1 /* $OpenBSD: subr_hibernate.c,v 1.79 2013/11/09 04:38:42 deraadt Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hib, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hib->io_func = get_hibernate_io_function(); 650 if (hib->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hib->dev = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 667 return (1); 668 669 /* Make sure the signature can fit in one block */ 670 if (sizeof(union hibernate_info) > DEV_BSIZE) 671 return (1); 672 673 /* Magic number */ 674 hib->magic = HIBERNATE_MAGIC; 675 676 /* Calculate signature block location */ 677 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 678 sizeof(union hibernate_info)/DEV_BSIZE; 679 680 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 681 682 /* Stash kernel version information */ 683 bzero(&hib->kernel_version, 128); 684 bcopy(version, &hib->kernel_version, 685 min(strlen(version), sizeof(hib->kernel_version)-1)); 686 687 if (suspend) { 688 /* Allocate piglet region */ 689 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 690 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 691 HIBERNATE_CHUNK_SIZE)) { 692 printf("Hibernate failed to allocate the piglet\n"); 693 return (1); 694 } 695 hib->io_page = (void *)hib->piglet_va; 696 697 /* 698 * Initialization of the hibernate IO function for drivers 699 * that need to do prep work (such as allocating memory or 700 * setting up data structures that cannot safely be done 701 * during suspend without causing side effects). There is 702 * a matching HIB_DONE call performed after the write is 703 * completed. 704 */ 705 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 706 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 707 HIB_INIT, hib->io_page)) 708 goto fail; 709 710 } else { 711 /* 712 * Resuming kernels use a regular I/O page since we won't 713 * have access to the suspended kernel's piglet VA at this 714 * point. No need to free this I/O page as it will vanish 715 * as part of the resume. 716 */ 717 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 718 if (!hib->io_page) 719 return (1); 720 } 721 722 723 if (get_hibernate_info_md(hib)) 724 goto fail; 725 726 727 return (0); 728 fail: 729 if (suspend) 730 uvm_pmr_free_piglet(hib->piglet_va, 731 HIBERNATE_CHUNK_SIZE * 3); 732 733 return (1); 734 } 735 736 /* 737 * Allocate nitems*size bytes from the hiballoc area presently in use 738 */ 739 void * 740 hibernate_zlib_alloc(void *unused, int nitems, int size) 741 { 742 struct hibernate_zlib_state *hibernate_state; 743 744 hibernate_state = 745 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 746 747 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 748 } 749 750 /* 751 * Free the memory pointed to by addr in the hiballoc area presently in 752 * use 753 */ 754 void 755 hibernate_zlib_free(void *unused, void *addr) 756 { 757 struct hibernate_zlib_state *hibernate_state; 758 759 hibernate_state = 760 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 761 762 hib_free(&hibernate_state->hiballoc_arena, addr); 763 } 764 765 /* 766 * Gets the next RLE value from the image stream 767 */ 768 int 769 hibernate_get_next_rle(void) 770 { 771 int rle, i; 772 struct hibernate_zlib_state *hibernate_state; 773 774 hibernate_state = 775 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 776 777 /* Read RLE code */ 778 hibernate_state->hib_stream.next_out = (char *)&rle; 779 hibernate_state->hib_stream.avail_out = sizeof(rle); 780 781 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 782 if (i != Z_OK && i != Z_STREAM_END) { 783 /* 784 * XXX - this will likely reboot/hang most machines 785 * since the console output buffer will be unmapped, 786 * but there's not much else we can do here. 787 */ 788 panic("inflate rle error"); 789 } 790 791 /* Sanity check what RLE value we got */ 792 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 793 panic("invalid RLE code"); 794 795 if (i == Z_STREAM_END) 796 rle = -1; 797 798 return rle; 799 } 800 801 /* 802 * Inflate next page of data from the image stream 803 */ 804 int 805 hibernate_inflate_page(void) 806 { 807 struct hibernate_zlib_state *hibernate_state; 808 int i; 809 810 hibernate_state = 811 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 812 813 /* Set up the stream for inflate */ 814 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 815 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 816 817 /* Process next block of data */ 818 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 819 if (i != Z_OK && i != Z_STREAM_END) { 820 /* 821 * XXX - this will likely reboot/hang most machines 822 * since the console output buffer will be unmapped, 823 * but there's not much else we can do here. 824 */ 825 panic("inflate error"); 826 } 827 828 /* We should always have extracted a full page ... */ 829 if (hibernate_state->hib_stream.avail_out != 0) { 830 /* 831 * XXX - this will likely reboot/hang most machines 832 * since the console output buffer will be unmapped, 833 * but there's not much else we can do here. 834 */ 835 panic("incomplete page"); 836 } 837 838 return (i == Z_STREAM_END); 839 } 840 841 /* 842 * Inflate size bytes from src into dest, skipping any pages in 843 * [src..dest] that are special (see hibernate_inflate_skip) 844 * 845 * This function executes while using the resume-time stack 846 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 847 * will likely hang or reset the machine since the console output buffer 848 * will be unmapped. 