1 /* $OpenBSD: subr_hibernate.c,v 1.102 2014/10/09 00:42:05 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 Private page for suspend I/O write functions 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (24 pages) 51 * 28*PAGE_SIZE RLE utility page 52 * 29*PAGE_SIZE start of hiballoc area 53 * 109*PAGE_SIZE end of hiballoc area (80 pages) 54 * ... unused 55 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 56 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 57 * 4*HIBERNATE_CHUNK_SIZE end of piglet 58 */ 59 60 /* Temporary vaddr ranges used during hibernate */ 61 vaddr_t hibernate_temp_page; 62 vaddr_t hibernate_copy_page; 63 vaddr_t hibernate_rle_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 paddr_t global_piglet_pa; 70 71 /* #define HIB_DEBUG */ 72 #ifdef HIB_DEBUG 73 int hib_debug = 99; 74 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 75 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 76 #else 77 #define DPRINTF(x...) 78 #define DNPRINTF(n,x...) 79 #endif 80 81 #ifndef NO_PROPOLICE 82 extern long __guard_local; 83 #endif /* ! NO_PROPOLICE */ 84 85 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 86 int hibernate_calc_rle(paddr_t, paddr_t); 87 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 88 size_t *); 89 90 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 91 92 /* 93 * Hib alloc enforced alignment. 94 */ 95 #define HIB_ALIGN 8 /* bytes alignment */ 96 97 /* 98 * sizeof builtin operation, but with alignment constraint. 99 */ 100 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 101 102 struct hiballoc_entry { 103 size_t hibe_use; 104 size_t hibe_space; 105 RB_ENTRY(hiballoc_entry) hibe_entry; 106 }; 107 108 /* 109 * Sort hibernate memory ranges by ascending PA 110 */ 111 void 112 hibernate_sort_ranges(union hibernate_info *hib_info) 113 { 114 int i, j; 115 struct hibernate_memory_range *ranges; 116 paddr_t base, end; 117 118 ranges = hib_info->ranges; 119 120 for (i = 1; i < hib_info->nranges; i++) { 121 j = i; 122 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 123 base = ranges[j].base; 124 end = ranges[j].end; 125 ranges[j].base = ranges[j - 1].base; 126 ranges[j].end = ranges[j - 1].end; 127 ranges[j - 1].base = base; 128 ranges[j - 1].end = end; 129 j--; 130 } 131 } 132 } 133 134 /* 135 * Compare hiballoc entries based on the address they manage. 136 * 137 * Since the address is fixed, relative to struct hiballoc_entry, 138 * we just compare the hiballoc_entry pointers. 139 */ 140 static __inline int 141 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 142 { 143 return l < r ? -1 : (l > r); 144 } 145 146 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 147 148 /* 149 * Given a hiballoc entry, return the address it manages. 150 */ 151 static __inline void * 152 hib_entry_to_addr(struct hiballoc_entry *entry) 153 { 154 caddr_t addr; 155 156 addr = (caddr_t)entry; 157 addr += HIB_SIZEOF(struct hiballoc_entry); 158 return addr; 159 } 160 161 /* 162 * Given an address, find the hiballoc that corresponds. 163 */ 164 static __inline struct hiballoc_entry* 165 hib_addr_to_entry(void *addr_param) 166 { 167 caddr_t addr; 168 169 addr = (caddr_t)addr_param; 170 addr -= HIB_SIZEOF(struct hiballoc_entry); 171 return (struct hiballoc_entry*)addr; 172 } 173 174 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 175 176 /* 177 * Allocate memory from the arena. 178 * 179 * Returns NULL if no memory is available. 180 */ 181 void * 182 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 183 { 184 struct hiballoc_entry *entry, *new_entry; 185 size_t find_sz; 186 187 /* 188 * Enforce alignment of HIB_ALIGN bytes. 189 * 190 * Note that, because the entry is put in front of the allocation, 191 * 0-byte allocations are guaranteed a unique address. 192 */ 193 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 194 195 /* 196 * Find an entry with hibe_space >= find_sz. 197 * 198 * If the root node is not large enough, we switch to tree traversal. 199 * Because all entries are made at the bottom of the free space, 200 * traversal from the end has a slightly better chance of yielding 201 * a sufficiently large space. 202 */ 203 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 204 entry = RB_ROOT(&arena->hib_addrs); 205 if (entry != NULL && entry->hibe_space < find_sz) { 206 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 207 if (entry->hibe_space >= find_sz) 208 break; 209 } 210 } 211 212 /* 213 * Insufficient or too fragmented memory. 214 */ 215 if (entry == NULL) 216 return NULL; 217 218 /* 219 * Create new entry in allocated space. 220 */ 221 new_entry = (struct hiballoc_entry*)( 222 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 223 new_entry->hibe_space = entry->hibe_space - find_sz; 224 new_entry->hibe_use = alloc_sz; 225 226 /* 227 * Insert entry. 228 */ 229 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 230 panic("hib_alloc: insert failure"); 231 entry->hibe_space = 0; 232 233 /* Return address managed by entry. */ 234 return hib_entry_to_addr(new_entry); 235 } 236 237 /* 238 * Free a pointer previously allocated from this arena. 239 * 240 * If addr is NULL, this will be silently accepted. 241 */ 242 void 243 hib_free(struct hiballoc_arena *arena, void *addr) 244 { 245 struct hiballoc_entry *entry, *prev; 246 247 if (addr == NULL) 248 return; 249 250 /* 251 * Derive entry from addr and check it is really in this arena. 252 */ 253 entry = hib_addr_to_entry(addr); 254 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 255 panic("hib_free: freed item %p not in hib arena", addr); 256 257 /* 258 * Give the space in entry to its predecessor. 259 * 260 * If entry has no predecessor, change its used space into free space 261 * instead. 262 */ 263 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 264 if (prev != NULL && 265 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 266 prev->hibe_use + prev->hibe_space) == entry) { 267 /* Merge entry. */ 268 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 269 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 270 entry->hibe_use + entry->hibe_space; 271 } else { 272 /* Flip used memory to free space. */ 273 entry->hibe_space += entry->hibe_use; 274 entry->hibe_use = 0; 275 } 276 } 277 278 /* 279 * Initialize hiballoc. 280 * 281 * The allocator will manage memmory at ptr, which is len bytes. 282 */ 283 int 284 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 285 { 286 struct hiballoc_entry *entry; 287 caddr_t ptr; 288 size_t len; 289 290 RB_INIT(&arena->hib_addrs); 291 292 /* 293 * Hib allocator enforces HIB_ALIGN alignment. 294 * Fixup ptr and len. 295 */ 296 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 297 len = p_len - ((size_t)ptr - (size_t)p_ptr); 298 len &= ~((size_t)HIB_ALIGN - 1); 299 300 /* 301 * Insufficient memory to be able to allocate and also do bookkeeping. 