xref: /openbsd-src/sys/kern/subr_hibernate.c (revision 0d3478fd92dcddb2516ac25faf307324b8e5f1be)
1 /*	$OpenBSD: subr_hibernate.c,v 1.117 2016/09/01 13:12:59 akfaew Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <sys/atomic.h>
32 
33 #include <uvm/uvm.h>
34 #include <uvm/uvm_swap.h>
35 
36 #include <machine/hibernate.h>
37 
38 /*
39  * Hibernate piglet layout information
40  *
41  * The piglet is a scratch area of memory allocated by the suspending kernel.
42  * Its phys and virt addrs are recorded in the signature block. The piglet is
43  * used to guarantee an unused area of memory that can be used by the resuming
44  * kernel for various things. The piglet is excluded during unpack operations.
45  * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
46  *
47  * Offset from piglet_base	Purpose
48  * ----------------------------------------------------------------------------
49  * 0				Private page for suspend I/O write functions
50  * 1*PAGE_SIZE			I/O page used during hibernate suspend
51  * 2*PAGE_SIZE			I/O page used during hibernate suspend
52  * 3*PAGE_SIZE			copy page used during hibernate suspend
53  * 4*PAGE_SIZE			final chunk ordering list (24 pages)
54  * 28*PAGE_SIZE			RLE utility page
55  * 29*PAGE_SIZE			start of hiballoc area
56  * 30*PAGE_SIZE			preserved entropy
57  * 110*PAGE_SIZE		end of hiballoc area (80 pages)
58  * ...				unused
59  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
60  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
61  * 4*HIBERNATE_CHUNK_SIZE	end of piglet
62  */
63 
64 /* Temporary vaddr ranges used during hibernate */
65 vaddr_t hibernate_temp_page;
66 vaddr_t hibernate_copy_page;
67 vaddr_t hibernate_rle_page;
68 
69 /* Hibernate info as read from disk during resume */
70 union hibernate_info disk_hib;
71 
72 /*
73  * Global copy of the pig start address. This needs to be a global as we
74  * switch stacks after computing it - it can't be stored on the stack.
75  */
76 paddr_t global_pig_start;
77 
78 /*
79  * Global copies of the piglet start addresses (PA/VA). We store these
80  * as globals to avoid having to carry them around as parameters, as the
81  * piglet is allocated early and freed late - its lifecycle extends beyond
82  * that of the hibernate info union which is calculated on suspend/resume.
83  */
84 vaddr_t global_piglet_va;
85 paddr_t global_piglet_pa;
86 
87 /* #define HIB_DEBUG */
88 #ifdef HIB_DEBUG
89 int	hib_debug = 99;
90 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
91 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
92 #else
93 #define DPRINTF(x...)
94 #define DNPRINTF(n,x...)
95 #endif
96 
97 #ifndef NO_PROPOLICE
98 extern long __guard_local;
99 #endif /* ! NO_PROPOLICE */
100 
101 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
102 int hibernate_calc_rle(paddr_t, paddr_t);
103 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
104 	size_t *);
105 
106 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE)
107 
108 /*
109  * Hib alloc enforced alignment.
110  */
111 #define HIB_ALIGN		8 /* bytes alignment */
112 
113 /*
114  * sizeof builtin operation, but with alignment constraint.
115  */
116 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
117 
118 struct hiballoc_entry {
119 	size_t			hibe_use;
120 	size_t			hibe_space;
121 	RB_ENTRY(hiballoc_entry) hibe_entry;
122 };
123 
124 /*
125  * Sort hibernate memory ranges by ascending PA
126  */
127 void
128 hibernate_sort_ranges(union hibernate_info *hib_info)
129 {
130 	int i, j;
131 	struct hibernate_memory_range *ranges;
132 	paddr_t base, end;
133 
134 	ranges = hib_info->ranges;
135 
136 	for (i = 1; i < hib_info->nranges; i++) {
137 		j = i;
138 		while (j > 0 && ranges[j - 1].base > ranges[j].base) {
139 			base = ranges[j].base;
140 			end = ranges[j].end;
141 			ranges[j].base = ranges[j - 1].base;
142 			ranges[j].end = ranges[j - 1].end;
143 			ranges[j - 1].base = base;
144 			ranges[j - 1].end = end;
145 			j--;
146 		}
147 	}
148 }
149 
150 /*
151  * Compare hiballoc entries based on the address they manage.
152  *
153  * Since the address is fixed, relative to struct hiballoc_entry,
154  * we just compare the hiballoc_entry pointers.
155  */
156 static __inline int
157 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
158 {
159 	vaddr_t vl = (vaddr_t)l;
160 	vaddr_t vr = (vaddr_t)r;
161 
162 	return vl < vr ? -1 : (vl > vr);
163 }
164 
165 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
166 
167 /*
168  * Given a hiballoc entry, return the address it manages.
169  */
170 static __inline void *
171 hib_entry_to_addr(struct hiballoc_entry *entry)
172 {
173 	caddr_t addr;
174 
175 	addr = (caddr_t)entry;
176 	addr += HIB_SIZEOF(struct hiballoc_entry);
177 	return addr;
178 }
179 
180 /*
181  * Given an address, find the hiballoc that corresponds.
182  */
183 static __inline struct hiballoc_entry*
184 hib_addr_to_entry(void *addr_param)
185 {
186 	caddr_t addr;
187 
188 	addr = (caddr_t)addr_param;
189 	addr -= HIB_SIZEOF(struct hiballoc_entry);
190 	return (struct hiballoc_entry*)addr;
191 }
192 
193 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
194 
195 /*
196  * Allocate memory from the arena.
197  *
198  * Returns NULL if no memory is available.
199  */
200 void *
201 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
202 {
203 	struct hiballoc_entry *entry, *new_entry;
204 	size_t find_sz;
205 
206 	/*
207 	 * Enforce alignment of HIB_ALIGN bytes.
208 	 *
209 	 * Note that, because the entry is put in front of the allocation,
210 	 * 0-byte allocations are guaranteed a unique address.
211 	 */
212 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
213 
214 	/*
215 	 * Find an entry with hibe_space >= find_sz.
216 	 *
217 	 * If the root node is not large enough, we switch to tree traversal.