849 */ 850 void 851 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 852 paddr_t src, size_t size) 853 { 854 int end_stream = 0 ; 855 struct hibernate_zlib_state *hibernate_state; 856 857 hibernate_state = 858 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 859 860 hibernate_state->hib_stream.next_in = (char *)src; 861 hibernate_state->hib_stream.avail_in = size; 862 863 do { 864 /* Flush cache and TLB */ 865 hibernate_flush(); 866 867 /* 868 * Is this a special page? If yes, redirect the 869 * inflate output to a scratch page (eg, discard it) 870 */ 871 if (hibernate_inflate_skip(hib, dest)) { 872 hibernate_enter_resume_mapping( 873 HIBERNATE_INFLATE_PAGE, 874 HIBERNATE_INFLATE_PAGE, 0); 875 } else { 876 hibernate_enter_resume_mapping( 877 HIBERNATE_INFLATE_PAGE, dest, 0); 878 } 879 880 hibernate_flush(); 881 end_stream = hibernate_inflate_page(); 882 883 dest += PAGE_SIZE; 884 } while (!end_stream); 885 } 886 887 /* 888 * deflate from src into the I/O page, up to 'remaining' bytes 889 * 890 * Returns number of input bytes consumed, and may reset 891 * the 'remaining' parameter if not all the output space was consumed 892 * (this information is needed to know how much to write to disk 893 */ 894 size_t 895 hibernate_deflate(union hibernate_info *hib, paddr_t src, 896 size_t *remaining) 897 { 898 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 899 struct hibernate_zlib_state *hibernate_state; 900 901 hibernate_state = 902 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 903 904 /* Set up the stream for deflate */ 905 hibernate_state->hib_stream.next_in = (caddr_t)src; 906 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 907 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 908 (PAGE_SIZE - *remaining); 909 hibernate_state->hib_stream.avail_out = *remaining; 910 911 /* Process next block of data */ 912 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 913 panic("hibernate zlib deflate error"); 914 915 /* Update pointers and return number of bytes consumed */ 916 *remaining = hibernate_state->hib_stream.avail_out; 917 return (PAGE_SIZE - (src & PAGE_MASK)) - 918 hibernate_state->hib_stream.avail_in; 919 } 920 921 /* 922 * Write the hibernation information specified in hiber_info 923 * to the location in swap previously calculated (last block of 924 * swap), called the "signature block". 925 */ 926 int 927 hibernate_write_signature(union hibernate_info *hib) 928 { 929 /* Write hibernate info to disk */ 930 return (hib->io_func(hib->dev, hib->sig_offset, 931 (vaddr_t)hib, DEV_BSIZE, HIB_W, 932 hib->io_page)); 933 } 934 935 /* 936 * Write the memory chunk table to the area in swap immediately 937 * preceding the signature block. The chunk table is stored 938 * in the piglet when this function is called. Returns errno. 939 */ 940 int 941 hibernate_write_chunktable(union hibernate_info *hib) 942 { 943 struct hibernate_disk_chunk *chunks; 944 vaddr_t hibernate_chunk_table_start; 945 size_t hibernate_chunk_table_size; 946 int i, err; 947 948 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 949 950 hibernate_chunk_table_start = hib->piglet_va + 951 HIBERNATE_CHUNK_SIZE; 952 953 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 954 HIBERNATE_CHUNK_SIZE); 955 956 /* Write chunk table */ 957 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 958 if ((err = hib->io_func(hib->dev, 959 hib->chunktable_offset + (i/DEV_BSIZE), 960 (vaddr_t)(hibernate_chunk_table_start + i), 961 MAXPHYS, HIB_W, hib->io_page))) { 962 DPRINTF("chunktable write error: %d\n", err); 963 return (err); 964 } 965 } 966 967 return (0); 968 } 969 970 /* 971 * Write an empty hiber_info to the swap signature block, which is 972 * guaranteed to not match any valid hib. 973 */ 974 int 975 hibernate_clear_signature(void) 976 { 977 union hibernate_info blank_hiber_info; 978 union hibernate_info hib; 979 980 /* Zero out a blank hiber_info */ 981 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 982 983 /* Get the signature block location */ 984 if (get_hibernate_info(&hib, 0)) 985 return (1); 986 987 /* Write (zeroed) hibernate info to disk */ 988 DPRINTF("clearing hibernate signature block location: %lld\n", 989 hib.sig_offset); 990 if (hibernate_block_io(&hib, 991 hib.sig_offset, 992 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 993 printf("Warning: could not clear hibernate signature\n"); 994 995 return (0); 996 } 997 998 /* 999 * Check chunk range overlap when calculating whether or not to copy a 1000 * compressed chunk to the piglet area before decompressing. 