302 */ 303 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 304 return ENOMEM; 305 306 /* 307 * Create entry describing space. 308 */ 309 entry = (struct hiballoc_entry*)ptr; 310 entry->hibe_use = 0; 311 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 312 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 313 314 return 0; 315 } 316 317 /* 318 * Zero all free memory. 319 */ 320 void 321 uvm_pmr_zero_everything(void) 322 { 323 struct uvm_pmemrange *pmr; 324 struct vm_page *pg; 325 int i; 326 327 uvm_lock_fpageq(); 328 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 329 /* Zero single pages. */ 330 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 331 != NULL) { 332 uvm_pmr_remove(pmr, pg); 333 uvm_pagezero(pg); 334 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 335 uvmexp.zeropages++; 336 uvm_pmr_insert(pmr, pg, 0); 337 } 338 339 /* Zero multi page ranges. */ 340 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 341 != NULL) { 342 pg--; /* Size tree always has second page. */ 343 uvm_pmr_remove(pmr, pg); 344 for (i = 0; i < pg->fpgsz; i++) { 345 uvm_pagezero(&pg[i]); 346 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 347 uvmexp.zeropages++; 348 } 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 uvm_unlock_fpageq(); 353 } 354 355 /* 356 * Mark all memory as dirty. 357 * 358 * Used to inform the system that the clean memory isn't clean for some 359 * reason, for example because we just came back from hibernate. 360 */ 361 void 362 uvm_pmr_dirty_everything(void) 363 { 364 struct uvm_pmemrange *pmr; 365 struct vm_page *pg; 366 int i; 367 368 uvm_lock_fpageq(); 369 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 370 /* Dirty single pages. */ 371 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 372 != NULL) { 373 uvm_pmr_remove(pmr, pg); 374 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 375 uvm_pmr_insert(pmr, pg, 0); 376 } 377 378 /* Dirty multi page ranges. */ 379 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 380 != NULL) { 381 pg--; /* Size tree always has second page. */ 382 uvm_pmr_remove(pmr, pg); 383 for (i = 0; i < pg->fpgsz; i++) 384 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 385 uvm_pmr_insert(pmr, pg, 0); 386 } 387 } 388 389 uvmexp.zeropages = 0; 390 uvm_unlock_fpageq(); 391 } 392 393 /* 394 * Allocate an area that can hold sz bytes and doesn't overlap with 395 * the piglet at piglet_pa. 396 */ 397 int 398 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 399 { 400 struct uvm_constraint_range pig_constraint; 401 struct kmem_pa_mode kp_pig = { 402 .kp_constraint = &pig_constraint, 403 .kp_maxseg = 1 404 }; 405 vaddr_t va; 406 407 sz = round_page(sz); 408 409 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 410 pig_constraint.ucr_high = -1; 411 412 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 413 if (va == 0) { 414 pig_constraint.ucr_low = 0; 415 pig_constraint.ucr_high = piglet_pa - 1; 416 417 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 418 if (va == 0) 419 return ENOMEM; 420 } 421 422 pmap_extract(pmap_kernel(), va, pa); 423 return 0; 424 } 425 426 /* 427 * Allocate a piglet area. 428 * 429 * This needs to be in DMA-safe memory. 430 * Piglets are aligned. 431 * 432 * sz and align in bytes. 433 * 434 * The call will sleep for the pagedaemon to attempt to free memory. 435 * The pagedaemon may decide its not possible to free enough memory, causing 436 * the allocation to fail. 437 */ 438 int 439 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 440 { 441 struct kmem_pa_mode kp_piglet = { 442 .kp_constraint = &dma_constraint, 443 .kp_align = align, 444 .kp_maxseg = 1 445 }; 446 447 /* Ensure align is a power of 2 */ 448 KASSERT((align & (align - 1)) == 0); 449 450 /* 451 * Fixup arguments: align must be at least PAGE_SIZE, 452 * sz will be converted to pagecount, since that is what 453 * pmemrange uses internally. 454 */ 455 if (align < PAGE_SIZE) 456 align = PAGE_SIZE; 457 sz = round_page(sz); 458 459 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 460 if (*va == 0) 461 return ENOMEM; 462 463 pmap_extract(pmap_kernel(), *va, pa); 464 return 0; 465 } 466 467 /* 468 * Free a piglet area. 469 */ 470 void 471 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 472 { 473 /* 474 * Fix parameters. 475 */ 476 sz = round_page(sz); 477 478 /* 479 * Free the physical and virtual memory. 480 */ 481 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 482 } 483 484 /* 485 * Physmem RLE compression support. 486 * 487 * Given a physical page address, return the number of pages starting at the 488 * address that are free. Clamps to the number of pages in 489 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 490 */ 491 int 492 uvm_page_rle(paddr_t addr) 493 { 494 struct vm_page *pg, *pg_end; 495 struct vm_physseg *vmp; 496 int pseg_idx, off_idx; 497 498 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 499 if (pseg_idx == -1) 500 return 0; 501 502 vmp = &vm_physmem[pseg_idx]; 503 pg = &vmp->pgs[off_idx]; 504 if (!(pg->pg_flags & PQ_FREE)) 505 return 0; 506 507 /* 508 * Search for the first non-free page after pg. 509 * Note that the page may not be the first page in a free pmemrange, 510 * therefore pg->fpgsz cannot be used. 511 */ 512 for (pg_end = pg; pg_end <= vmp->lastpg && 513 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 514 ; 515 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 516 } 517 518 /* 519 * Fills out the hibernate_info union pointed to by hib 520 * with information about this machine (swap signature block 521 * offsets, number of memory ranges, kernel in use, etc) 522 */ 523 int 524 get_hibernate_info(union hibernate_info *hib, int suspend) 525 { 526 struct disklabel dl; 527 char err_string[128], *dl_ret; 528 529 #ifndef NO_PROPOLICE 530 /* Save propolice guard */ 531 hib->guard = __guard_local; 532 #endif /* ! NO_PROPOLICE */ 533 534 /* Determine I/O function to use */ 535 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 536 if (hib->io_func == NULL) 537 return (1); 538 539 /* Calculate hibernate device */ 540 hib->dev = swdevt[0].sw_dev; 541 542 /* Read disklabel (used to calculate signature and image offsets) */ 543 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 544 545 if (dl_ret) { 546 printf("Hibernate error reading disklabel: %s\n", dl_ret); 547 return (1); 548 } 549 550 /* Make sure we have a swap partition. */ 551 if (dl.d_partitions[1].p_fstype != FS_SWAP || 552 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 553 return (1); 554 555 /* Make sure the signature can fit in one block */ 556 if (sizeof(union hibernate_info) > DEV_BSIZE) 557 return (1); 558 559 /* Magic number */ 560 hib->magic = HIBERNATE_MAGIC; 561 562 /* Calculate signature block location */ 563 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 564 sizeof(union hibernate_info)/DEV_BSIZE; 565 566 /* Stash kernel version information */ 567 memset(&hib->kernel_version, 0, 128); 568 bcopy(version, &hib->kernel_version, 569 min(strlen(version), sizeof(hib->kernel_version)-1)); 570 571 if (suspend) { 572 hib->piglet_va = global_piglet_va; 573 hib->piglet_pa = global_piglet_pa; 574 hib->io_page = (void *)hib->piglet_va; 575 576 /* 577 * Initialization of the hibernate IO function for drivers 578 * that need to do prep work (such as allocating memory or 579 * setting up data structures that cannot safely be done 580 * during suspend without causing side effects). There is 581 * a matching HIB_DONE call performed after the write is 582 * completed. 