  * Compare two hibernate_infos to determine if they are the same (eg,
947  * we should be performing a hibernate resume on this machine.
948  * Not all fields are checked - just enough to verify that the machine
949  * has the same memory configuration and kernel as the one that
950  * wrote the signature previously.
951  */
952 int
953 hibernate_compare_signature(union hibernate_info *mine,
954     union hibernate_info *disk)
955 {
956 	u_int i;
957 
958 	if (mine->nranges != disk->nranges)
959 		return (1);
960 
961 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0)
962 		return (1);
963 
964 	for (i = 0; i < mine->nranges; i++) {
965 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
966 		    (mine->ranges[i].end != disk->ranges[i].end) )
967 			return (1);
968 	}
969 
970 	return (0);
971 }
972 
973 /*
974  * Reads read_size bytes from the hibernate device specified in
975  * hib_info at offset blkctr. Output is placed into the vaddr specified
976  * at dest.
977  *
978  * Separate offsets and pages are used to handle misaligned reads (reads
979  * that span a page boundary).
980  *
981  * blkctr specifies a relative offset (relative to the start of swap),
982  * not an absolute disk offset
983  *
984  */
985 int
986 hibernate_read_block(union hibernate_info *hib_info, daddr_t blkctr,
987     size_t read_size, vaddr_t dest)
988 {
989 	struct buf *bp;
990 	struct bdevsw *bdsw;
991 	int error;
992 
993 	bp = geteblk(read_size);
994 	bdsw = &bdevsw[major(hib_info->device)];
995 
996 	error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc);
997 	if (error) {
998 		printf("hibernate_read_block open failed\n");
999 		return (1);
1000 	}
1001 
1002 	bp->b_bcount = read_size;
1003 	bp->b_blkno = blkctr;
1004 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1005 	SET(bp->b_flags, B_BUSY | B_READ | B_RAW);
1006 	bp->b_dev = hib_info->device;
1007 	bp->b_cylinder = 0;
1008 	(*bdsw->d_strategy)(bp);
1009 
1010 	error = biowait(bp);
1011 	if (error) {
1012 		printf("hibernate_read_block biowait failed %d\n", error);
1013 		error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR,
1014 		    curproc);
1015 		if (error)
1016 			printf("hibernate_read_block error close failed\n");
1017 		return (1);
1018 	}
1019 
1020 	error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc);
1021 	if (error) {
1022 		printf("hibernate_read_block close failed\n");
1023 		return (1);
1024 	}
1025 
1026 	bcopy(bp->b_data, (caddr_t)dest, read_size);
1027 
1028 	bp->b_flags |= B_INVAL;
1029 	brelse(bp);
1030 
1031 	return (0);
1032 }
1033 
1034 /*
1035  * Reads the signature block from swap, checks against the current machine's
1036  * information. If the information matches, perform a resume by reading the
1037  * saved image into the pig area, and unpacking.
1038  */
1039 void
1040 hibernate_resume(void)
1041 {
1042 	union hibernate_info hiber_info;
1043 	int s;
1044 
1045 	/* Get current running machine's hibernate info */
1046 	bzero(&hiber_info, sizeof(hiber_info));
1047 	if (get_hibernate_info(&hiber_info, 0))
1048 		return;
1049 
1050 	/* Read hibernate info from disk */
1051 	s = splbio();
1052 
1053 	/* XXX use regular kernel read routine here */
1054 	if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset,
1055 	    (vaddr_t)&disk_hiber_info, hiber_info.secsize, HIB_R,
1056 	    hiber_info.io_page))
1057 		panic("error in hibernate read");
1058 
1059 	/*
1060 	 * If on-disk and in-memory hibernate signatures match,
1061 	 * this means we should do a resume from hibernate.