218 	 * Because all entries are made at the bottom of the free space,
219 	 * traversal from the end has a slightly better chance of yielding
220 	 * a sufficiently large space.
221 	 */
222 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
223 	entry = RB_ROOT(&arena->hib_addrs);
224 	if (entry != NULL && entry->hibe_space < find_sz) {
225 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
226 			if (entry->hibe_space >= find_sz)
227 				break;
228 		}
229 	}
230 
231 	/*
232 	 * Insufficient or too fragmented memory.
233 	 */
234 	if (entry == NULL)
235 		return NULL;
236 
237 	/*
238 	 * Create new entry in allocated space.
239 	 */
240 	new_entry = (struct hiballoc_entry*)(
241 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
242 	new_entry->hibe_space = entry->hibe_space - find_sz;
243 	new_entry->hibe_use = alloc_sz;
244 
245 	/*
246 	 * Insert entry.
247 	 */
248 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
249 		panic("hib_alloc: insert failure");
250 	entry->hibe_space = 0;
251 
252 	/* Return address managed by entry. */
253 	return hib_entry_to_addr(new_entry);
254 }
255 
256 void
257 hib_getentropy(char **bufp, size_t *bufplen)
258 {
259 	if (!bufp || !bufplen)
260 		return;
261 
262 	*bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE));
263 	*bufplen = PAGE_SIZE;
264 }
265 
266 /*
267  * Free a pointer previously allocated from this arena.
268  *
269  * If addr is NULL, this will be silently accepted.
270  */
271 void
272 hib_free(struct hiballoc_arena *arena, void *addr)
273 {
274 	struct hiballoc_entry *entry, *prev;
275 
276 	if (addr == NULL)
277 		return;
278 
279 	/*
280 	 * Derive entry from addr and check it is really in this arena.
281 	 */
282 	entry = hib_addr_to_entry(addr);
283 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
284 		panic("hib_free: freed item %p not in hib arena", addr);
285 
286 	/*
287 	 * Give the space in entry to its predecessor.
288 	 *
289 	 * If entry has no predecessor, change its used space into free space
290 	 * instead.
291 	 */
292 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
293 	if (prev != NULL &&
294 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
295 	    prev->hibe_use + prev->hibe_space) == entry) {
296 		/* Merge entry. */
297 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
298 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
299 		    entry->hibe_use + entry->hibe_space;
300 	} else {
301 		/* Flip used memory to free space. */
302 		entry->hibe_space += entry->hibe_use;
303 		entry->hibe_use = 0;
304 	}
305 }
306 
307 /*
308  * Initialize hiballoc.
309  *
310  * The allocator will manage memmory at ptr, which is len bytes.
311  */
312 int
313 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
314 {
315 	struct hiballoc_entry *entry;
316 	caddr_t ptr;
317 	size_t len;
318 
319 	RB_INIT(&arena->hib_addrs);
320 
321 	/*
322 	 * Hib allocator enforces HIB_ALIGN alignment.
323 	 * Fixup ptr and len.
324 	 */
325 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
326 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
327 	len &= ~((size_t)HIB_ALIGN - 1);
328 
329 	/*
330 	 * Insufficient memory to be able to allocate and also do bookkeeping.
331 	 */
332 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
333 		return ENOMEM;
334 
335 	/*
336 	 * Create entry describing space.
337 	 */
338 	entry = (struct hiballoc_entry*)ptr;
339 	entry->hibe_use = 0;
340 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
341 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
342 
343 	return 0;
344 }
345 
346 /*
347  * Zero all free memory.
348  */
349 void
350 uvm_pmr_zero_everything(void)
351 {
352 	struct uvm_pmemrange	*pmr;
353 	struct vm_page		*pg;
354 	int			 i;
355 
356 	uvm_lock_fpageq();
357 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
358 		/* Zero single pages. */
359 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
360 		    != NULL) {
361 			uvm_pmr_remove(pmr, pg);
362 			uvm_pagezero(pg);
363 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
364 			uvmexp.zeropages++;
365 			uvm_pmr_insert(pmr, pg, 0);
366 		}
367 
368 		/* Zero multi page ranges. */
369 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
370 		    != NULL) {
371 			pg--; /* Size tree always has second page. */
372 			uvm_pmr_remove(pmr, pg);
373 			for (i = 0; i < pg->fpgsz; i++) {
374 				uvm_pagezero(&pg[i]);
375 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
376 				uvmexp.zeropages++;
377 			}
378 			uvm_pmr_insert(pmr, pg, 0);
379 		}
380 	}
381 	uvm_unlock_fpageq();
382 }
383 
384 /*
385  * Mark all memory as dirty.
386  *
387  * Used to inform the system that the clean memory isn't clean for some
388  * reason, for example because we just came back from hibernate.
389  */
390 void
391 uvm_pmr_dirty_everything(void)
392 {
393 	struct uvm_pmemrange	*pmr;
394 	struct vm_page		*pg;
395 	int			 i;
396 
397 	uvm_lock_fpageq();
398 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
399 		/* Dirty single pages. */
400 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
401 		    != NULL) {
402 			uvm_pmr_remove(pmr, pg);
403 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
404 			uvm_pmr_insert(pmr, pg, 0);
405 		}
406 
407 		/* Dirty multi page ranges. */
408 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
409 		    != NULL) {
410 			pg--; /* Size tree always has second page. */
411 			uvm_pmr_remove(pmr, pg);
412 			for (i = 0; i < pg->fpgsz; i++)
413 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
414 			uvm_pmr_insert(pmr, pg, 0);
415 		}
416 	}
417 
418 	uvmexp.zeropages = 0;
419 	uvm_unlock_fpageq();
420 }
421 
422 /*
423  * Allocate an area that can hold sz bytes and doesn't overlap with
424  * the piglet at piglet_pa.
425  */
426 int
427 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
428 {
429 	struct uvm_constraint_range pig_constraint;
430 	struct kmem_pa_mode kp_pig = {
431 		.kp_constraint = &pig_constraint,
432 		.kp_maxseg = 1
433 	};
434 	vaddr_t va;
435 
436 	sz = round_page(sz);
437 
438 	pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE;
439 	pig_constraint.ucr_high = -1;
440 
441 	va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
442 	if (va == 0) {
443 		pig_constraint.ucr_low = 0;
444 		pig_constraint.ucr_high = piglet_pa - 1;
445 
446 		va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
447 		if (va == 0)
448 			return ENOMEM;
449 	}
450 
451 	pmap_extract(pmap_kernel(), va, pa);
452 	return 0;
453 }
454 
455 /*
456  * Allocate a piglet area.