583 */ 584 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 585 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 586 HIB_INIT, hib->io_page)) 587 goto fail; 588 589 } else { 590 /* 591 * Resuming kernels use a regular private page for the driver 592 * No need to free this I/O page as it will vanish as part of 593 * the resume. 594 */ 595 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 596 if (!hib->io_page) 597 goto fail; 598 } 599 600 601 if (get_hibernate_info_md(hib)) 602 goto fail; 603 604 return (0); 605 606 fail: 607 return (1); 608 } 609 610 /* 611 * Allocate nitems*size bytes from the hiballoc area presently in use 612 */ 613 void * 614 hibernate_zlib_alloc(void *unused, int nitems, int size) 615 { 616 struct hibernate_zlib_state *hibernate_state; 617 618 hibernate_state = 619 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 620 621 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 622 } 623 624 /* 625 * Free the memory pointed to by addr in the hiballoc area presently in 626 * use 627 */ 628 void 629 hibernate_zlib_free(void *unused, void *addr) 630 { 631 struct hibernate_zlib_state *hibernate_state; 632 633 hibernate_state = 634 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 635 636 hib_free(&hibernate_state->hiballoc_arena, addr); 637 } 638 639 /* 640 * Inflate next page of data from the image stream. 641 * The rle parameter is modified on exit to contain the number of pages to 642 * skip in the output stream (or 0 if this page was inflated into). 643 * 644 * Returns 0 if the stream contains additional data, or 1 if the stream is 645 * finished. 646 */ 647 int 648 hibernate_inflate_page(int *rle) 649 { 650 struct hibernate_zlib_state *hibernate_state; 651 int i; 652 653 hibernate_state = 654 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 655 656 /* Set up the stream for RLE code inflate */ 657 hibernate_state->hib_stream.next_out = (char *)rle; 658 hibernate_state->hib_stream.avail_out = sizeof(*rle); 659 660 /* Inflate RLE code */ 661 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 662 if (i != Z_OK && i != Z_STREAM_END) { 663 /* 664 * XXX - this will likely reboot/hang most machines 665 * since the console output buffer will be unmapped, 666 * but there's not much else we can do here. 667 */ 668 panic("rle inflate stream error"); 669 } 670 671 if (hibernate_state->hib_stream.avail_out != 0) { 672 /* 673 * XXX - this will likely reboot/hang most machines 674 * since the console output buffer will be unmapped, 675 * but there's not much else we can do here. 676 */ 677 panic("rle short inflate error"); 678 } 679 680 if (*rle < 0 || *rle > 1024) { 681 /* 682 * XXX - this will likely reboot/hang most machines 683 * since the console output buffer will be unmapped, 684 * but there's not much else we can do here. 685 */ 686 panic("invalid rle count"); 687 } 688 689 if (i == Z_STREAM_END) 690 return (1); 691 692 if (*rle != 0) 693 return (0); 694 695 /* Set up the stream for page inflate */ 696 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 697 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 698 699 /* Process next block of data */ 700 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 701 if (i != Z_OK && i != Z_STREAM_END) { 702 /* 703 * XXX - this will likely reboot/hang most machines 704 * since the console output buffer will be unmapped, 705 * but there's not much else we can do here. 706 */ 707 panic("inflate error"); 708 } 709 710 /* We should always have extracted a full page ... */ 711 if (hibernate_state->hib_stream.avail_out != 0) { 712 /* 713 * XXX - this will likely reboot/hang most machines 714 * since the console output buffer will be unmapped, 715 * but there's not much else we can do here. 716 */ 717 panic("incomplete page"); 718 } 719 720 return (i == Z_STREAM_END); 721 } 722 723 /* 724 * Inflate size bytes from src into dest, skipping any pages in 725 * [src..dest] that are special (see hibernate_inflate_skip) 726 * 727 * This function executes while using the resume-time stack 728 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 729 * will likely hang or reset the machine since the console output buffer 730 * will be unmapped. 731 */ 732 void 733 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 734 paddr_t src, size_t size) 735 { 736 int end_stream = 0, rle; 737 struct hibernate_zlib_state *hibernate_state; 738 739 hibernate_state = 740 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 741 742 hibernate_state->hib_stream.next_in = (char *)src; 743 hibernate_state->hib_stream.avail_in = size; 744 745 do { 746 /* 747 * Is this a special page? If yes, redirect the 748 * inflate output to a scratch page (eg, discard it) 749 */ 750 if (hibernate_inflate_skip(hib, dest)) { 751 hibernate_enter_resume_mapping( 752 HIBERNATE_INFLATE_PAGE, 753 HIBERNATE_INFLATE_PAGE, 0); 754 } else { 755 hibernate_enter_resume_mapping( 756 HIBERNATE_INFLATE_PAGE, dest, 0); 757 } 758 759 hibernate_flush(); 760 end_stream = hibernate_inflate_page(&rle); 761 762 if (rle == 0) 763 dest += PAGE_SIZE; 764 else 765 dest += (rle * PAGE_SIZE); 766 } while (!end_stream); 767 } 768 769 /* 770 * deflate from src into the I/O page, up to 'remaining' bytes 771 * 772 * Returns number of input bytes consumed, and may reset 773 * the 'remaining' parameter if not all the output space was consumed 774 * (this information is needed to know how much to write to disk 775 */ 776 size_t 777 hibernate_deflate(union hibernate_info *hib, paddr_t src, 778 size_t *remaining) 779 { 780 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 781 struct hibernate_zlib_state *hibernate_state; 782 783 hibernate_state = 784 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 785 786 /* Set up the stream for deflate */ 787 hibernate_state->hib_stream.next_in = (caddr_t)src; 788 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 789 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 790 (PAGE_SIZE - *remaining); 791 hibernate_state->hib_stream.avail_out = *remaining; 792 793 /* Process next block of data */ 794 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 795 panic("hibernate zlib deflate error"); 796 797 /* Update pointers and return number of bytes consumed */ 798 *remaining = hibernate_state->hib_stream.avail_out; 799 return (PAGE_SIZE - (src & PAGE_MASK)) - 800 hibernate_state->hib_stream.avail_in; 801 } 802 803 /* 804 * Write the hibernation information specified in hiber_info 805 * to the location in swap previously calculated (last block of 806 * swap), called the "signature block". 