1062 	 */
1063 	if (hibernate_compare_signature(&hiber_info, &disk_hiber_info))
1064 		return;
1065 
1066 	uvm_pmr_zero_everything();
1067 
1068 	/* Read the image from disk into the image (pig) area */
1069 	if (hibernate_read_image(&disk_hiber_info))
1070 		goto fail;
1071 
1072 	/* Point of no return ... */
1073 
1074 	disable_intr();
1075 	cold = 1;
1076 
1077 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL);
1078 	pmap_activate(curproc);
1079 
1080 	/* Switch stacks */
1081 	hibernate_switch_stack_machdep();
1082 
1083 	/*
1084 	 * Image is now in high memory (pig area), copy to correct location
1085 	 * in memory. We'll eventually end up copying on top of ourself, but
1086 	 * we are assured the kernel code here is the same between the
1087 	 * hibernated and resuming kernel, and we are running on our own
1088 	 * stack, so the overwrite is ok.
1089 	 */
1090 	hibernate_unpack_image(&disk_hiber_info);
1091 
1092 	/*
1093 	 * Resume the loaded kernel by jumping to the MD resume vector.
1094 	 * We won't be returning from this call.
1095 	 */
1096 	hibernate_resume_machdep();
1097 
1098 fail:
1099 	printf("Unable to resume hibernated image\n");
1100 }
1101 
1102 /*
1103  * Unpack image from pig area to original location by looping through the
1104  * list of output chunks in the order they should be restored (fchunks).
1105  * This ordering is used to avoid having inflate overwrite a chunk in the
1106  * middle of processing that chunk. This will, of course, happen during the
1107  * final output chunk, where we copy the chunk to the piglet area first,
1108  * before inflating.
1109  */
1110 void
1111 hibernate_unpack_image(union hibernate_info *hiber_info)
1112 {
1113 	struct hibernate_disk_chunk *chunks;
1114 	union hibernate_info local_hiber_info;
1115 	paddr_t image_cur = global_pig_start;
1116 	int *fchunks, i;
1117 	char *pva = (char *)hiber_info->piglet_va;
1118 	struct hibernate_zlib_state *hibernate_state;
1119 
1120 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1121 
1122 	/* Mask off based on arch-specific piglet page size */
1123 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1124 	fchunks = (int *)(pva + (6 * PAGE_SIZE));
1125 
1126 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1127 
1128 	/* Can't use hiber_info that's passed in after here */
1129 	bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info));
1130 
1131 	hibernate_activate_resume_pt_machdep();
1132 
1133 	for (i = 0; i < local_hiber_info.chunk_ctr; i++) {
1134 		/* Reset zlib for inflate */
1135 		if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK)
1136 			panic("hibernate failed to reset zlib for inflate");
1137 
1138 		/*
1139 		 * If there is a conflict, copy the chunk to the piglet area
1140 		 * before unpacking it to its original location.
1141 		 */
1142 		if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0)
1143 			hibernate_inflate(&local_hiber_info,
1144 			    chunks[fchunks[i]].base, image_cur,
1145 			    chunks[fchunks[i]].compressed_size);
1146 		else {
1147 			bcopy((caddr_t)image_cur,
1148 			    pva + (HIBERNATE_CHUNK_SIZE * 2),
1149 			    chunks[fchunks[i]].compressed_size);
1150 			hibernate_inflate(&local_hiber_info,
1151 			    chunks[fchunks[i]].base,
1152 			    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1153 			    chunks[fchunks[i]].compressed_size);
1154 		}
1155 		image_cur += chunks[fchunks[i]].compressed_size;
1156 	}
1157 }
1158 
1159 /*
1160  * Write a compressed version of this machine's memory to disk, at the
1161  * precalculated swap offset:
1162  *
1163  * end of swap - signature block size - chunk table size - memory size
1164  *
1165  * The function begins by looping through each phys mem range, cutting each
1166  * one into 4MB chunks. These chunks are then compressed individually
1167  * and written out to disk, in phys mem order. Some chunks might compress
1168  * more than others, and for this reason, each chunk's size is recorded
1169  * in the chunk table, which is written to disk after the image has
1170  * properly been compressed and written (in hibernate_write_chunktable).