457  *
458  * This needs to be in DMA-safe memory.
459  * Piglets are aligned.
460  *
461  * sz and align in bytes.
462  *
463  * The call will sleep for the pagedaemon to attempt to free memory.
464  * The pagedaemon may decide its not possible to free enough memory, causing
465  * the allocation to fail.
466  */
467 int
468 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
469 {
470 	struct kmem_pa_mode kp_piglet = {
471 		.kp_constraint = &dma_constraint,
472 		.kp_align = align,
473 		.kp_maxseg = 1
474 	};
475 
476 	/* Ensure align is a power of 2 */
477 	KASSERT((align & (align - 1)) == 0);
478 
479 	/*
480 	 * Fixup arguments: align must be at least PAGE_SIZE,
481 	 * sz will be converted to pagecount, since that is what
482 	 * pmemrange uses internally.
483 	 */
484 	if (align < PAGE_SIZE)
485 		kp_piglet.kp_align = PAGE_SIZE;
486 
487 	sz = round_page(sz);
488 
489 	*va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
490 	if (*va == 0)
491 		return ENOMEM;
492 
493 	pmap_extract(pmap_kernel(), *va, pa);
494 	return 0;
495 }
496 
497 /*
498  * Free a piglet area.
499  */
500 void
501 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
502 {
503 	/*
504 	 * Fix parameters.
505 	 */
506 	sz = round_page(sz);
507 
508 	/*
509 	 * Free the physical and virtual memory.
510 	 */
511 	km_free((void *)va, sz, &kv_any, &kp_dma_contig);
512 }
513 
514 /*
515  * Physmem RLE compression support.
516  *
517  * Given a physical page address, return the number of pages starting at the
518  * address that are free.  Clamps to the number of pages in
519  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
520  */
521 int
522 uvm_page_rle(paddr_t addr)
523 {
524 	struct vm_page		*pg, *pg_end;
525 	struct vm_physseg	*vmp;
526 	int			 pseg_idx, off_idx;
527 
528 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
529 	if (pseg_idx == -1)
530 		return 0;
531 
532 	vmp = &vm_physmem[pseg_idx];
533 	pg = &vmp->pgs[off_idx];
534 	if (!(pg->pg_flags & PQ_FREE))
535 		return 0;
536 
537 	/*
538 	 * Search for the first non-free page after pg.
539 	 * Note that the page may not be the first page in a free pmemrange,
540 	 * therefore pg->fpgsz cannot be used.
541 	 */
542 	for (pg_end = pg; pg_end <= vmp->lastpg &&
543 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
544 		;
545 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
546 }
547 
548 /*
549  * Fills out the hibernate_info union pointed to by hib
550  * with information about this machine (swap signature block
551  * offsets, number of memory ranges, kernel in use, etc)
552  */
553 int
554 get_hibernate_info(union hibernate_info *hib, int suspend)
555 {
556 	struct disklabel dl;
557 	char err_string[128], *dl_ret;
558 
559 #ifndef NO_PROPOLICE
560 	/* Save propolice guard */
561 	hib->guard = __guard_local;
562 #endif /* ! NO_PROPOLICE */
563 
564 	/* Determine I/O function to use */
565 	hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
566 	if (hib->io_func == NULL)
567 		return (1);
568 
569 	/* Calculate hibernate device */
570 	hib->dev = swdevt[0].sw_dev;
571 
572 	/* Read disklabel (used to calculate signature and image offsets) */
573 	dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
574 
575 	if (dl_ret) {
576 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
577 		return (1);
578 	}
579 
580 	/* Make sure we have a swap partition. */
581 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
582 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
583 		return (1);
584 
585 	/* Make sure the signature can fit in one block */
586 	if (sizeof(union hibernate_info) > DEV_BSIZE)
587 		return (1);
588 
589 	/* Magic number */
590 	hib->magic = HIBERNATE_MAGIC;
591 
592 	/* Calculate signature block location */
593 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
594 	    sizeof(union hibernate_info)/DEV_BSIZE;
595 
596 	/* Stash kernel version information */
597 	memset(&hib->kernel_version, 0, 128);
598 	bcopy(version, &hib->kernel_version,
599 	    min(strlen(version), sizeof(hib->kernel_version)-1));
600 
601 	if (suspend) {
602 		/* Grab the previously-allocated piglet addresses */
603 		hib->piglet_va = global_piglet_va;
604 		hib->piglet_pa = global_piglet_pa;
605 		hib->io_page = (void *)hib->piglet_va;
606 
607 		/*
608 		 * Initialization of the hibernate IO function for drivers
609 		 * that need to do prep work (such as allocating memory or
610 		 * setting up data structures that cannot safely be done
611 		 * during suspend without causing side effects). There is
612 		 * a matching HIB_DONE call performed after the write is
613 		 * completed.
614 		 */
615 		if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
616 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
617 		    HIB_INIT, hib->io_page))
618 			goto fail;
619 
620 	} else {
621 		/*
622 		 * Resuming kernels use a regular private page for the driver
623 		 * No need to free this I/O page as it will vanish as part of
624 		 * the resume.
625 		 */
626 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
627 		if (!hib->io_page)
628 			goto fail;
629 	}
630 
631 	if (get_hibernate_info_md(hib))
632 		goto fail;
633 
634 	return (0);
635 
636 fail:
637 	return (1);
638 }
639 
640 /*
641  * Allocate nitems*size bytes from the hiballoc area presently in use
642  */
643 void *
644 hibernate_zlib_alloc(void *unused, int nitems, int size)
645 {
646 	struct hibernate_zlib_state *hibernate_state;
647 
648 	hibernate_state =
649 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
650 
651 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
652 }
653 
654 /*
655  * Free the memory pointed to by addr in the hiballoc area presently in
656  * use
657  */
658 void
659 hibernate_zlib_free(void *unused, void *addr)
660 {
661 	struct hibernate_zlib_state *hibernate_state;
662 
663 	hibernate_state =
664 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
665 
666 	hib_free(&hibernate_state->hiballoc_arena, addr);
667 }
668 
669 /*
670  * Inflate next page of data from the image stream.