807 */ 808 int 809 hibernate_write_signature(union hibernate_info *hib) 810 { 811 /* Write hibernate info to disk */ 812 return (hib->io_func(hib->dev, hib->sig_offset, 813 (vaddr_t)hib, DEV_BSIZE, HIB_W, 814 hib->io_page)); 815 } 816 817 /* 818 * Write the memory chunk table to the area in swap immediately 819 * preceding the signature block. The chunk table is stored 820 * in the piglet when this function is called. Returns errno. 821 */ 822 int 823 hibernate_write_chunktable(union hibernate_info *hib) 824 { 825 vaddr_t hibernate_chunk_table_start; 826 size_t hibernate_chunk_table_size; 827 int i, err; 828 829 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 830 831 hibernate_chunk_table_start = hib->piglet_va + 832 HIBERNATE_CHUNK_SIZE; 833 834 /* Write chunk table */ 835 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 836 if ((err = hib->io_func(hib->dev, 837 hib->chunktable_offset + (i/DEV_BSIZE), 838 (vaddr_t)(hibernate_chunk_table_start + i), 839 MAXPHYS, HIB_W, hib->io_page))) { 840 DPRINTF("chunktable write error: %d\n", err); 841 return (err); 842 } 843 } 844 845 return (0); 846 } 847 848 /* 849 * Write an empty hiber_info to the swap signature block, which is 850 * guaranteed to not match any valid hib. 851 */ 852 int 853 hibernate_clear_signature(void) 854 { 855 union hibernate_info blank_hiber_info; 856 union hibernate_info hib; 857 858 /* Zero out a blank hiber_info */ 859 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 860 861 /* Get the signature block location */ 862 if (get_hibernate_info(&hib, 0)) 863 return (1); 864 865 /* Write (zeroed) hibernate info to disk */ 866 DPRINTF("clearing hibernate signature block location: %lld\n", 867 hib.sig_offset); 868 if (hibernate_block_io(&hib, 869 hib.sig_offset, 870 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 871 printf("Warning: could not clear hibernate signature\n"); 872 873 return (0); 874 } 875 876 /* 877 * Compare two hibernate_infos to determine if they are the same (eg, 878 * we should be performing a hibernate resume on this machine. 879 * Not all fields are checked - just enough to verify that the machine 880 * has the same memory configuration and kernel as the one that 881 * wrote the signature previously. 882 */ 883 int 884 hibernate_compare_signature(union hibernate_info *mine, 885 union hibernate_info *disk) 886 { 887 u_int i; 888 889 if (mine->nranges != disk->nranges) { 890 DPRINTF("hibernate memory range count mismatch\n"); 891 return (1); 892 } 893 894 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 895 DPRINTF("hibernate kernel version mismatch\n"); 896 return (1); 897 } 898 899 for (i = 0; i < mine->nranges; i++) { 900 if ((mine->ranges[i].base != disk->ranges[i].base) || 901 (mine->ranges[i].end != disk->ranges[i].end) ) { 902 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 903 i, 904 (void *)mine->ranges[i].base, 905 (void *)mine->ranges[i].end, 906 (void *)disk->ranges[i].base, 907 (void *)disk->ranges[i].end); 908 return (1); 909 } 910 } 911 912 return (0); 913 } 914 915 /* 916 * Transfers xfer_size bytes between the hibernate device specified in 917 * hib_info at offset blkctr and the vaddr specified at dest. 918 * 919 * Separate offsets and pages are used to handle misaligned reads (reads 920 * that span a page boundary). 921 * 922 * blkctr specifies a relative offset (relative to the start of swap), 923 * not an absolute disk offset 924 * 925 */ 926 int 927 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 928 size_t xfer_size, vaddr_t dest, int iswrite) 929 { 930 struct buf *bp; 931 struct bdevsw *bdsw; 932 int error; 933 934 bp = geteblk(xfer_size); 935 bdsw = &bdevsw[major(hib->dev)]; 936 937 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 938 if (error) { 939 printf("hibernate_block_io open failed\n"); 940 return (1); 941 } 942 943 if (iswrite) 944 bcopy((caddr_t)dest, bp->b_data, xfer_size); 945 946 bp->b_bcount = xfer_size; 947 bp->b_blkno = blkctr; 948 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 949 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 950 bp->b_dev = hib->dev; 951 (*bdsw->d_strategy)(bp); 952 953 error = biowait(bp); 954 if (error) { 955 printf("hib block_io biowait error %d blk %lld size %zu\n", 956 error, (long long)blkctr, xfer_size); 957 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 958 curproc); 959 if (error) 960 printf("hibernate_block_io error close failed\n"); 961 return (1); 962 } 963 964 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 965 if (error) { 966 printf("hibernate_block_io close failed\n"); 967 return (1); 968 } 969 970 if (!iswrite) 971 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 972 973 bp->b_flags |= B_INVAL; 974 brelse(bp); 975 976 return (0); 977 } 978 979 /* 980 * Reads the signature block from swap, checks against the current machine's 981 * information. If the information matches, perform a resume by reading the 982 * saved image into the pig area, and unpacking. 983 */ 984 void 985 hibernate_resume(void) 986 { 987 union hibernate_info hib; 988 int s; 989 990 /* Get current running machine's hibernate info */ 991 memset(&hib, 0, sizeof(hib)); 992 if (get_hibernate_info(&hib, 0)) { 993 DPRINTF("couldn't retrieve machine's hibernate info\n"); 994 return; 995 } 996 997 /* Read hibernate info from disk */ 998 s = splbio(); 999 1000 DPRINTF("reading hibernate signature block location: %lld\n", 1001 hib.sig_offset); 1002 1003 if (hibernate_block_io(&hib, 1004 hib.sig_offset, 1005 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1006 DPRINTF("error in hibernate read"); 1007 splx(s); 1008 return; 1009 } 1010 1011 /* Check magic number */ 1012 if (disk_hib.magic != HIBERNATE_MAGIC) { 1013 DPRINTF("wrong magic number in hibernate signature: %x\n", 1014 disk_hib.magic); 1015 splx(s); 1016 return; 1017 } 1018 1019 /* 1020 * We (possibly) found a hibernate signature. Clear signature first, 1021 * to prevent accidental resume or endless resume cycles later. 