1001 * 1002 * returns zero if the ranges do not overlap, non-zero otherwise. 1003 */ 1004 int 1005 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1006 { 1007 /* case A : end of r1 overlaps start of r2 */ 1008 if (r1s < r2s && r1e > r2s) 1009 return (1); 1010 1011 /* case B : r1 entirely inside r2 */ 1012 if (r1s >= r2s && r1e <= r2e) 1013 return (1); 1014 1015 /* case C : r2 entirely inside r1 */ 1016 if (r2s >= r1s && r2e <= r1e) 1017 return (1); 1018 1019 /* case D : end of r2 overlaps start of r1 */ 1020 if (r2s < r1s && r2e > r1s) 1021 return (1); 1022 1023 return (0); 1024 } 1025 1026 /* 1027 * Compare two hibernate_infos to determine if they are the same (eg, 1028 * we should be performing a hibernate resume on this machine. 1029 * Not all fields are checked - just enough to verify that the machine 1030 * has the same memory configuration and kernel as the one that 1031 * wrote the signature previously. 1032 */ 1033 int 1034 hibernate_compare_signature(union hibernate_info *mine, 1035 union hibernate_info *disk) 1036 { 1037 u_int i; 1038 1039 if (mine->nranges != disk->nranges) { 1040 DPRINTF("hibernate memory range count mismatch\n"); 1041 return (1); 1042 } 1043 1044 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1045 DPRINTF("hibernate kernel version mismatch\n"); 1046 return (1); 1047 } 1048 1049 for (i = 0; i < mine->nranges; i++) { 1050 if ((mine->ranges[i].base != disk->ranges[i].base) || 1051 (mine->ranges[i].end != disk->ranges[i].end) ) { 1052 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1053 i, mine->ranges[i].base, mine->ranges[i].end, 1054 disk->ranges[i].base, disk->ranges[i].end); 1055 return (1); 1056 } 1057 } 1058 1059 return (0); 1060 } 1061 1062 /* 1063 * Transfers xfer_size bytes between the hibernate device specified in 1064 * hib_info at offset blkctr and the vaddr specified at dest. 1065 * 1066 * Separate offsets and pages are used to handle misaligned reads (reads 1067 * that span a page boundary). 1068 * 1069 * blkctr specifies a relative offset (relative to the start of swap), 1070 * not an absolute disk offset 1071 * 1072 */ 1073 int 1074 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1075 size_t xfer_size, vaddr_t dest, int iswrite) 1076 { 1077 struct buf *bp; 1078 struct bdevsw *bdsw; 1079 int error; 1080 1081 bp = geteblk(xfer_size); 1082 bdsw = &bdevsw[major(hib->dev)]; 1083 1084 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1085 if (error) { 1086 printf("hibernate_block_io open failed\n"); 1087 return (1); 1088 } 1089 1090 if (iswrite) 1091 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1092 1093 bp->b_bcount = xfer_size; 1094 bp->b_blkno = blkctr; 1095 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1096 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1097 bp->b_dev = hib->dev; 1098 bp->b_cylinder = 0; 1099 (*bdsw->d_strategy)(bp); 1100 1101 error = biowait(bp); 1102 if (error) { 1103 printf("hib block_io biowait error %d blk %lld size %zu\n", 1104 error, (long long)blkctr, xfer_size); 1105 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1106 curproc); 1107 if (error) 1108 printf("hibernate_block_io error close failed\n"); 1109 return (1); 1110 } 1111 1112 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1113 if (error) { 1114 printf("hibernate_block_io close failed\n"); 1115 return (1); 1116 } 1117 1118 if (!iswrite) 1119 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1120 1121 bp->b_flags |= B_INVAL; 1122 brelse(bp); 1123 1124 return (0); 1125 } 1126 1127 /* 1128 * Reads the signature block from swap, checks against the current machine's 1129 * information. If the information matches, perform a resume by reading the 1130 * saved image into the pig area, and unpacking. 1131 */ 1132 void 1133 hibernate_resume(void) 1134 { 1135 union hibernate_info hib; 1136 int s; 1137 1138 /* Get current running machine's hibernate info */ 1139 bzero(&hib, sizeof(hib)); 1140 if (get_hibernate_info(&hib, 0)) { 1141 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1142 return; 1143 } 1144 1145 /* Read hibernate info from disk */ 1146 s = splbio(); 1147 1148 DPRINTF("reading hibernate signature block location: %lld\n", 1149 hib.sig_offset); 1150 1151 if (hibernate_block_io(&hib, 1152 hib.sig_offset, 1153 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1154 DPRINTF("error in hibernate read"); 1155 splx(s); 1156 return; 1157 } 1158 1159 /* Check magic number */ 1160 if (disk_hib.magic != HIBERNATE_MAGIC) { 1161 DPRINTF("wrong magic number in hibernate signature: %x\n", 1162 disk_hib.magic); 1163 splx(s); 1164 return; 1165 } 1166 1167 /* 1168 * We (possibly) found a hibernate signature. Clear signature first, 1169 * to prevent accidental resume or endless resume cycles later. 1170 */ 1171 if (hibernate_clear_signature()) { 1172 DPRINTF("error clearing hibernate signature block\n"); 1173 splx(s); 1174 return; 1175 } 1176 1177 /* 1178 * If on-disk and in-memory hibernate signatures match, 1179 * this means we should do a resume from hibernate. 