1171  *
1172  * When this function is called, the machine is nearly suspended - most
1173  * devices are quiesced/suspended, interrupts are off, and cold has
1174  * been set. This means that there can be no side effects once the
1175  * write has started, and the write function itself can also have no
1176  * side effects.
1177  *
1178  * This function uses the piglet area during this process as follows:
1179  *
1180  * offset from piglet base	use
1181  * -----------------------	--------------------
1182  * 0				i/o allocation area
1183  * PAGE_SIZE			i/o write area
1184  * 2*PAGE_SIZE			temp/scratch page
1185  * 3*PAGE_SIZE			temp/scratch page
1186  * 4*PAGE_SIZE			hiballoc arena
1187  * 5*PAGE_SIZE to 85*PAGE_SIZE	zlib deflate area
1188  * ...
1189  * HIBERNATE_CHUNK_SIZE		chunk table temporary area
1190  *
1191  * Some transient piglet content is saved as part of deflate,
1192  * but it is irrelevant during resume as it will be repurposed
1193  * at that time for other things.
1194  */
1195 int
1196 hibernate_write_chunks(union hibernate_info *hiber_info)
1197 {
1198 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1199 	size_t nblocks, out_remaining, used;
1200 	struct hibernate_disk_chunk *chunks;
1201 	vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE;
1202 	daddr_t blkctr = hiber_info->image_offset, offset = 0;
1203 	int i, rle;
1204 	struct hibernate_zlib_state *hibernate_state;
1205 
1206 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1207 
1208 	hiber_info->chunk_ctr = 0;
1209 
1210 	/*
1211 	 * Allocate VA for the temp and copy page.
1212 	 * These will becomee part of the suspended kernel and will
1213 	 * be freed in hibernate_free, upon resume.
1214 	 */
1215 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1216 	    &kp_none, &kd_nowait);
1217 	if (!hibernate_temp_page)
1218 		return (1);
1219 
1220 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1221 	    &kp_none, &kd_nowait);
1222 	if (!hibernate_copy_page)
1223 		return (1);
1224 
1225 	pmap_kenter_pa(hibernate_copy_page,
1226 	    (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1227 
1228 	/* XXX - not needed on all archs */
1229 	pmap_activate(curproc);
1230 
1231 	chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va +
1232 	    HIBERNATE_CHUNK_SIZE);
1233 
1234 	/* Calculate the chunk regions */
1235 	for (i = 0; i < hiber_info->nranges; i++) {
1236 		range_base = hiber_info->ranges[i].base;
1237 		range_end = hiber_info->ranges[i].end;
1238 
1239 		inaddr = range_base;
1240 
1241 		while (inaddr < range_end) {
1242 			chunks[hiber_info->chunk_ctr].base = inaddr;
1243 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1244 				chunks[hiber_info->chunk_ctr].end = inaddr +
1245 				    HIBERNATE_CHUNK_SIZE;
1246 			else
1247 				chunks[hiber_info->chunk_ctr].end = range_end;
1248 
1249 			inaddr += HIBERNATE_CHUNK_SIZE;
1250 			hiber_info->chunk_ctr ++;
1251 		}
1252 	}
1253 
1254 	/* Compress and write the chunks in the chunktable */
1255 	for (i = 0; i < hiber_info->chunk_ctr; i++) {
1256 		range_base = chunks[i].base;
1257 		range_end = chunks[i].end;
1258 
1259 		chunks[i].offset = blkctr;
1260 
1261 		/* Reset zlib for deflate */
1262 		if (hibernate_zlib_reset(hiber_info, 1) != Z_OK)
1263 			return (1);
1264 
1265 		inaddr = range_base;
1266 
1267 		/*
1268 		 * For each range, loop through its phys mem region
1269 		 * and write out the chunks (the last chunk might be
1270 		 * smaller than the chunk size).
1271 		 */
1272 		while (inaddr < range_end) {
1273 			out_remaining = PAGE_SIZE;
1274 			while (out_remaining > 0 && inaddr < range_end) {
1275 
1276 				/*
1277 				 * Adjust for regions that are not evenly
1278 				 * divisible by PAGE_SIZE or overflowed
1279 				 * pages from the previous iteration.