1022 */ 1023 if (hibernate_clear_signature()) { 1024 DPRINTF("error clearing hibernate signature block\n"); 1025 splx(s); 1026 return; 1027 } 1028 1029 /* 1030 * If on-disk and in-memory hibernate signatures match, 1031 * this means we should do a resume from hibernate. 1032 */ 1033 if (hibernate_compare_signature(&hib, &disk_hib)) { 1034 DPRINTF("mismatched hibernate signature block\n"); 1035 splx(s); 1036 return; 1037 } 1038 1039 #ifdef MULTIPROCESSOR 1040 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1041 DPRINTF("hibernate: quiescing APs\n"); 1042 hibernate_quiesce_cpus(); 1043 #endif /* MULTIPROCESSOR */ 1044 1045 /* Read the image from disk into the image (pig) area */ 1046 if (hibernate_read_image(&disk_hib)) 1047 goto fail; 1048 1049 DPRINTF("hibernate: quiescing devices\n"); 1050 if (config_suspend_all(DVACT_QUIESCE) != 0) 1051 goto fail; 1052 1053 (void) splhigh(); 1054 hibernate_disable_intr_machdep(); 1055 cold = 1; 1056 1057 DPRINTF("hibernate: suspending devices\n"); 1058 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1059 cold = 0; 1060 hibernate_enable_intr_machdep(); 1061 goto fail; 1062 } 1063 1064 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1065 VM_PROT_ALL); 1066 pmap_activate(curproc); 1067 1068 printf("Unpacking image...\n"); 1069 1070 /* Switch stacks */ 1071 DPRINTF("hibernate: switching stacks\n"); 1072 hibernate_switch_stack_machdep(); 1073 1074 #ifndef NO_PROPOLICE 1075 /* Start using suspended kernel's propolice guard */ 1076 __guard_local = disk_hib.guard; 1077 #endif /* ! NO_PROPOLICE */ 1078 1079 /* Unpack and resume */ 1080 hibernate_unpack_image(&disk_hib); 1081 1082 fail: 1083 splx(s); 1084 printf("\nUnable to resume hibernated image\n"); 1085 } 1086 1087 /* 1088 * Unpack image from pig area to original location by looping through the 1089 * list of output chunks in the order they should be restored (fchunks). 1090 * 1091 * Note that due to the stack smash protector and the fact that we have 1092 * switched stacks, it is not permitted to return from this function. 1093 */ 1094 void 1095 hibernate_unpack_image(union hibernate_info *hib) 1096 { 1097 struct hibernate_disk_chunk *chunks; 1098 union hibernate_info local_hib; 1099 paddr_t image_cur = global_pig_start; 1100 short i, *fchunks; 1101 char *pva; 1102 struct hibernate_zlib_state *hibernate_state; 1103 1104 hibernate_state = 1105 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1106 1107 /* Piglet will be identity mapped (VA == PA) */ 1108 pva = (char *)hib->piglet_pa; 1109 1110 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1111 1112 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1113 1114 /* Can't use hiber_info that's passed in after this point */ 1115 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1116 1117 /* VA == PA */ 1118 local_hib.piglet_va = local_hib.piglet_pa; 1119 1120 /* 1121 * Point of no return. Once we pass this point, only kernel code can 1122 * be accessed. No global variables or other kernel data structures 1123 * are guaranteed to be coherent after unpack starts. 1124 * 1125 * The image is now in high memory (pig area), we unpack from the pig 1126 * to the correct location in memory. We'll eventually end up copying 1127 * on top of ourself, but we are assured the kernel code here is the 1128 * same between the hibernated and resuming kernel, and we are running 1129 * on our own stack, so the overwrite is ok. 1130 */ 1131 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1132 hibernate_activate_resume_pt_machdep(); 1133 1134 for (i = 0; i < local_hib.chunk_ctr; i++) { 1135 /* Reset zlib for inflate */ 1136 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1137 panic("hibernate failed to reset zlib for inflate"); 1138 1139 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1140 image_cur); 1141 1142 image_cur += chunks[fchunks[i]].compressed_size; 1143 1144 } 1145 1146 /* 1147 * Resume the loaded kernel by jumping to the MD resume vector. 1148 * We won't be returning from this call. 1149 */ 1150 hibernate_resume_machdep(); 1151 } 1152 1153 /* 1154 * Bounce a compressed image chunk to the piglet, entering mappings for the 1155 * copied pages as needed 1156 */ 1157 void 1158 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1159 { 1160 size_t ct, ofs; 1161 paddr_t src = img_cur; 1162 vaddr_t dest = piglet; 1163 1164 /* Copy first partial page */ 1165 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1166 ofs = (src & PAGE_MASK); 1167 1168 if (ct < PAGE_SIZE) { 1169 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1170 (src - ofs), 0); 1171 hibernate_flush(); 1172 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1173 src += ct; 1174 dest += ct; 1175 } 1176 1177 /* Copy remaining pages */ 1178 while (src < size + img_cur) { 1179 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1180 hibernate_flush(); 1181 ct = PAGE_SIZE; 1182 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1183 hibernate_flush(); 1184 src += ct; 1185 dest += ct; 1186 } 1187 } 1188 1189 /* 1190 * Process a chunk by bouncing it to the piglet, followed by unpacking 1191 */ 1192 void 1193 hibernate_process_chunk(union hibernate_info *hib, 1194 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1195 { 1196 char *pva = (char *)hib->piglet_va; 1197 1198 hibernate_copy_chunk_to_piglet(img_cur, 1199 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1200 hibernate_inflate_region(hib, chunk->base, 1201 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1202 chunk->compressed_size); 1203 } 1204 1205 /* 1206 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1207 * inaddr and range_end. 1208 */ 1209 int 1210 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1211 { 1212 int rle; 1213 1214 rle = uvm_page_rle(inaddr); 1215 KASSERT(rle >= 0 && rle <= MAX_RLE); 1216 1217 /* Clamp RLE to range end */ 1218 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1219 rle = (range_end - inaddr) / PAGE_SIZE; 1220 1221 return (rle); 1222 } 1223 1224 /* 1225 * Write the RLE byte for page at 'inaddr' to the output stream. 1226 * Returns the number of pages to be skipped at 'inaddr'. 