671  * The rle parameter is modified on exit to contain the number of pages to
672  * skip in the output stream (or 0 if this page was inflated into).
673  *
674  * Returns 0 if the stream contains additional data, or 1 if the stream is
675  * finished.
676  */
677 int
678 hibernate_inflate_page(int *rle)
679 {
680 	struct hibernate_zlib_state *hibernate_state;
681 	int i;
682 
683 	hibernate_state =
684 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
685 
686 	/* Set up the stream for RLE code inflate */
687 	hibernate_state->hib_stream.next_out = (unsigned char *)rle;
688 	hibernate_state->hib_stream.avail_out = sizeof(*rle);
689 
690 	/* Inflate RLE code */
691 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
692 	if (i != Z_OK && i != Z_STREAM_END) {
693 		/*
694 		 * XXX - this will likely reboot/hang most machines
695 		 *       since the console output buffer will be unmapped,
696 		 *       but there's not much else we can do here.
697 		 */
698 		panic("rle inflate stream error");
699 	}
700 
701 	if (hibernate_state->hib_stream.avail_out != 0) {
702 		/*
703 		 * XXX - this will likely reboot/hang most machines
704 		 *       since the console output buffer will be unmapped,
705 		 *       but there's not much else we can do here.
706 		 */
707 		panic("rle short inflate error");
708 	}
709 
710 	if (*rle < 0 || *rle > 1024) {
711 		/*
712 		 * XXX - this will likely reboot/hang most machines
713 		 *       since the console output buffer will be unmapped,
714 		 *       but there's not much else we can do here.
715 		 */
716 		panic("invalid rle count");
717 	}
718 
719 	if (i == Z_STREAM_END)
720 		return (1);
721 
722 	if (*rle != 0)
723 		return (0);
724 
725 	/* Set up the stream for page inflate */
726 	hibernate_state->hib_stream.next_out =
727 		(unsigned char *)HIBERNATE_INFLATE_PAGE;
728 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
729 
730 	/* Process next block of data */
731 	i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
732 	if (i != Z_OK && i != Z_STREAM_END) {
733 		/*
734 		 * XXX - this will likely reboot/hang most machines
735 		 *       since the console output buffer will be unmapped,
736 		 *       but there's not much else we can do here.
737 		 */
738 		panic("inflate error");
739 	}
740 
741 	/* We should always have extracted a full page ... */
742 	if (hibernate_state->hib_stream.avail_out != 0) {
743 		/*
744 		 * XXX - this will likely reboot/hang most machines
745 		 *       since the console output buffer will be unmapped,
746 		 *       but there's not much else we can do here.
747 		 */
748 		panic("incomplete page");
749 	}
750 
751 	return (i == Z_STREAM_END);
752 }
753 
754 /*
755  * Inflate size bytes from src into dest, skipping any pages in
756  * [src..dest] that are special (see hibernate_inflate_skip)
757  *
758  * This function executes while using the resume-time stack
759  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
760  * will likely hang or reset the machine since the console output buffer
761  * will be unmapped.
762  */
763 void
764 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
765     paddr_t src, size_t size)
766 {
767 	int end_stream = 0, rle;
768 	struct hibernate_zlib_state *hibernate_state;
769 
770 	hibernate_state =
771 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
772 
773 	hibernate_state->hib_stream.next_in = (unsigned char *)src;
774 	hibernate_state->hib_stream.avail_in = size;
775 
776 	do {
777 		/*
778 		 * Is this a special page? If yes, redirect the
779 		 * inflate output to a scratch page (eg, discard it)
780 		 */
781 		if (hibernate_inflate_skip(hib, dest)) {
782 			hibernate_enter_resume_mapping(
783 			    HIBERNATE_INFLATE_PAGE,
784 			    HIBERNATE_INFLATE_PAGE, 0);
785 		} else {
786 			hibernate_enter_resume_mapping(
787 			    HIBERNATE_INFLATE_PAGE, dest, 0);
788 		}
789 
790 		hibernate_flush();
791 		end_stream = hibernate_inflate_page(&rle);
792 
793 		if (rle == 0)
794 			dest += PAGE_SIZE;
795 		else
796 			dest += (rle * PAGE_SIZE);
797 	} while (!end_stream);
798 }
799 
800 /*
801  * deflate from src into the I/O page, up to 'remaining' bytes
802  *
803  * Returns number of input bytes consumed, and may reset
804  * the 'remaining' parameter if not all the output space was consumed
805  * (this information is needed to know how much to write to disk
806  */
807 size_t
808 hibernate_deflate(union hibernate_info *hib, paddr_t src,
809     size_t *remaining)
810 {
811 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
812 	struct hibernate_zlib_state *hibernate_state;
813 
814 	hibernate_state =
815 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
816 
817 	/* Set up the stream for deflate */
818 	hibernate_state->hib_stream.next_in = (unsigned char *)src;
819 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
820 	hibernate_state->hib_stream.next_out =
821 		(unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining);
822 	hibernate_state->hib_stream.avail_out = *remaining;
823 
824 	/* Process next block of data */
825 	if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK)
826 		panic("hibernate zlib deflate error");
827 
828 	/* Update pointers and return number of bytes consumed */
829 	*remaining = hibernate_state->hib_stream.avail_out;
830 	return (PAGE_SIZE - (src & PAGE_MASK)) -
831 	    hibernate_state->hib_stream.avail_in;
832 }
833 
834 /*
835  * Write the hibernation information specified in hiber_info
836  * to the location in swap previously calculated (last block of
837  * swap), called the "signature block".
838  */
839 int
840 hibernate_write_signature(union hibernate_info *hib)
841 {
842 	/* Write hibernate info to disk */
843 	return (hib->io_func(hib->dev, hib->sig_offset,
844 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
845 	    hib->io_page));
846 }
847 
848 /*
849  * Write the memory chunk table to the area in swap immediately
850  * preceding the signature block. The chunk table is stored
851  * in the piglet when this function is called.  Returns errno.