1280 				 */
1281 				temp_inaddr = (inaddr & PAGE_MASK) +
1282 				    hibernate_copy_page;
1283 
1284 				if (hibernate_inflate_skip(hiber_info, inaddr))
1285 					rle = 1;
1286 				else
1287 					rle = uvm_page_rle(inaddr);
1288 
1289 				while (rle != 0 && inaddr < range_end) {
1290 					hibernate_state->hib_stream.next_in =
1291 					    (char *)&rle;
1292 					hibernate_state->hib_stream.avail_in =
1293 					    sizeof(rle);
1294 					hibernate_state->hib_stream.next_out =
1295 					    (caddr_t)hibernate_io_page +
1296 					    (PAGE_SIZE - out_remaining);
1297 					hibernate_state->hib_stream.avail_out =
1298 					    out_remaining;
1299 
1300 					if (deflate(&hibernate_state->hib_stream,
1301 					    Z_PARTIAL_FLUSH) != Z_OK)
1302 						return (1);
1303 
1304 					out_remaining =
1305 					    hibernate_state->hib_stream.avail_out;
1306 					inaddr += (rle * PAGE_SIZE);
1307 					if (inaddr > range_end)
1308 						inaddr = range_end;
1309 					else
1310 						rle = uvm_page_rle(inaddr);
1311 				}
1312 
1313 				if (out_remaining == 0) {
1314 					/* Filled up the page */
1315 					nblocks = PAGE_SIZE / hiber_info->secsize;
1316 
1317 					if (hiber_info->io_func(hiber_info->device,
1318 					    blkctr, (vaddr_t)hibernate_io_page,
1319 					    PAGE_SIZE, HIB_W, hiber_info->io_page))
1320 						return (1);
1321 
1322 					blkctr += nblocks;
1323 					out_remaining = PAGE_SIZE;
1324 				}
1325 
1326 				/* Write '0' RLE code */
1327 				if (inaddr < range_end) {
1328 					hibernate_state->hib_stream.next_in =
1329 					    (char *)&rle;
1330 					hibernate_state->hib_stream.avail_in =
1331 					    sizeof(rle);
1332 					hibernate_state->hib_stream.next_out =
1333 				    	    (caddr_t)hibernate_io_page +
1334 					    (PAGE_SIZE - out_remaining);
1335 					hibernate_state->hib_stream.avail_out =
1336 					    out_remaining;
1337 
1338 					if (deflate(&hibernate_state->hib_stream,
1339 					    Z_PARTIAL_FLUSH) != Z_OK)
1340 						return (1);
1341 
1342 					out_remaining =
1343 					    hibernate_state->hib_stream.avail_out;
1344 				}
1345 
1346 				if (out_remaining == 0) {
1347 					/* Filled up the page */
1348 					nblocks = PAGE_SIZE / hiber_info->secsize;
1349 
1350 					if (hiber_info->io_func(hiber_info->device,
1351 					    blkctr, (vaddr_t)hibernate_io_page,
1352 					    PAGE_SIZE, HIB_W, hiber_info->io_page))
1353 						return (1);
1354 
1355 					blkctr += nblocks;
1356 					out_remaining = PAGE_SIZE;
1357 				}
1358 
1359 				/* Deflate from temp_inaddr to IO page */
1360 				if (inaddr != range_end) {
1361 					pmap_kenter_pa(hibernate_temp_page,
1362 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1363 
1364 					/* XXX - not needed on all archs */
1365 					pmap_activate(curproc);
1366 
1367 					bcopy((caddr_t)hibernate_temp_page,
1368 					    (caddr_t)hibernate_copy_page, PAGE_SIZE);
1369 					inaddr += hibernate_deflate(hiber_info,
1370 					    temp_inaddr, &out_remaining);
1371 				}
1372 			}
1373 
1374 			if (out_remaining == 0) {
1375 				/* Filled up the page */
1376 				nblocks = PAGE_SIZE / hiber_info->secsize;
1377 
1378 				if (hiber_info->io_func(hiber_info->device,
1379 				    blkctr, (vaddr_t)hibernate_io_page,
1380 				    PAGE_SIZE, HIB_W, hiber_info->io_page))
1381 					return (1);
1382 
1383 				blkctr += nblocks;
1384 			}
1385 		}
1386 
1387 		if (inaddr != range_end)
1388 			return (1);
1389 
1390 		/*
1391 		 * End of range. Round up to next secsize bytes