1180 */ 1181 if (hibernate_compare_signature(&hib, &disk_hib)) { 1182 DPRINTF("mismatched hibernate signature block\n"); 1183 splx(s); 1184 return; 1185 } 1186 1187 #ifdef MULTIPROCESSOR 1188 hibernate_quiesce_cpus(); 1189 #endif /* MULTIPROCESSOR */ 1190 1191 /* Read the image from disk into the image (pig) area */ 1192 if (hibernate_read_image(&disk_hib)) 1193 goto fail; 1194 1195 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1196 goto fail; 1197 1198 (void) splhigh(); 1199 hibernate_disable_intr_machdep(); 1200 cold = 1; 1201 1202 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1203 cold = 0; 1204 hibernate_enable_intr_machdep(); 1205 goto fail; 1206 } 1207 1208 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1209 VM_PROT_ALL); 1210 pmap_activate(curproc); 1211 1212 printf("Unpacking image...\n"); 1213 1214 /* Switch stacks */ 1215 hibernate_switch_stack_machdep(); 1216 1217 /* Unpack and resume */ 1218 hibernate_unpack_image(&disk_hib); 1219 1220 fail: 1221 splx(s); 1222 printf("\nUnable to resume hibernated image\n"); 1223 } 1224 1225 /* 1226 * Unpack image from pig area to original location by looping through the 1227 * list of output chunks in the order they should be restored (fchunks). 1228 * 1229 * Note that due to the stack smash protector and the fact that we have 1230 * switched stacks, it is not permitted to return from this function. 1231 */ 1232 void 1233 hibernate_unpack_image(union hibernate_info *hib) 1234 { 1235 struct hibernate_disk_chunk *chunks; 1236 union hibernate_info local_hib; 1237 paddr_t image_cur = global_pig_start; 1238 short i, *fchunks; 1239 char *pva = (char *)hib->piglet_va; 1240 struct hibernate_zlib_state *hibernate_state; 1241 1242 hibernate_state = 1243 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1244 1245 /* Mask off based on arch-specific piglet page size */ 1246 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1247 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1248 1249 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1250 1251 /* Can't use hiber_info that's passed in after this point */ 1252 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1253 1254 /* 1255 * Point of no return. Once we pass this point, only kernel code can 1256 * be accessed. No global variables or other kernel data structures 1257 * are guaranteed to be coherent after unpack starts. 1258 * 1259 * The image is now in high memory (pig area), we unpack from the pig 1260 * to the correct location in memory. We'll eventually end up copying 1261 * on top of ourself, but we are assured the kernel code here is the 1262 * same between the hibernated and resuming kernel, and we are running 1263 * on our own stack, so the overwrite is ok. 1264 */ 1265 hibernate_activate_resume_pt_machdep(); 1266 1267 for (i = 0; i < local_hib.chunk_ctr; i++) { 1268 /* Reset zlib for inflate */ 1269 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1270 panic("hibernate failed to reset zlib for inflate"); 1271 1272 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1273 image_cur); 1274 1275 image_cur += chunks[fchunks[i]].compressed_size; 1276 1277 } 1278 1279 /* 1280 * Resume the loaded kernel by jumping to the MD resume vector. 1281 * We won't be returning from this call. 1282 */ 1283 hibernate_resume_machdep(); 1284 } 1285 1286 /* 1287 * Bounce a compressed image chunk to the piglet, entering mappings for the 1288 * copied pages as needed 1289 */ 1290 void 1291 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1292 { 1293 size_t ct, ofs; 1294 paddr_t src = img_cur; 1295 vaddr_t dest = piglet; 1296 1297 /* Copy first partial page */ 1298 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1299 ofs = (src & PAGE_MASK); 1300 1301 if (ct < PAGE_SIZE) { 1302 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1303 (src - ofs), 0); 1304 hibernate_flush(); 1305 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1306 src += ct; 1307 dest += ct; 1308 } 1309 wbinvd(); 1310 1311 /* Copy remaining pages */ 1312 while (src < size + img_cur) { 1313 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1314 hibernate_flush(); 1315 ct = PAGE_SIZE; 1316 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1317 hibernate_flush(); 1318 src += ct; 1319 dest += ct; 1320 } 1321 1322 hibernate_flush(); 1323 wbinvd(); 1324 } 1325 1326 /* 1327 * Process a chunk by bouncing it to the piglet, followed by unpacking 1328 */ 1329 void 1330 hibernate_process_chunk(union hibernate_info *hib, 1331 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1332 { 1333 char *pva = (char *)hib->piglet_va; 1334 1335 hibernate_copy_chunk_to_piglet(img_cur, 1336 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1337 1338 hibernate_inflate_region(hib, chunk->base, 1339 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1340 chunk->compressed_size); 1341 } 1342 1343 /* 1344 * Write a compressed version of this machine's memory to disk, at the 1345 * precalculated swap offset: 1346 * 1347 * end of swap - signature block size - chunk table size - memory size 1348 * 1349 * The function begins by looping through each phys mem range, cutting each 1350 * one into MD sized chunks. These chunks are then compressed individually 1351 * and written out to disk, in phys mem order. Some chunks might compress 1352 * more than others, and for this reason, each chunk's size is recorded 1353 * in the chunk table, which is written to disk after the image has 1354 * properly been compressed and written (in hibernate_write_chunktable). 