852  */
853 int
854 hibernate_write_chunktable(union hibernate_info *hib)
855 {
856 	vaddr_t hibernate_chunk_table_start;
857 	size_t hibernate_chunk_table_size;
858 	int i, err;
859 
860 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
861 
862 	hibernate_chunk_table_start = hib->piglet_va +
863 	    HIBERNATE_CHUNK_SIZE;
864 
865 	/* Write chunk table */
866 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
867 		if ((err = hib->io_func(hib->dev,
868 		    hib->chunktable_offset + (i/DEV_BSIZE),
869 		    (vaddr_t)(hibernate_chunk_table_start + i),
870 		    MAXPHYS, HIB_W, hib->io_page))) {
871 			DPRINTF("chunktable write error: %d\n", err);
872 			return (err);
873 		}
874 	}
875 
876 	return (0);
877 }
878 
879 /*
880  * Write an empty hiber_info to the swap signature block, which is
881  * guaranteed to not match any valid hib.
882  */
883 int
884 hibernate_clear_signature(void)
885 {
886 	union hibernate_info blank_hiber_info;
887 	union hibernate_info hib;
888 
889 	/* Zero out a blank hiber_info */
890 	memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
891 
892 	/* Get the signature block location */
893 	if (get_hibernate_info(&hib, 0))
894 		return (1);
895 
896 	/* Write (zeroed) hibernate info to disk */
897 	DPRINTF("clearing hibernate signature block location: %lld\n",
898 		hib.sig_offset);
899 	if (hibernate_block_io(&hib,
900 	    hib.sig_offset,
901 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
902 		printf("Warning: could not clear hibernate signature\n");
903 
904 	return (0);
905 }
906 
907 /*
908  * Compare two hibernate_infos to determine if they are the same (eg,
909  * we should be performing a hibernate resume on this machine.
910  * Not all fields are checked - just enough to verify that the machine
911  * has the same memory configuration and kernel as the one that
912  * wrote the signature previously.
913  */
914 int
915 hibernate_compare_signature(union hibernate_info *mine,
916     union hibernate_info *disk)
917 {
918 	u_int i;
919 
920 	if (mine->nranges != disk->nranges) {
921 		DPRINTF("hibernate memory range count mismatch\n");
922 		return (1);
923 	}
924 
925 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
926 		DPRINTF("hibernate kernel version mismatch\n");
927 		return (1);
928 	}
929 
930 	for (i = 0; i < mine->nranges; i++) {
931 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
932 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
933 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
934 				i,
935 				(void *)mine->ranges[i].base,
936 				(void *)mine->ranges[i].end,
937 				(void *)disk->ranges[i].base,
938 				(void *)disk->ranges[i].end);
939 			return (1);
940 		}
941 	}
942 
943 	return (0);
944 }
945 
946 /*
947  * Transfers xfer_size bytes between the hibernate device specified in
948  * hib_info at offset blkctr and the vaddr specified at dest.
949  *
950  * Separate offsets and pages are used to handle misaligned reads (reads
951  * that span a page boundary).
952  *
953  * blkctr specifies a relative offset (relative to the start of swap),
954  * not an absolute disk offset
955  *
956  */
957 int
958 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
959     size_t xfer_size, vaddr_t dest, int iswrite)
960 {
961 	struct buf *bp;
962 	struct bdevsw *bdsw;
963 	int error;
964 
965 	bp = geteblk(xfer_size);
966 	bdsw = &bdevsw[major(hib->dev)];
967 
968 	error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
969 	if (error) {
970 		printf("hibernate_block_io open failed\n");
971 		return (1);
972 	}
973 
974 	if (iswrite)
975 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
976 
977 	bp->b_bcount = xfer_size;
978 	bp->b_blkno = blkctr;
979 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
980 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
981 	bp->b_dev = hib->dev;
982 	(*bdsw->d_strategy)(bp);
983 
984 	error = biowait(bp);
985 	if (error) {
986 		printf("hib block_io biowait error %d blk %lld size %zu\n",
987 			error, (long long)blkctr, xfer_size);
988 		error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
989 		    curproc);
990 		if (error)
991 			printf("hibernate_block_io error close failed\n");
992 		return (1);
993 	}
994 
995 	error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
996 	if (error) {
997 		printf("hibernate_block_io close failed\n");
998 		return (1);
999 	}
1000 
1001 	if (!iswrite)
1002 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1003 
1004 	bp->b_flags |= B_INVAL;
1005 	brelse(bp);
1006 
1007 	return (0);
1008 }
1009 
1010 /*
1011  * Preserve one page worth of random data, generated from the resuming
1012  * kernel's arc4random. After resume, this preserved entropy can be used
1013  * to further improve the un-hibernated machine's entropy pool. This
1014  * random data is stored in the piglet, which is preserved across the
1015  * unpack operation, and is restored later in the resume process (see
1016  * hib_getentropy)
1017  */
1018 void
1019 hibernate_preserve_entropy(union hibernate_info *hib)
1020 {
1021 	void *entropy;
1022 
1023 	entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1024 
1025 	if (!entropy)
1026 		return;
1027 
1028 	pmap_activate(curproc);
1029 	pmap_kenter_pa((vaddr_t)entropy,
1030 	    (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)),
1031 	    PROT_READ | PROT_WRITE);
1032 
1033 	arc4random_buf((void *)entropy, PAGE_SIZE);
1034 	pmap_kremove((vaddr_t)entropy, PAGE_SIZE);
1035 	km_free(entropy, PAGE_SIZE, &kv_any, &kp_none);
1036 }
1037 
1038 /*
1039  * Reads the signature block from swap, checks against the current machine's
1040  * information. If the information matches, perform a resume by reading the
1041  * saved image into the pig area, and unpacking.
1042  *
1043  * Must be called with interrupts enabled.