1392 		 * after finishing compress
1393 		 */
1394 		if (out_remaining == 0)
1395 			out_remaining = PAGE_SIZE;
1396 
1397 		/* Finish compress */
1398 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1399 		hibernate_state->hib_stream.avail_in = 0;
1400 		hibernate_state->hib_stream.next_out =
1401 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1402 		hibernate_state->hib_stream.avail_out = out_remaining;
1403 
1404 		if (deflate(&hibernate_state->hib_stream, Z_FINISH) !=
1405 		    Z_STREAM_END)
1406 			return (1);
1407 
1408 		out_remaining = hibernate_state->hib_stream.avail_out;
1409 
1410 		used = PAGE_SIZE - out_remaining;
1411 		nblocks = used / hiber_info->secsize;
1412 
1413 		/* Round up to next block if needed */
1414 		if (used % hiber_info->secsize != 0)
1415 			nblocks ++;
1416 
1417 		/* Write final block(s) for this chunk */
1418 		if (hiber_info->io_func(hiber_info->device, blkctr,
1419 		    (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize,
1420 		    HIB_W, hiber_info->io_page))
1421 			return (1);
1422 
1423 		blkctr += nblocks;
1424 
1425 		offset = blkctr;
1426 		chunks[i].compressed_size = (offset - chunks[i].offset) *
1427 		    hiber_info->secsize;
1428 	}
1429 
1430 	return (0);
1431 }
1432 
1433 /*
1434  * Reset the zlib stream state and allocate a new hiballoc area for either
1435  * inflate or deflate. This function is called once for each hibernate chunk.
1436  * Calling hiballoc_init multiple times is acceptable since the memory it is
1437  * provided is unmanaged memory (stolen). We use the memory provided to us
1438  * by the piglet allocated via the supplied hiber_info.
1439  */
1440 int
1441 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate)
1442 {
1443 	vaddr_t hibernate_zlib_start;
1444 	size_t hibernate_zlib_size;
1445 	char *pva = (char *)hiber_info->piglet_va;
1446 	struct hibernate_zlib_state *hibernate_state;
1447 
1448 	hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1449 
1450 	if(!deflate)
1451 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1452 
1453 	hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE));
1454 	hibernate_zlib_size = 80 * PAGE_SIZE;
1455 
1456 	bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1457 	bzero((caddr_t)hibernate_state, PAGE_SIZE);
1458 
1459 	/* Set up stream structure */
1460 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1461 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1462 
1463 	/* Initialize the hiballoc arena for zlib allocs/frees */
1464 	hiballoc_init(&hibernate_state->hiballoc_arena,
1465 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1466 
1467 	if (deflate) {
1468 		return deflateInit(&hibernate_state->hib_stream,
1469 		    Z_BEST_SPEED);
1470 	} else
1471 		return inflateInit(&hibernate_state->hib_stream);
1472 }
1473 
1474 /*
1475  * Reads the hibernated memory image from disk, whose location and
1476  * size are recorded in hiber_info. Begin by reading the persisted
1477  * chunk table, which records the original chunk placement location
1478  * and compressed size for each. Next, allocate a pig region of
1479  * sufficient size to hold the compressed image. Next, read the
1480  * chunks into the pig area (calling hibernate_read_chunks to do this),
1481  * and finally, if all of the above succeeds, clear the hibernate signature.
1482  * The function will then return to hibernate_resume, which will proceed
1483  * to unpack the pig image to the correct place in memory.