1227 */ 1228 int 1229 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1230 paddr_t range_end, daddr_t *blkctr, 1231 size_t *out_remaining) 1232 { 1233 int rle, err, *rleloc; 1234 struct hibernate_zlib_state *hibernate_state; 1235 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1236 1237 hibernate_state = 1238 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1239 1240 rle = hibernate_calc_rle(inaddr, range_end); 1241 1242 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1243 *rleloc = rle; 1244 1245 /* Deflate the RLE byte into the stream */ 1246 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1247 1248 /* Did we fill the output page? If so, flush to disk */ 1249 if (*out_remaining == 0) { 1250 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1251 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1252 hib->io_page))) { 1253 DPRINTF("hib write error %d\n", err); 1254 return (err); 1255 } 1256 1257 *blkctr += PAGE_SIZE / DEV_BSIZE; 1258 *out_remaining = PAGE_SIZE; 1259 1260 /* If we didn't deflate the entire RLE byte, finish it now */ 1261 if (hibernate_state->hib_stream.avail_in != 0) 1262 hibernate_deflate(hib, 1263 (vaddr_t)hibernate_state->hib_stream.next_in, 1264 out_remaining); 1265 } 1266 1267 return (rle); 1268 } 1269 1270 /* 1271 * Write a compressed version of this machine's memory to disk, at the 1272 * precalculated swap offset: 1273 * 1274 * end of swap - signature block size - chunk table size - memory size 1275 * 1276 * The function begins by looping through each phys mem range, cutting each 1277 * one into MD sized chunks. These chunks are then compressed individually 1278 * and written out to disk, in phys mem order. Some chunks might compress 1279 * more than others, and for this reason, each chunk's size is recorded 1280 * in the chunk table, which is written to disk after the image has 1281 * properly been compressed and written (in hibernate_write_chunktable). 1282 * 1283 * When this function is called, the machine is nearly suspended - most 1284 * devices are quiesced/suspended, interrupts are off, and cold has 1285 * been set. This means that there can be no side effects once the 1286 * write has started, and the write function itself can also have no 1287 * side effects. This also means no printfs are permitted (since printf 1288 * has side effects.) 1289 * 1290 * Return values : 1291 * 1292 * 0 - success 1293 * EIO - I/O error occurred writing the chunks 1294 * EINVAL - Failed to write a complete range 1295 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1296 */ 1297 int 1298 hibernate_write_chunks(union hibernate_info *hib) 1299 { 1300 paddr_t range_base, range_end, inaddr, temp_inaddr; 1301 size_t nblocks, out_remaining, used; 1302 struct hibernate_disk_chunk *chunks; 1303 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1304 daddr_t blkctr = 0; 1305 int i, rle, err; 1306 struct hibernate_zlib_state *hibernate_state; 1307 1308 hibernate_state = 1309 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1310 1311 hib->chunk_ctr = 0; 1312 1313 /* 1314 * Map the utility VAs to the piglet. See the piglet map at the 1315 * top of this file for piglet layout information. 1316 */ 1317 pmap_kenter_pa(hibernate_copy_page, 1318 (hib->piglet_pa + 3 * PAGE_SIZE), VM_PROT_ALL); 1319 pmap_kenter_pa(hibernate_rle_page, 1320 (hib->piglet_pa + 28 * PAGE_SIZE), VM_PROT_ALL); 1321 1322 pmap_activate(curproc); 1323 1324 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1325 HIBERNATE_CHUNK_SIZE); 1326 1327 /* Calculate the chunk regions */ 1328 for (i = 0; i < hib->nranges; i++) { 1329 range_base = hib->ranges[i].base; 1330 range_end = hib->ranges[i].end; 1331 1332 inaddr = range_base; 1333 1334 while (inaddr < range_end) { 1335 chunks[hib->chunk_ctr].base = inaddr; 1336 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1337 chunks[hib->chunk_ctr].end = inaddr + 1338 HIBERNATE_CHUNK_SIZE; 1339 else 1340 chunks[hib->chunk_ctr].end = range_end; 1341 1342 inaddr += HIBERNATE_CHUNK_SIZE; 1343 hib->chunk_ctr ++; 1344 } 1345 } 1346 1347 uvm_pmr_dirty_everything(); 1348 uvm_pmr_zero_everything(); 1349 1350 /* Compress and write the chunks in the chunktable */ 1351 for (i = 0; i < hib->chunk_ctr; i++) { 1352 range_base = chunks[i].base; 1353 range_end = chunks[i].end; 1354 1355 chunks[i].offset = blkctr + hib->image_offset; 1356 1357 /* Reset zlib for deflate */ 1358 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1359 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1360 return (ENOMEM); 1361 } 1362 1363 inaddr = range_base; 1364 1365 /* 1366 * For each range, loop through its phys mem region 1367 * and write out the chunks (the last chunk might be 1368 * smaller than the chunk size). 1369 */ 1370 while (inaddr < range_end) { 1371 out_remaining = PAGE_SIZE; 1372 while (out_remaining > 0 && inaddr < range_end) { 1373 /* 1374 * Adjust for regions that are not evenly 1375 * divisible by PAGE_SIZE or overflowed 1376 * pages from the previous iteration. 1377 */ 1378 temp_inaddr = (inaddr & PAGE_MASK) + 1379 hibernate_copy_page; 1380 1381 /* Deflate from temp_inaddr to IO page */ 1382 if (inaddr != range_end) { 1383 if (inaddr % PAGE_SIZE == 0) { 1384 rle = hibernate_write_rle(hib, 1385 inaddr, 1386 range_end, 1387 &blkctr, 1388 &out_remaining); 1389 } 1390 1391 if (rle == 0) { 1392 pmap_kenter_pa(hibernate_temp_page, 1393 inaddr & PMAP_PA_MASK, 1394 VM_PROT_ALL); 1395 1396 pmap_activate(curproc); 1397 1398 bcopy((caddr_t)hibernate_temp_page, 1399 (caddr_t)hibernate_copy_page, 1400 PAGE_SIZE); 1401 inaddr += hibernate_deflate(hib, 1402 temp_inaddr, 1403 &out_remaining); 1404 } else { 1405 inaddr += rle * PAGE_SIZE; 1406 if (inaddr > range_end) 1407 inaddr = range_end; 1408 } 1409 1410 } 1411 1412 if (out_remaining == 0) { 1413 /* Filled up the page */ 1414 nblocks = PAGE_SIZE / DEV_BSIZE; 1415 1416 if ((err = hib->io_func(hib->dev, 1417 blkctr + hib->image_offset, 1418 (vaddr_t)hibernate_io_page, 1419 PAGE_SIZE, HIB_W, hib->io_page))) { 1420 DPRINTF("hib write error %d\n", 1421 err); 1422 return (err); 1423 } 1424 1425 blkctr += nblocks; 1426 } 1427 } 1428 } 1429 1430 if (inaddr != range_end) { 1431 DPRINTF("deflate range ended prematurely\n"); 1432 return (EINVAL); 1433 } 1434 1435 /* 1436 * End of range. Round up to next secsize bytes 1437 * after finishing compress 1438 */ 1439 if (out_remaining == 0) 1440 out_remaining = PAGE_SIZE; 1441 1442 /* Finish compress */ 1443 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1444 hibernate_state->hib_stream.avail_in = 0; 1445 hibernate_state->hib_stream.next_out = 1446 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1447 1448 /* We have an extra output page available for finalize */ 1449 hibernate_state->hib_stream.avail_out = 1450 out_remaining + PAGE_SIZE; 1451 1452 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1453 Z_STREAM_END) { 1454 DPRINTF("deflate error in output stream: %d\n", err); 1455 return (err); 1456 } 1457 1458 out_remaining = hibernate_state->hib_stream.avail_out; 1459 1460 used = 2 * PAGE_SIZE - out_remaining; 1461 nblocks = used / DEV_BSIZE; 1462 1463 /* Round up to next block if needed */ 1464 if (used % DEV_BSIZE != 0) 1465 nblocks ++; 1466 1467 /* Write final block(s) for this chunk */ 1468 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1469 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1470 HIB_W, hib->io_page))) { 1471 DPRINTF("hib final write error %d\n", err); 1472 return (err); 1473 } 1474 1475 blkctr += nblocks; 1476 1477 chunks[i].compressed_size = (blkctr + hib->image_offset - 1478 chunks[i].offset) * DEV_BSIZE; 1479 } 1480 1481 hib->chunktable_offset = hib->image_offset + blkctr; 1482 return (0); 1483 } 1484 1485 /* 1486 * Reset the zlib stream state and allocate a new hiballoc area for either 1487 * inflate or deflate. This function is called once for each hibernate chunk. 