1044  */
1045 void
1046 hibernate_resume(void)
1047 {
1048 	union hibernate_info hib;
1049 	int s;
1050 
1051 	/* Get current running machine's hibernate info */
1052 	memset(&hib, 0, sizeof(hib));
1053 	if (get_hibernate_info(&hib, 0)) {
1054 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1055 		return;
1056 	}
1057 
1058 	/* Read hibernate info from disk */
1059 	s = splbio();
1060 
1061 	DPRINTF("reading hibernate signature block location: %lld\n",
1062 		hib.sig_offset);
1063 
1064 	if (hibernate_block_io(&hib,
1065 	    hib.sig_offset,
1066 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1067 		DPRINTF("error in hibernate read");
1068 		splx(s);
1069 		return;
1070 	}
1071 
1072 	/* Check magic number */
1073 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1074 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1075 			disk_hib.magic);
1076 		splx(s);
1077 		return;
1078 	}
1079 
1080 	/*
1081 	 * We (possibly) found a hibernate signature. Clear signature first,
1082 	 * to prevent accidental resume or endless resume cycles later.
1083 	 */
1084 	if (hibernate_clear_signature()) {
1085 		DPRINTF("error clearing hibernate signature block\n");
1086 		splx(s);
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * If on-disk and in-memory hibernate signatures match,
1092 	 * this means we should do a resume from hibernate.
1093 	 */
1094 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1095 		DPRINTF("mismatched hibernate signature block\n");
1096 		splx(s);
1097 		return;
1098 	}
1099 
1100 #ifdef MULTIPROCESSOR
1101 	/* XXX - if we fail later, we may need to rehatch APs on some archs */
1102 	DPRINTF("hibernate: quiescing APs\n");
1103 	hibernate_quiesce_cpus();
1104 #endif /* MULTIPROCESSOR */
1105 
1106 	/* Read the image from disk into the image (pig) area */
1107 	if (hibernate_read_image(&disk_hib))
1108 		goto fail;
1109 
1110 	DPRINTF("hibernate: quiescing devices\n");
1111 	if (config_suspend_all(DVACT_QUIESCE) != 0)
1112 		goto fail;
1113 
1114 	(void) splhigh();
1115 	hibernate_disable_intr_machdep();
1116 	cold = 1;
1117 
1118 	DPRINTF("hibernate: suspending devices\n");
1119 	if (config_suspend_all(DVACT_SUSPEND) != 0) {
1120 		cold = 0;
1121 		hibernate_enable_intr_machdep();
1122 		goto fail;
1123 	}
1124 
1125 	hibernate_preserve_entropy(&disk_hib);
1126 
1127 	printf("Unpacking image...\n");
1128 
1129 	/* Switch stacks */
1130 	DPRINTF("hibernate: switching stacks\n");
1131 	hibernate_switch_stack_machdep();
1132 
1133 #ifndef NO_PROPOLICE
1134 	/* Start using suspended kernel's propolice guard */
1135 	__guard_local = disk_hib.guard;
1136 #endif /* ! NO_PROPOLICE */
1137 
1138 	/* Unpack and resume */
1139 	hibernate_unpack_image(&disk_hib);
1140 
1141 fail:
1142 	splx(s);
1143 	printf("\nUnable to resume hibernated image\n");
1144 }
1145 
1146 /*
1147  * Unpack image from pig area to original location by looping through the
1148  * list of output chunks in the order they should be restored (fchunks).
1149  *
1150  * Note that due to the stack smash protector and the fact that we have
1151  * switched stacks, it is not permitted to return from this function.
1152  */
1153 void
1154 hibernate_unpack_image(union hibernate_info *hib)
1155 {
1156 	struct hibernate_disk_chunk *chunks;
1157 	union hibernate_info local_hib;
1158 	paddr_t image_cur = global_pig_start;
1159 	short i, *fchunks;
1160 	char *pva;
1161 
1162 	/* Piglet will be identity mapped (VA == PA) */
1163 	pva = (char *)hib->piglet_pa;
1164 
1165 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1166 
1167 	chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE);
1168 
1169 	/* Can't use hiber_info that's passed in after this point */
1170 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1171 
1172 	/* VA == PA */
1173 	local_hib.piglet_va = local_hib.piglet_pa;
1174 
1175 	/*
1176 	 * Point of no return. Once we pass this point, only kernel code can
1177 	 * be accessed. No global variables or other kernel data structures
1178 	 * are guaranteed to be coherent after unpack starts.
1179 	 *
1180 	 * The image is now in high memory (pig area), we unpack from the pig
1181 	 * to the correct location in memory. We'll eventually end up copying
1182 	 * on top of ourself, but we are assured the kernel code here is the
1183 	 * same between the hibernated and resuming kernel, and we are running
1184 	 * on our own stack, so the overwrite is ok.
1185 	 */
1186 	DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
1187 	hibernate_activate_resume_pt_machdep();
1188 
1189 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1190 		/* Reset zlib for inflate */
1191 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1192 			panic("hibernate failed to reset zlib for inflate");
1193 
1194 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1195 		    image_cur);
1196 
1197 		image_cur += chunks[fchunks[i]].compressed_size;
1198 
1199 	}
1200 
1201 	/*
1202 	 * Resume the loaded kernel by jumping to the MD resume vector.
1203 	 * We won't be returning from this call.
1204 	 */
1205 	hibernate_resume_machdep();
1206 }
1207 
1208 /*
1209  * Bounce a compressed image chunk to the piglet, entering mappings for the
1210  * copied pages as needed
1211  */
1212 void
1213 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1214 {
1215 	size_t ct, ofs;
1216 	paddr_t src = img_cur;
1217 	vaddr_t dest = piglet;
1218 
1219 	/* Copy first partial page */
1220 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1221 	ofs = (src & PAGE_MASK);
1222 
1223 	if (ct < PAGE_SIZE) {
1224 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1225 			(src - ofs), 0);
1226 		hibernate_flush();
1227 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1228 		src += ct;
1229 		dest += ct;
1230 	}
1231 
1232 	/* Copy remaining pages */
1233 	while (src < size + img_cur) {
1234 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1235 		hibernate_flush();
1236 		ct = PAGE_SIZE;
1237 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1238 		hibernate_flush();
1239 		src += ct;
1240 		dest += ct;
1241 	}
1242 }
1243 
1244 /*
1245  * Process a chunk by bouncing it to the piglet, followed by unpacking
1246  */
1247 void
1248 hibernate_process_chunk(union hibernate_info *hib,
1249     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1250 {
1251 	char *pva = (char *)hib->piglet_va;
1252 
1253 	hibernate_copy_chunk_to_piglet(img_cur,
1254 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1255 	hibernate_inflate_region(hib, chunk->base,
1256 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1257 	    chunk->compressed_size);
1258 }
1259 
1260 /*
1261  * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
1262  * inaddr and range_end.