1484  */
1485 int
1486 hibernate_read_image(union hibernate_info *hiber_info)
1487 {
1488 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1489 	paddr_t image_start, image_end, pig_start, pig_end;
1490 	struct hibernate_disk_chunk *chunks;
1491 	daddr_t blkctr;
1492 	vaddr_t chunktable = (vaddr_t)NULL;
1493 	paddr_t piglet_chunktable = hiber_info->piglet_pa +
1494 	    HIBERNATE_CHUNK_SIZE;
1495 	int i;
1496 
1497 	pmap_activate(curproc);
1498 
1499 	/* Calculate total chunk table size in disk blocks */
1500 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize;
1501 
1502 	blkctr = hiber_info->sig_offset - chunktable_size -
1503 			hiber_info->swap_offset;
1504 
1505 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1506 	    &kp_none, &kd_nowait);
1507 
1508 	if (!chunktable)
1509 		return (1);
1510 
1511 	/* Read the chunktable from disk into the piglet chunktable */
1512 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1513 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) {
1514 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL);
1515 		pmap_update(pmap_kernel());
1516 		hibernate_read_block(hiber_info, blkctr, PAGE_SIZE,
1517 		    chunktable + i);
1518 	}
1519 
1520 	blkctr = hiber_info->image_offset;
1521 	compressed_size = 0;
1522 
1523 	chunks = (struct hibernate_disk_chunk *)chunktable;
1524 
1525 	for (i = 0; i < hiber_info->chunk_ctr; i++)
1526 		compressed_size += chunks[i].compressed_size;
1527 
1528 	disk_size = compressed_size;
1529 
1530 	/* Allocate the pig area */
1531 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1532 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1533 		return (1);
1534 
1535 	pig_end = pig_start + pig_sz;
1536 
1537 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1538 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1539 	image_start = pig_start;
1540 
1541 	image_start = image_end - disk_size;
1542 
1543 	hibernate_read_chunks(hiber_info, image_start, image_end, disk_size,
1544 	    chunks);
1545 
1546 	pmap_kremove(chunktable, PAGE_SIZE);
1547 	pmap_update(pmap_kernel());
1548 
1549 	/* Prepare the resume time pmap/page table */
1550 	hibernate_populate_resume_pt(hiber_info, image_start, image_end);
1551 
1552 	/* Read complete, clear the signature and return */
1553 	return hibernate_clear_signature();
1554 }
1555 
1556 /*
1557  * Read the hibernated memory chunks from disk (chunk information at this
1558  * point is stored in the piglet) into the pig area specified by
1559  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1560  * only chunk with overlap possibilities.
1561  *
1562  * This function uses the piglet area during this process as follows:
1563  *
1564  * offset from piglet base	use
1565  * -----------------------	--------------------
1566  * 0				i/o allocation area
1567  * PAGE_SIZE			i/o write area
1568  * 2*PAGE_SIZE			temp/scratch page
1569  * 3*PAGE_SIZE			temp/scratch page
1570  * 4*PAGE_SIZE to 6*PAGE_SIZE	chunk ordering area
1571  * 7*PAGE_SIZE			hiballoc arena
1572  * 8*PAGE_SIZE to 88*PAGE_SIZE	zlib deflate area
1573  * ...
1574  * HIBERNATE_CHUNK_SIZE		chunk table temporary area
1575  */
1576 int
1577 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start,
1578     paddr_t pig_end, size_t image_compr_size,
1579     struct hibernate_disk_chunk *chunks)
1580 {
1581 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1582 	paddr_t copy_start, copy_end, piglet_cur;
1583 	paddr_t piglet_base = hib_info->piglet_pa;
1584 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1585 	daddr_t blkctr;
1586 	size_t processed, compressed_size, read_size;
1587 	int i, j, overlap, found, nchunks;
1588 	int nochunks = 0, nfchunks = 0, npchunks = 0;
1589 	int *ochunks, *pchunks, *fchunks;
1590 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1591 
1592 	global_pig_start = pig_start;
1593 
1594 	/* XXX - dont need this on all archs */
1595 	pmap_activate(curproc);
1596 
1597 	/*
1598 	 * These mappings go into the resuming kernel's page table, and are
1599 	 * used only during image read. They dissappear from existence
1600 	 * when the suspended kernel is unpacked on top of us.