1355 * 1356 * When this function is called, the machine is nearly suspended - most 1357 * devices are quiesced/suspended, interrupts are off, and cold has 1358 * been set. This means that there can be no side effects once the 1359 * write has started, and the write function itself can also have no 1360 * side effects. This also means no printfs are permitted (since printf 1361 * has side effects.) 1362 * 1363 * Return values : 1364 * 1365 * 0 - success 1366 * EIO - I/O error occurred writing the chunks 1367 * EINVAL - Failed to write a complete range 1368 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1369 */ 1370 int 1371 hibernate_write_chunks(union hibernate_info *hib) 1372 { 1373 paddr_t range_base, range_end, inaddr, temp_inaddr; 1374 size_t nblocks, out_remaining, used; 1375 struct hibernate_disk_chunk *chunks; 1376 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1377 daddr_t blkctr = 0; 1378 int i, err; 1379 struct hibernate_zlib_state *hibernate_state; 1380 1381 hibernate_state = 1382 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1383 1384 hib->chunk_ctr = 0; 1385 1386 /* 1387 * Allocate VA for the temp and copy page. 1388 * 1389 * These will become part of the suspended kernel and will 1390 * be freed in hibernate_free, upon resume. 1391 */ 1392 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1393 &kp_none, &kd_nowait); 1394 if (!hibernate_temp_page) 1395 return (ENOMEM); 1396 1397 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1398 &kp_none, &kd_nowait); 1399 if (!hibernate_copy_page) { 1400 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1401 return (ENOMEM); 1402 } 1403 1404 pmap_kenter_pa(hibernate_copy_page, 1405 (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1406 1407 pmap_activate(curproc); 1408 1409 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1410 HIBERNATE_CHUNK_SIZE); 1411 1412 /* Calculate the chunk regions */ 1413 for (i = 0; i < hib->nranges; i++) { 1414 range_base = hib->ranges[i].base; 1415 range_end = hib->ranges[i].end; 1416 1417 inaddr = range_base; 1418 1419 while (inaddr < range_end) { 1420 chunks[hib->chunk_ctr].base = inaddr; 1421 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1422 chunks[hib->chunk_ctr].end = inaddr + 1423 HIBERNATE_CHUNK_SIZE; 1424 else 1425 chunks[hib->chunk_ctr].end = range_end; 1426 1427 inaddr += HIBERNATE_CHUNK_SIZE; 1428 hib->chunk_ctr ++; 1429 } 1430 } 1431 1432 /* Compress and write the chunks in the chunktable */ 1433 for (i = 0; i < hib->chunk_ctr; i++) { 1434 range_base = chunks[i].base; 1435 range_end = chunks[i].end; 1436 1437 chunks[i].offset = blkctr + hib->image_offset; 1438 1439 /* Reset zlib for deflate */ 1440 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1441 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1442 return (ENOMEM); 1443 } 1444 1445 inaddr = range_base; 1446 1447 /* 1448 * For each range, loop through its phys mem region 1449 * and write out the chunks (the last chunk might be 1450 * smaller than the chunk size). 1451 */ 1452 while (inaddr < range_end) { 1453 out_remaining = PAGE_SIZE; 1454 while (out_remaining > 0 && inaddr < range_end) { 1455 1456 /* 1457 * Adjust for regions that are not evenly 1458 * divisible by PAGE_SIZE or overflowed 1459 * pages from the previous iteration. 1460 */ 1461 temp_inaddr = (inaddr & PAGE_MASK) + 1462 hibernate_copy_page; 1463 1464 /* Deflate from temp_inaddr to IO page */ 1465 if (inaddr != range_end) { 1466 pmap_kenter_pa(hibernate_temp_page, 1467 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1468 1469 pmap_activate(curproc); 1470 1471 bcopy((caddr_t)hibernate_temp_page, 1472 (caddr_t)hibernate_copy_page, 1473 PAGE_SIZE); 1474 inaddr += hibernate_deflate(hib, 1475 temp_inaddr, &out_remaining); 1476 } 1477 1478 if (out_remaining == 0) { 1479 /* Filled up the page */ 1480 nblocks = 1481 PAGE_SIZE / DEV_BSIZE; 1482 1483 if ((err = hib->io_func(hib->dev, 1484 blkctr + hib->image_offset, 1485 (vaddr_t)hibernate_io_page, 1486 PAGE_SIZE, HIB_W, hib->io_page))) { 1487 DPRINTF("hib write error %d\n", 1488 err); 1489 return (err); 1490 } 1491 1492 blkctr += nblocks; 1493 } 1494 } 1495 } 1496 1497 if (inaddr != range_end) { 1498 DPRINTF("deflate range ended prematurely\n"); 1499 return (EINVAL); 1500 } 1501 1502 /* 1503 * End of range. Round up to next secsize bytes 1504 * after finishing compress 1505 */ 1506 if (out_remaining == 0) 1507 out_remaining = PAGE_SIZE; 1508 1509 /* Finish compress */ 1510 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1511 hibernate_state->hib_stream.avail_in = 0; 1512 hibernate_state->hib_stream.next_out = 1513 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1514 1515 /* We have an extra output page available for finalize */ 1516 hibernate_state->hib_stream.avail_out = 1517 out_remaining + PAGE_SIZE; 1518 1519 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1520 Z_STREAM_END) { 1521 DPRINTF("deflate error in output stream: %d\n", err); 1522 return (err); 1523 } 1524 1525 out_remaining = hibernate_state->hib_stream.avail_out; 1526 1527 used = 2*PAGE_SIZE - out_remaining; 1528 nblocks = used / DEV_BSIZE; 1529 1530 /* Round up to next block if needed */ 1531 if (used % DEV_BSIZE != 0) 1532 nblocks ++; 1533 1534 /* Write final block(s) for this chunk */ 1535 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1536 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1537 HIB_W, hib->io_page))) { 1538 DPRINTF("hib final write error %d\n", err); 1539 return (err); 1540 } 1541 1542 blkctr += nblocks; 1543 1544 chunks[i].compressed_size = (blkctr + hib->image_offset - 1545 chunks[i].offset) * DEV_BSIZE; 1546 } 1547 1548 hib->chunktable_offset = hib->image_offset + blkctr; 1549 return (0); 1550 } 1551 1552 /* 1553 * Reset the zlib stream state and allocate a new hiballoc area for either 1554 * inflate or deflate. This function is called once for each hibernate chunk. 1555 * Calling hiballoc_init multiple times is acceptable since the memory it is 1556 * provided is unmanaged memory (stolen). We use the memory provided to us 1557 * by the piglet allocated via the supplied hib. 1558 */ 1559 int 1560 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1561 { 1562 vaddr_t hibernate_zlib_start; 1563 size_t hibernate_zlib_size; 1564 char *pva = (char *)hib->piglet_va; 1565 struct hibernate_zlib_state *hibernate_state; 1566 1567 hibernate_state = 1568 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1569 1570 if (!deflate) 1571 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1572 1573 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1574 hibernate_zlib_size = 80 * PAGE_SIZE; 1575 1576 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1577 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1578 1579 /* Set up stream structure */ 1580 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1581 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1582 1583 /* Initialize the hiballoc arena for zlib allocs/frees */ 1584 hiballoc_init(&hibernate_state->hiballoc_arena, 1585 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1586 1587 if (deflate) { 1588 return deflateInit(&hibernate_state->hib_stream, 1589 Z_BEST_SPEED); 1590 } else 1591 return inflateInit(&hibernate_state->hib_stream); 1592 } 1593 1594 /* 1595 * Reads the hibernated memory image from disk, whose location and 1596 * size are recorded in hib. Begin by reading the persisted 1597 * chunk table, which records the original chunk placement location 1598 * and compressed size for each. Next, allocate a pig region of 1599 * sufficient size to hold the compressed image. Next, read the 1600 * chunks into the pig area (calling hibernate_read_chunks to do this), 1601 * and finally, if all of the above succeeds, clear the hibernate signature. 1602 * The function will then return to hibernate_resume, which will proceed 1603 * to unpack the pig image to the correct place in memory. 1604 */ 1605 int 1606 hibernate_read_image(union hibernate_info *hib) 1607 { 1608 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1609 paddr_t image_start, image_end, pig_start, pig_end; 1610 struct hibernate_disk_chunk *chunks; 1611 daddr_t blkctr; 1612 vaddr_t chunktable = (vaddr_t)NULL; 1613 paddr_t piglet_chunktable = hib->piglet_pa + 1614 HIBERNATE_CHUNK_SIZE; 1615 int i; 1616 1617 pmap_activate(curproc); 1618 1619 /* Calculate total chunk table size in disk blocks */ 1620 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1621 1622 blkctr = hib->chunktable_offset; 1623 1624 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1625 &kp_none, &kd_nowait); 1626 1627 if (!chunktable) 1628 return (1); 1629 1630 /* Read the chunktable from disk into the piglet chunktable */ 1631 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1632 i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) { 1633 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1634 VM_PROT_ALL); 1635 pmap_update(pmap_kernel()); 1636 hibernate_block_io(hib, blkctr, PAGE_SIZE, 1637 chunktable + i, 0); 1638 } 1639 1640 blkctr = hib->image_offset; 1641 compressed_size = 0; 1642 1643 chunks = (struct hibernate_disk_chunk *)chunktable; 1644 1645 for (i = 0; i < hib->chunk_ctr; i++) 1646 compressed_size += chunks[i].compressed_size; 1647 1648 disk_size = compressed_size; 1649 1650 printf("unhibernating @ block %lld length %lu blocks\n", 1651 hib->sig_offset - chunktable_size, 1652 compressed_size); 1653 1654 /* Allocate the pig area */ 1655 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1656 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1657 return (1); 