1488 * Calling hiballoc_init multiple times is acceptable since the memory it is 1489 * provided is unmanaged memory (stolen). We use the memory provided to us 1490 * by the piglet allocated via the supplied hib. 1491 */ 1492 int 1493 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1494 { 1495 vaddr_t hibernate_zlib_start; 1496 size_t hibernate_zlib_size; 1497 char *pva = (char *)hib->piglet_va; 1498 struct hibernate_zlib_state *hibernate_state; 1499 1500 hibernate_state = 1501 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1502 1503 if (!deflate) 1504 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1505 1506 /* 1507 * See piglet layout information at the start of this file for 1508 * information on the zlib page assignments. 1509 */ 1510 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1511 hibernate_zlib_size = 80 * PAGE_SIZE; 1512 1513 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1514 memset(hibernate_state, 0, PAGE_SIZE); 1515 1516 /* Set up stream structure */ 1517 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1518 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1519 1520 /* Initialize the hiballoc arena for zlib allocs/frees */ 1521 hiballoc_init(&hibernate_state->hiballoc_arena, 1522 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1523 1524 if (deflate) { 1525 return deflateInit(&hibernate_state->hib_stream, 1526 Z_BEST_SPEED); 1527 } else 1528 return inflateInit(&hibernate_state->hib_stream); 1529 } 1530 1531 /* 1532 * Reads the hibernated memory image from disk, whose location and 1533 * size are recorded in hib. Begin by reading the persisted 1534 * chunk table, which records the original chunk placement location 1535 * and compressed size for each. Next, allocate a pig region of 1536 * sufficient size to hold the compressed image. Next, read the 1537 * chunks into the pig area (calling hibernate_read_chunks to do this), 1538 * and finally, if all of the above succeeds, clear the hibernate signature. 1539 * The function will then return to hibernate_resume, which will proceed 1540 * to unpack the pig image to the correct place in memory. 1541 */ 1542 int 1543 hibernate_read_image(union hibernate_info *hib) 1544 { 1545 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1546 paddr_t image_start, image_end, pig_start, pig_end; 1547 struct hibernate_disk_chunk *chunks; 1548 daddr_t blkctr; 1549 vaddr_t chunktable = (vaddr_t)NULL; 1550 paddr_t piglet_chunktable = hib->piglet_pa + 1551 HIBERNATE_CHUNK_SIZE; 1552 int i, status; 1553 1554 status = 0; 1555 pmap_activate(curproc); 1556 1557 /* Calculate total chunk table size in disk blocks */ 1558 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1559 1560 blkctr = hib->chunktable_offset; 1561 1562 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1563 &kp_none, &kd_nowait); 1564 1565 if (!chunktable) 1566 return (1); 1567 1568 /* Map chunktable pages */ 1569 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1570 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1571 VM_PROT_ALL); 1572 pmap_update(pmap_kernel()); 1573 1574 /* Read the chunktable from disk into the piglet chunktable */ 1575 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1576 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1577 hibernate_block_io(hib, blkctr, MAXPHYS, 1578 chunktable + i, 0); 1579 1580 blkctr = hib->image_offset; 1581 compressed_size = 0; 1582 1583 chunks = (struct hibernate_disk_chunk *)chunktable; 1584 1585 for (i = 0; i < hib->chunk_ctr; i++) 1586 compressed_size += chunks[i].compressed_size; 1587 1588 disk_size = compressed_size; 1589 1590 printf("unhibernating @ block %lld length %lu bytes\n", 1591 hib->sig_offset - chunktable_size, 1592 compressed_size); 1593 1594 /* Allocate the pig area */ 1595 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1596 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1597 status = 1; 1598 goto unmap; 1599 } 1600 1601 pig_end = pig_start + pig_sz; 1602 1603 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1604 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1605 image_start = image_end - disk_size; 1606 1607 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1608 chunks); 1609 1610 /* Prepare the resume time pmap/page table */ 1611 hibernate_populate_resume_pt(hib, image_start, image_end); 1612 1613 unmap: 1614 /* Unmap chunktable pages */ 1615 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1616 pmap_update(pmap_kernel()); 1617 1618 return (status); 1619 } 1620 1621 /* 1622 * Read the hibernated memory chunks from disk (chunk information at this 1623 * point is stored in the piglet) into the pig area specified by 1624 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1625 * only chunk with overlap possibilities. 1626 */ 1627 int 1628 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1629 paddr_t pig_end, size_t image_compr_size, 1630 struct hibernate_disk_chunk *chunks) 1631 { 1632 paddr_t img_cur, piglet_base; 1633 daddr_t blkctr; 1634 size_t processed, compressed_size, read_size; 1635 int nchunks, nfchunks, num_io_pages; 1636 vaddr_t tempva, hibernate_fchunk_area; 1637 short *fchunks, i, j; 1638 1639 tempva = (vaddr_t)NULL; 1640 hibernate_fchunk_area = (vaddr_t)NULL; 1641 nfchunks = 0; 1642 piglet_base = hib->piglet_pa; 1643 global_pig_start = pig_start; 1644 1645 pmap_activate(curproc); 1646 1647 /* 1648 * These mappings go into the resuming kernel's page table, and are 1649 * used only during image read. They dissappear from existence 1650 * when the suspended kernel is unpacked on top of us. 1651 */ 1652 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1653 &kd_nowait); 1654 if (!tempva) 1655 return (1); 1656 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1657 &kp_none, &kd_nowait); 1658 if (!hibernate_fchunk_area) 1659 return (1); 1660 1661 /* Final output chunk ordering VA */ 1662 fchunks = (short *)hibernate_fchunk_area; 1663 1664 /* Map the chunk ordering region */ 1665 for(i = 0; i < 24 ; i++) 1666 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1667 piglet_base + ((4 + i) * PAGE_SIZE), VM_PROT_ALL); 1668 pmap_update(pmap_kernel()); 1669 1670 nchunks = hib->chunk_ctr; 1671 1672 /* Initially start all chunks as unplaced */ 1673 for (i = 0; i < nchunks; i++) 1674 chunks[i].flags = 0; 1675 1676 /* 1677 * Search the list for chunks that are outside the pig area. These 1678 * can be placed first in the final output list. 1679 */ 1680 for (i = 0; i < nchunks; i++) { 1681 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1682 fchunks[nfchunks] = i; 1683 nfchunks++; 1684 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1685 } 1686 } 1687 1688 /* 1689 * Walk the ordering, place the chunks in ascending memory order. 