1601 	 */
1602 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1603 	if (!tempva)
1604 		return (1);
1605 	hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any,
1606 	    &kp_none, &kd_nowait);
1607 	if (!hibernate_fchunk_area)
1608 		return (1);
1609 
1610 	/* Temporary output chunk ordering VA */
1611 	ochunks = (int *)hibernate_fchunk_area;
1612 
1613 	/* Piglet chunk ordering VA */
1614 	pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE);
1615 
1616 	/* Final chunk ordering VA */
1617 	fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE));
1618 
1619 	/* Map the chunk ordering region */
1620 	pmap_kenter_pa(hibernate_fchunk_area,
1621 	    piglet_base + (4*PAGE_SIZE), VM_PROT_ALL);
1622 	pmap_update(pmap_kernel());
1623 	pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE),
1624 	    VM_PROT_ALL);
1625 	pmap_update(pmap_kernel());
1626 	pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE),
1627 	    VM_PROT_ALL);
1628 	pmap_update(pmap_kernel());
1629 
1630 	nchunks = hib_info->chunk_ctr;
1631 
1632 	/* Initially start all chunks as unplaced */
1633 	for (i = 0; i < nchunks; i++)
1634 		chunks[i].flags = 0;
1635 
1636 	/*
1637 	 * Search the list for chunks that are outside the pig area. These
1638 	 * can be placed first in the final output list.
1639 	 */
1640 	for (i = 0; i < nchunks; i++) {
1641 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1642 			ochunks[nochunks] = i;
1643 			fchunks[nfchunks] = i;
1644 			nochunks++;
1645 			nfchunks++;
1646 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1647 		}
1648 	}
1649 
1650 	/*
1651 	 * Walk the ordering, place the chunks in ascending memory order.
1652 	 * Conflicts might arise, these are handled next.
1653 	 */
1654 	do {
1655 		img_index = -1;
1656 		found = 0;
1657 		j = -1;
1658 		for (i = 0; i < nchunks; i++)
1659 			if (chunks[i].base < img_index &&
1660 			    chunks[i].flags == 0 ) {
1661 				j = i;
1662 				img_index = chunks[i].base;
1663 			}
1664 
1665 		if (j != -1) {
1666 			found = 1;
1667 			ochunks[nochunks] = (short)j;
1668 			nochunks++;
1669 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1670 		}
1671 	} while (found);
1672 
1673 	img_index = pig_start;
1674 
1675 	/*
1676 	 * Identify chunk output conflicts (chunks whose pig load area
1677 	 * corresponds to their original memory placement location)
1678 	 */
1679 	for (i = 0; i < nochunks ; i++) {
1680 		overlap = 0;
1681 		r1s = img_index;
1682 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1683 		r2s = chunks[ochunks[i]].base;
1684 		r2e = chunks[ochunks[i]].end;
1685 
1686 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1687 		if (overlap)
1688 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1689 		img_index += chunks[ochunks[i]].compressed_size;
1690 	}
1691 
1692 	/*
1693 	 * Prepare the final output chunk list. Calculate an output
1694 	 * inflate strategy for overlapping chunks if needed.