1658 1659 pig_end = pig_start + pig_sz; 1660 1661 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1662 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1663 image_start = image_end - disk_size; 1664 1665 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1666 chunks); 1667 1668 pmap_kremove(chunktable, PAGE_SIZE); 1669 pmap_update(pmap_kernel()); 1670 1671 /* Prepare the resume time pmap/page table */ 1672 hibernate_populate_resume_pt(hib, image_start, image_end); 1673 1674 return (0); 1675 } 1676 1677 /* 1678 * Read the hibernated memory chunks from disk (chunk information at this 1679 * point is stored in the piglet) into the pig area specified by 1680 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1681 * only chunk with overlap possibilities. 1682 */ 1683 int 1684 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1685 paddr_t pig_end, size_t image_compr_size, 1686 struct hibernate_disk_chunk *chunks) 1687 { 1688 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1689 paddr_t copy_start, copy_end, piglet_cur; 1690 paddr_t piglet_base = hib->piglet_pa; 1691 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1692 daddr_t blkctr; 1693 size_t processed, compressed_size, read_size; 1694 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1695 short *ochunks, *pchunks, *fchunks, i, j; 1696 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1697 1698 global_pig_start = pig_start; 1699 1700 pmap_activate(curproc); 1701 1702 /* 1703 * These mappings go into the resuming kernel's page table, and are 1704 * used only during image read. They dissappear from existence 1705 * when the suspended kernel is unpacked on top of us. 1706 */ 1707 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1708 if (!tempva) 1709 return (1); 1710 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1711 &kp_none, &kd_nowait); 1712 if (!hibernate_fchunk_area) 1713 return (1); 1714 1715 /* Final output chunk ordering VA */ 1716 fchunks = (short *)hibernate_fchunk_area; 1717 1718 /* Piglet chunk ordering VA */ 1719 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1720 1721 /* Final chunk ordering VA */ 1722 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1723 1724 /* Map the chunk ordering region */ 1725 for(i=0; i<24 ; i++) { 1726 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1727 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1728 pmap_update(pmap_kernel()); 1729 } 1730 1731 nchunks = hib->chunk_ctr; 1732 1733 /* Initially start all chunks as unplaced */ 1734 for (i = 0; i < nchunks; i++) 1735 chunks[i].flags = 0; 1736 1737 /* 1738 * Search the list for chunks that are outside the pig area. These 1739 * can be placed first in the final output list. 1740 */ 1741 for (i = 0; i < nchunks; i++) { 1742 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1743 ochunks[nochunks] = i; 1744 fchunks[nfchunks] = i; 1745 nochunks++; 1746 nfchunks++; 1747 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1748 } 1749 } 1750 1751 /* 1752 * Walk the ordering, place the chunks in ascending memory order. 1753 * Conflicts might arise, these are handled next. 1754 */ 1755 do { 1756 img_index = -1; 1757 found = 0; 1758 j = -1; 1759 for (i = 0; i < nchunks; i++) 1760 if (chunks[i].base < img_index && 1761 chunks[i].flags == 0 ) { 1762 j = i; 1763 img_index = chunks[i].base; 1764 } 1765 1766 if (j != -1) { 1767 found = 1; 1768 ochunks[nochunks] = j; 1769 nochunks++; 1770 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1771 } 1772 } while (found); 1773 1774 img_index = pig_start; 1775 1776 /* 1777 * Identify chunk output conflicts (chunks whose pig load area 1778 * corresponds to their original memory placement location) 1779 */ 1780 for (i = 0; i < nochunks ; i++) { 1781 overlap = 0; 1782 r1s = img_index; 1783 r1e = img_index + chunks[ochunks[i]].compressed_size; 1784 r2s = chunks[ochunks[i]].base; 1785 r2e = chunks[ochunks[i]].end; 1786 1787 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1788 if (overlap) 1789 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1790 img_index += chunks[ochunks[i]].compressed_size; 1791 } 1792 1793 /* 1794 * Prepare the final output chunk list. Calculate an output 1795 * inflate strategy for overlapping chunks if needed. 1796 */ 1797 img_index = pig_start; 1798 for (i = 0; i < nochunks ; i++) { 1799 /* 1800 * If a conflict is detected, consume enough compressed 1801 * output chunks to fill the piglet 1802 */ 1803 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1804 copy_start = piglet_base; 1805 copy_end = piglet_end; 1806 piglet_cur = piglet_base; 1807 npchunks = 0; 1808 j = i; 1809 1810 while (copy_start < copy_end && j < nochunks) { 1811 piglet_cur += 1812 chunks[ochunks[j]].compressed_size; 1813 pchunks[npchunks] = ochunks[j]; 1814 npchunks++; 1815 copy_start += 1816 chunks[ochunks[j]].compressed_size; 1817 img_index += chunks[ochunks[j]].compressed_size; 1818 i++; 1819 j++; 1820 } 1821 1822 piglet_cur = piglet_base; 1823 for (j = 0; j < npchunks; j++) { 1824 piglet_cur += 1825 