1690 */ 1691 for (i = 0; i < nchunks; i++) { 1692 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1693 fchunks[nfchunks] = i; 1694 nfchunks++; 1695 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1696 } 1697 } 1698 1699 img_cur = pig_start; 1700 1701 for (i = 0; i < nfchunks; i++) { 1702 blkctr = chunks[fchunks[i]].offset; 1703 processed = 0; 1704 compressed_size = chunks[fchunks[i]].compressed_size; 1705 1706 while (processed < compressed_size) { 1707 if (compressed_size - processed >= MAXPHYS) 1708 read_size = MAXPHYS; 1709 else 1710 read_size = compressed_size - processed; 1711 1712 /* 1713 * We're reading read_size bytes, offset from the 1714 * start of a page by img_cur % PAGE_SIZE, so the 1715 * end will be read_size + (img_cur % PAGE_SIZE) 1716 * from the start of the first page. Round that 1717 * up to the next page size. 1718 */ 1719 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1720 + PAGE_SIZE - 1) / PAGE_SIZE; 1721 1722 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1723 1724 /* Map pages for this read */ 1725 for (j = 0; j < num_io_pages; j ++) 1726 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1727 img_cur + j * PAGE_SIZE, VM_PROT_ALL); 1728 1729 pmap_update(pmap_kernel()); 1730 1731 hibernate_block_io(hib, blkctr, read_size, 1732 tempva + (img_cur & PAGE_MASK), 0); 1733 1734 blkctr += (read_size / DEV_BSIZE); 1735 1736 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1737 pmap_update(pmap_kernel()); 1738 1739 processed += read_size; 1740 img_cur += read_size; 1741 } 1742 } 1743 1744 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1745 pmap_update(pmap_kernel()); 1746 1747 return (0); 1748 } 1749 1750 /* 1751 * Hibernating a machine comprises the following operations: 1752 * 1. Calculating this machine's hibernate_info information 1753 * 2. Allocating a piglet and saving the piglet's physaddr 1754 * 3. Calculating the memory chunks 1755 * 4. Writing the compressed chunks to disk 1756 * 5. Writing the chunk table 1757 * 6. Writing the signature block (hibernate_info) 1758 * 1759 * On most architectures, the function calling hibernate_suspend would 1760 * then power off the machine using some MD-specific implementation. 1761 */ 1762 int 1763 hibernate_suspend(void) 1764 { 1765 union hibernate_info hib; 1766 u_long start, end; 1767 1768 /* 1769 * Calculate memory ranges, swap offsets, etc. 1770 * This also allocates a piglet whose physaddr is stored in 1771 * hib->piglet_pa and vaddr stored in hib->piglet_va 1772 */ 1773 if (get_hibernate_info(&hib, 1)) { 1774 DPRINTF("failed to obtain hibernate info\n"); 1775 return (1); 1776 } 1777 1778 /* Find a page-addressed region in swap [start,end] */ 1779 if (uvm_hibswap(hib.dev, &start, &end)) { 1780 printf("hibernate: cannot find any swap\n"); 1781 return (1); 1782 } 1783 1784 if (end - start < 1000) { 1785 printf("hibernate: insufficient swap (%lu is too small)\n", 1786 end - start); 1787 return (1); 1788 } 1789 1790 /* Calculate block offsets in swap */ 1791 hib.image_offset = ctod(start); 1792 1793 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1794 hib.image_offset, ctod(end) - ctod(start)); 1795 1796 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1797 VM_PROT_ALL); 1798 pmap_activate(curproc); 1799 1800 DPRINTF("hibernate: writing chunks\n"); 1801 if (hibernate_write_chunks(&hib)) { 1802 DPRINTF("hibernate_write_chunks failed\n"); 1803 return (1); 1804 } 1805 1806 DPRINTF("hibernate: writing chunktable\n"); 1807 if (hibernate_write_chunktable(&hib)) { 1808 DPRINTF("hibernate_write_chunktable failed\n"); 1809 return (1); 1810 } 1811 1812 DPRINTF("hibernate: writing signature\n"); 1813 if (hibernate_write_signature(&hib)) { 1814 DPRINTF("hibernate_write_signature failed\n"); 1815 return (1); 1816 } 1817 1818 /* Allow the disk to settle */ 1819 delay(500000); 1820 1821 /* 1822 * Give the device-specific I/O function a notification that we're 1823 * done, and that it can clean up or shutdown as needed. 1824 */ 1825 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1826 1827 return (0); 1828 } 1829 1830 int 1831 hibernate_alloc(void) 1832 { 1833 KASSERT(global_piglet_va == 0); 1834 KASSERT(hibernate_temp_page == 0); 1835 KASSERT(hibernate_copy_page == 0); 1836 KASSERT(hibernate_rle_page == 0); 1837 1838 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1839 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1840 return (ENOMEM); 1841 1842 /* 1843 * Allocate VA for the temp and copy page. 1844 * 1845 * These will become part of the suspended kernel and will 1846 * be freed in hibernate_free, upon resume. 1847 */ 1848 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1849 &kp_none, &kd_nowait); 1850 if (!hibernate_temp_page) { 1851 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1852 return (ENOMEM); 1853 } 1854 1855 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1856 &kp_none, &kd_nowait); 1857 if (!hibernate_copy_page) { 1858 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1859 return (ENOMEM); 1860 } 1861 1862 hibernate_rle_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1863 &kp_none, &kd_nowait); 1864 if (!hibernate_rle_page) { 1865 DPRINTF("out of memory allocating hibernate_rle_page\n"); 1866 return (ENOMEM); 1867 } 1868 1869 return (0); 1870 } 1871 1872 /* 1873 * Free items allocated by hibernate_alloc() 1874 */ 1875 void 1876 hibernate_free(void) 1877 { 1878 if (global_piglet_va) 1879 uvm_pmr_free_piglet(global_piglet_va, 1880 4 * HIBERNATE_CHUNK_SIZE); 1881 1882 if (hibernate_copy_page) 1883 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1884 if (hibernate_temp_page) 1885 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1886 if (hibernate_rle_page) 1887 pmap_kremove(hibernate_rle_page, PAGE_SIZE); 1888 1889 pmap_update(pmap_kernel()); 1890 1891 if (hibernate_copy_page) 1892 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1893 &kv_any, &kp_none); 1894 if (hibernate_temp_page) 1895 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1896 &kv_any, &kp_none); 1897 if (hibernate_rle_page) 1898 km_free((void *)hibernate_rle_page, PAGE_SIZE, 1899 &kv_any, &kp_none); 1900 1901 global_piglet_va = 0; 1902 hibernate_copy_page = 0; 1903 hibernate_temp_page = 0; 1904 hibernate_rle_page = 0; 1905 } 1906