1263  */
1264 int
1265 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
1266 {
1267 	int rle;
1268 
1269 	rle = uvm_page_rle(inaddr);
1270 	KASSERT(rle >= 0 && rle <= MAX_RLE);
1271 
1272 	/* Clamp RLE to range end */
1273 	if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end)
1274 		rle = (range_end - inaddr) / PAGE_SIZE;
1275 
1276 	return (rle);
1277 }
1278 
1279 /*
1280  * Write the RLE byte for page at 'inaddr' to the output stream.
1281  * Returns the number of pages to be skipped at 'inaddr'.
1282  */
1283 int
1284 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
1285 	paddr_t range_end, daddr_t *blkctr,
1286 	size_t *out_remaining)
1287 {
1288 	int rle, err, *rleloc;
1289 	struct hibernate_zlib_state *hibernate_state;
1290 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1291 
1292 	hibernate_state =
1293 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1294 
1295 	rle = hibernate_calc_rle(inaddr, range_end);
1296 
1297 	rleloc = (int *)hibernate_rle_page + MAX_RLE - 1;
1298 	*rleloc = rle;
1299 
1300 	/* Deflate the RLE byte into the stream */
1301 	hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
1302 
1303 	/* Did we fill the output page? If so, flush to disk */
1304 	if (*out_remaining == 0) {
1305 		if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
1306 			(vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W,
1307 			hib->io_page))) {
1308 				DPRINTF("hib write error %d\n", err);
1309 				return (err);
1310 		}
1311 
1312 		*blkctr += PAGE_SIZE / DEV_BSIZE;
1313 		*out_remaining = PAGE_SIZE;
1314 
1315 		/* If we didn't deflate the entire RLE byte, finish it now */
1316 		if (hibernate_state->hib_stream.avail_in != 0)
1317 			hibernate_deflate(hib,
1318 				(vaddr_t)hibernate_state->hib_stream.next_in,
1319 				out_remaining);
1320 	}
1321 
1322 	return (rle);
1323 }
1324 
1325 /*
1326  * Write a compressed version of this machine's memory to disk, at the
1327  * precalculated swap offset:
1328  *
1329  * end of swap - signature block size - chunk table size - memory size
1330  *
1331  * The function begins by looping through each phys mem range, cutting each
1332  * one into MD sized chunks. These chunks are then compressed individually
1333  * and written out to disk, in phys mem order. Some chunks might compress
1334  * more than others, and for this reason, each chunk's size is recorded
1335  * in the chunk table, which is written to disk after the image has
1336  * properly been compressed and written (in hibernate_write_chunktable).
1337  *
1338  * When this function is called, the machine is nearly suspended - most
1339  * devices are quiesced/suspended, interrupts are off, and cold has
1340  * been set. This means that there can be no side effects once the
1341  * write has started, and the write function itself can also have no
1342  * side effects. This also means no printfs are permitted (since printf
1343  * has side effects.)
1344  *
1345  * Return values :
1346  *
1347  * 0      - success
1348  * EIO    - I/O error occurred writing the chunks
1349  * EINVAL - Failed to write a complete range
1350  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1351  */
1352 int
1353 hibernate_write_chunks(union hibernate_info *hib)
1354 {
1355 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1356 	size_t nblocks, out_remaining, used;
1357 	struct hibernate_disk_chunk *chunks;
1358 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1359 	daddr_t blkctr = 0;
1360 	int i, rle, err;
1361 	struct hibernate_zlib_state *hibernate_state;
1362 
1363 	hibernate_state =
1364 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1365 
1366 	hib->chunk_ctr = 0;
1367 
1368 	/*
1369 	 * Map the utility VAs to the piglet. See the piglet map at the
1370 	 * top of this file for piglet layout information.
1371 	 */
1372 	hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE;
1373 	hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE;
1374 
1375 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1376 	    HIBERNATE_CHUNK_SIZE);
1377 
1378 	/* Calculate the chunk regions */
1379 	for (i = 0; i < hib->nranges; i++) {
1380 		range_base = hib->ranges[i].base;
1381 		range_end = hib->ranges[i].end;
1382 
1383 		inaddr = range_base;
1384 
1385 		while (inaddr < range_end) {
1386 			chunks[hib->chunk_ctr].base = inaddr;
1387 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1388 				chunks[hib->chunk_ctr].end = inaddr +
1389 				    HIBERNATE_CHUNK_SIZE;
1390 			else
1391 				chunks[hib->chunk_ctr].end = range_end;
1392 
1393 			inaddr += HIBERNATE_CHUNK_SIZE;
1394 			hib->chunk_ctr ++;
1395 		}
1396 	}
1397 
1398 	uvm_pmr_dirty_everything();
1399 	uvm_pmr_zero_everything();
1400 
1401 	/* Compress and write the chunks in the chunktable */
1402 	for (i = 0; i < hib->chunk_ctr; i++) {
1403 		range_base = chunks[i].base;
1404 		range_end = chunks[i].end;
1405 
1406 		chunks[i].offset = blkctr + hib->image_offset;
1407 
1408 		/* Reset zlib for deflate */
1409 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1410 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1411 			return (ENOMEM);
1412 		}
1413 
1414 		inaddr = range_base;
1415 
1416 		/*
1417 		 * For each range, loop through its phys mem region
1418 		 * and write out the chunks (the last chunk might be
1419 		 * smaller than the chunk size).
1420 		 */
1421 		while (inaddr < range_end) {
1422 			out_remaining = PAGE_SIZE;
1423 			while (out_remaining > 0 && inaddr < range_end) {
1424 				/*
1425 				 * Adjust for regions that are not evenly
1426 				 * divisible by PAGE_SIZE or overflowed
1427 				 * pages from the previous iteration.