chunks[pchunks[j]].compressed_size; 1826 fchunks[nfchunks] = pchunks[j]; 1827 chunks[pchunks[j]].flags |= 1828 HIBERNATE_CHUNK_USED; 1829 nfchunks++; 1830 } 1831 } else { 1832 /* 1833 * No conflict, chunk can be added without copying 1834 */ 1835 if ((chunks[ochunks[i]].flags & 1836 HIBERNATE_CHUNK_USED) == 0) { 1837 fchunks[nfchunks] = ochunks[i]; 1838 chunks[ochunks[i]].flags |= 1839 HIBERNATE_CHUNK_USED; 1840 nfchunks++; 1841 } 1842 img_index += chunks[ochunks[i]].compressed_size; 1843 } 1844 } 1845 1846 img_index = pig_start; 1847 for (i = 0; i < nfchunks; i++) { 1848 piglet_cur = piglet_base; 1849 img_index += chunks[fchunks[i]].compressed_size; 1850 } 1851 1852 img_cur = pig_start; 1853 1854 for (i = 0; i < nfchunks; i++) { 1855 blkctr = chunks[fchunks[i]].offset; 1856 processed = 0; 1857 compressed_size = chunks[fchunks[i]].compressed_size; 1858 1859 while (processed < compressed_size) { 1860 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1861 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1862 VM_PROT_ALL); 1863 pmap_update(pmap_kernel()); 1864 1865 if (compressed_size - processed >= PAGE_SIZE) 1866 read_size = PAGE_SIZE; 1867 else 1868 read_size = compressed_size - processed; 1869 1870 hibernate_block_io(hib, blkctr, read_size, 1871 tempva + (img_cur & PAGE_MASK), 0); 1872 1873 blkctr += (read_size / DEV_BSIZE); 1874 1875 pmap_kremove(tempva, PAGE_SIZE); 1876 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1877 processed += read_size; 1878 img_cur += read_size; 1879 } 1880 } 1881 1882 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1883 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1884 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1885 pmap_update(pmap_kernel()); 1886 1887 return (0); 1888 } 1889 1890 /* 1891 * Hibernating a machine comprises the following operations: 1892 * 1. Calculating this machine's hibernate_info information 1893 * 2. Allocating a piglet and saving the piglet's physaddr 1894 * 3. Calculating the memory chunks 1895 * 4. Writing the compressed chunks to disk 1896 * 5. Writing the chunk table 1897 * 6. Writing the signature block (hibernate_info) 1898 * 1899 * On most architectures, the function calling hibernate_suspend would 1900 * then power off the machine using some MD-specific implementation. 1901 */ 1902 int 1903 hibernate_suspend(void) 1904 { 1905 union hibernate_info hib; 1906 u_long start, end; 1907 1908 /* 1909 * Calculate memory ranges, swap offsets, etc. 1910 * This also allocates a piglet whose physaddr is stored in 1911 * hib->piglet_pa and vaddr stored in hib->piglet_va 1912 */ 1913 if (get_hibernate_info(&hib, 1)) { 1914 DPRINTF("failed to obtain hibernate info\n"); 1915 return (1); 1916 } 1917 1918 /* Find a page-addressed region in swap [start,end] */ 1919 if (uvm_hibswap(hib.dev, &start, &end)) { 1920 printf("cannot find any swap\n"); 1921 return (1); 1922 } 1923 1924 if (end - start < 1000) { 1925 printf("%lu\n is too small", end - start); 1926 return (1); 1927 } 1928 1929 /* Calculate block offsets in swap */ 1930 hib.image_offset = ctod(start); 1931 1932 /* XXX side effect */ 1933 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1934 hib.image_offset, ctod(end) - ctod(start)); 1935 1936 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1937 VM_PROT_ALL); 1938 pmap_activate(curproc); 1939 1940 /* Stash the piglet VA so we can free it in the resuming kernel */ 1941 global_piglet_va = hib.piglet_va; 1942 1943 DPRINTF("hibernate: writing chunks\n"); 1944 if (hibernate_write_chunks(&hib)) { 1945 DPRINTF("hibernate_write_chunks failed\n"); 1946 return (1); 1947 } 1948 1949 DPRINTF("hibernate: writing chunktable\n"); 1950 if (hibernate_write_chunktable(&hib)) { 1951 DPRINTF("hibernate_write_chunktable failed\n"); 1952 return (1); 1953 } 1954 1955 DPRINTF("hibernate: writing signature\n"); 1956 if (hibernate_write_signature(&hib)) { 1957 DPRINTF("hibernate_write_signature failed\n"); 1958 return (1); 1959 } 1960 1961 /* Allow the disk to settle */ 1962 delay(500000); 1963 1964 /* 1965 * Give the device-specific I/O function a notification that we're 1966 * done, and that it can clean up or shutdown as needed. 1967 */ 1968 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1969 1970 return (0); 1971 } 1972 1973 /* 1974 * Free items allocated by hibernate_suspend() 1975 */ 1976 void 1977 hibernate_free(void) 1978 { 1979 if (global_piglet_va) 1980 uvm_pmr_free_piglet(global_piglet_va, 1981 3*HIBERNATE_CHUNK_SIZE); 1982 1983 if (hibernate_copy_page) 1984 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1985 if (hibernate_temp_page) 1986 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1987 1988 pmap_update(pmap_kernel()); 1989 1990 if (hibernate_copy_page) 1991 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1992 &kv_any, &kp_none); 1993 if (hibernate_temp_page) 1994 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1995 &kv_any, &kp_none); 1996 1997 global_piglet_va = 0; 1998 hibernate_copy_page = 0; 1999 hibernate_temp_page = 0; 2000 } 2001