1695 	 */
1696 	img_index = pig_start;
1697 	for (i = 0; i < nochunks ; i++) {
1698 		/*
1699 		 * If a conflict is detected, consume enough compressed
1700 		 * output chunks to fill the piglet
1701 		 */
1702 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1703 			copy_start = piglet_base;
1704 			copy_end = piglet_end;
1705 			piglet_cur = piglet_base;
1706 			npchunks = 0;
1707 			j = i;
1708 
1709 			while (copy_start < copy_end && j < nochunks) {
1710 				piglet_cur += chunks[ochunks[j]].compressed_size;
1711 				pchunks[npchunks] = ochunks[j];
1712 				npchunks++;
1713 				copy_start += chunks[ochunks[j]].compressed_size;
1714 				img_index += chunks[ochunks[j]].compressed_size;
1715 				i++;
1716 				j++;
1717 			}
1718 
1719 			piglet_cur = piglet_base;
1720 			for (j = 0; j < npchunks; j++) {
1721 				piglet_cur += chunks[pchunks[j]].compressed_size;
1722 				fchunks[nfchunks] = pchunks[j];
1723 				chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED;
1724 				nfchunks++;
1725 			}
1726 		} else {
1727 			/*
1728 			 * No conflict, chunk can be added without copying
1729 			 */
1730 			if ((chunks[ochunks[i]].flags &
1731 			    HIBERNATE_CHUNK_USED) == 0) {
1732 				fchunks[nfchunks] = ochunks[i];
1733 				chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED;
1734 				nfchunks++;
1735 			}
1736 			img_index += chunks[ochunks[i]].compressed_size;
1737 		}
1738 	}
1739 
1740 	img_index = pig_start;
1741 	for (i = 0; i < nfchunks; i++) {
1742 		piglet_cur = piglet_base;
1743 		img_index += chunks[fchunks[i]].compressed_size;
1744 	}
1745 
1746 	img_cur = pig_start;
1747 
1748 	for (i = 0; i < nfchunks; i++) {
1749 		blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset;
1750 		processed = 0;
1751 		compressed_size = chunks[fchunks[i]].compressed_size;
1752 
1753 		while (processed < compressed_size) {
1754 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1755 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1756 			    VM_PROT_ALL);
1757 			pmap_update(pmap_kernel());
1758 
1759 			if (compressed_size - processed >= PAGE_SIZE)
1760 				read_size = PAGE_SIZE;
1761 			else
1762 				read_size = compressed_size - processed;
1763 
1764 			hibernate_read_block(hib_info, blkctr, read_size,
1765 			    tempva + (img_cur & PAGE_MASK));
1766 
1767 			blkctr += (read_size / hib_info->secsize);
1768 
1769 			hibernate_flush();
1770 			pmap_kremove(tempva, PAGE_SIZE);
1771 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1772 			processed += read_size;
1773 			img_cur += read_size;
1774 		}
1775 	}
1776 
1777 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1778 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1779 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1780 	pmap_update(pmap_kernel());
1781 
1782 	return (0);
1783 }
1784 
1785 /*
1786  * Hibernating a machine comprises the following operations:
1787  *  1. Calculating this machine's hibernate_info information
1788  *  2. Allocating a piglet and saving the piglet's physaddr
1789  *  3. Calculating the memory chunks
1790  *  4. Writing the compressed chunks to disk
1791  *  5. Writing the chunk table
1792  *  6. Writing the signature block (hibernate_info)
1793  *
1794  * On most architectures, the function calling hibernate_suspend would
1795  * then power off the machine using some MD-specific implementation.
1796  */
1797 int
1798 hibernate_suspend(void)
1799 {
1800 	union hibernate_info hib_info;
1801 
1802 	/*
1803 	 * Calculate memory ranges, swap offsets, etc.
1804 	 * This also allocates a piglet whose physaddr is stored in
1805 	 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va
1806 	 */
1807 	if (get_hibernate_info(&hib_info, 1))
1808 		return (1);
1809 
1810 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL);
1811 	pmap_activate(curproc);
1812 
1813 	global_piglet_va = hib_info.piglet_va;
1814 
1815 	if (hibernate_write_chunks(&hib_info))
1816 		return (1);
1817 
1818 	if (hibernate_write_chunktable(&hib_info))
1819 		return (1);
1820 
1821 	if (hibernate_write_signature(&hib_info))
1822 		return (1);
1823 
1824 	delay(500000);
1825 	return (0);
1826 }
1827 
1828 /*
1829  * Free items allocated during hibernate
1830  */
1831 void
1832 hibernate_free(void)
1833 {
1834 	uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE);
1835 
1836 	pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1837 	pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1838 	pmap_update(pmap_kernel());
1839 
1840 	km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none);
1841 	km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none);
1842 }
1843