1428 				 */
1429 				temp_inaddr = (inaddr & PAGE_MASK) +
1430 				    hibernate_copy_page;
1431 
1432 				/* Deflate from temp_inaddr to IO page */
1433 				if (inaddr != range_end) {
1434 					if (inaddr % PAGE_SIZE == 0) {
1435 						rle = hibernate_write_rle(hib,
1436 							inaddr,
1437 							range_end,
1438 							&blkctr,
1439 							&out_remaining);
1440 					}
1441 
1442 					if (rle == 0) {
1443 						pmap_kenter_pa(hibernate_temp_page,
1444 							inaddr & PMAP_PA_MASK,
1445 							PROT_READ);
1446 
1447 						bcopy((caddr_t)hibernate_temp_page,
1448 							(caddr_t)hibernate_copy_page,
1449 							PAGE_SIZE);
1450 						inaddr += hibernate_deflate(hib,
1451 							temp_inaddr,
1452 							&out_remaining);
1453 					} else {
1454 						inaddr += rle * PAGE_SIZE;
1455 						if (inaddr > range_end)
1456 							inaddr = range_end;
1457 					}
1458 
1459 				}
1460 
1461 				if (out_remaining == 0) {
1462 					/* Filled up the page */
1463 					nblocks = PAGE_SIZE / DEV_BSIZE;
1464 
1465 					if ((err = hib->io_func(hib->dev,
1466 					    blkctr + hib->image_offset,
1467 					    (vaddr_t)hibernate_io_page,
1468 					    PAGE_SIZE, HIB_W, hib->io_page))) {
1469 						DPRINTF("hib write error %d\n",
1470 						    err);
1471 						return (err);
1472 					}
1473 
1474 					blkctr += nblocks;
1475 				}
1476 			}
1477 		}
1478 
1479 		if (inaddr != range_end) {
1480 			DPRINTF("deflate range ended prematurely\n");
1481 			return (EINVAL);
1482 		}
1483 
1484 		/*
1485 		 * End of range. Round up to next secsize bytes
1486 		 * after finishing compress
1487 		 */
1488 		if (out_remaining == 0)
1489 			out_remaining = PAGE_SIZE;
1490 
1491 		/* Finish compress */
1492 		hibernate_state->hib_stream.next_in = (unsigned char *)inaddr;
1493 		hibernate_state->hib_stream.avail_in = 0;
1494 		hibernate_state->hib_stream.next_out =
1495 		    (unsigned char *)hibernate_io_page +
1496 			(PAGE_SIZE - out_remaining);
1497 
1498 		/* We have an extra output page available for finalize */
1499 		hibernate_state->hib_stream.avail_out =
1500 			out_remaining + PAGE_SIZE;
1501 
1502 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1503 		    Z_STREAM_END) {
1504 			DPRINTF("deflate error in output stream: %d\n", err);
1505 			return (err);
1506 		}
1507 
1508 		out_remaining = hibernate_state->hib_stream.avail_out;
1509 
1510 		used = 2 * PAGE_SIZE - out_remaining;
1511 		nblocks = used / DEV_BSIZE;
1512 
1513 		/* Round up to next block if needed */
1514 		if (used % DEV_BSIZE != 0)
1515 			nblocks ++;
1516 
1517 		/* Write final block(s) for this chunk */
1518 		if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
1519 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1520 		    HIB_W, hib->io_page))) {
1521 			DPRINTF("hib final write error %d\n", err);
1522 			return (err);
1523 		}
1524 
1525 		blkctr += nblocks;
1526 
1527 		chunks[i].compressed_size = (blkctr + hib->image_offset -
1528 		    chunks[i].offset) * DEV_BSIZE;
1529 	}
1530 
1531 	hib->chunktable_offset = hib->image_offset + blkctr;
1532 	return (0);
1533 }
1534 
1535 /*
1536  * Reset the zlib stream state and allocate a new hiballoc area for either
1537  * inflate or deflate. This function is called once for each hibernate chunk.
1538  * Calling hiballoc_init multiple times is acceptable since the memory it is
1539  * provided is unmanaged memory (stolen). We use the memory provided to us
1540  * by the piglet allocated via the supplied hib.
1541  */
1542 int
1543 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1544 {
1545 	vaddr_t hibernate_zlib_start;
1546 	size_t hibernate_zlib_size;
1547 	char *pva = (char *)hib->piglet_va;
1548 	struct hibernate_zlib_state *hibernate_state;
1549 
1550 	hibernate_state =
1551 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1552 
1553 	if (!deflate)
1554 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1555 
1556 	/*
1557 	 * See piglet layout information at the start of this file for
1558 	 * information on the zlib page assignments.
1559 	 */
1560 	hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE));
1561 	hibernate_zlib_size = 80 * PAGE_SIZE;
1562 
1563 	memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
1564 	memset(hibernate_state, 0, PAGE_SIZE);
1565 
1566 	/* Set up stream structure */
1567 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1568 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1569 
1570 	/* Initialize the hiballoc arena for zlib allocs/frees */
1571 	hiballoc_init(&hibernate_state->hiballoc_arena,
1572 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1573 
1574 	if (deflate) {
1575 		return deflateInit(&hibernate_state->hib_stream,
1576 		    Z_BEST_SPEED);
1577 	} else
1578 		return inflateInit(&hibernate_state->hib_stream);
1579 }
1580 
1581 /*
1582  * Reads the hibernated memory image from disk, whose location and
1583  * size are recorded in hib. Begin by reading the persisted
1584  * chunk table, which records the original chunk placement location
1585  * and compressed size for each. Next, allocate a pig region of
1586  * sufficient size to hold the compressed image. Next, read the
1587  * chunks into the pig area (calling hibernate_read_chunks to do this),
1588  * and finally, if all of the above succeeds, clear the hibernate signature.
1589  * The function will then return to hibernate_resume, which will proceed
1590  * to unpack the pig image to the correct place in memory.
1591  */
1592 int
1593 hibernate_read_image(union hibernate_info *hib)
1594 {
1595 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1596 	paddr_t image_start, image_end, pig_start, pig_end;
1597 	struct hibernate_disk_chunk *chunks;
1598 	daddr_t blkctr;
1599 	vaddr_t chunktable = (vaddr_t)NULL;
1600 	paddr_t piglet_chunktable = hib->piglet_pa +
1601 	    HIBERNATE_CHUNK_SIZE;
1602 	int i, status;
1603 
1604 	status = 0;
1605 	pmap_activate(curproc);
1606 
1607 	/* Calculate total chunk table size in disk blocks */
1608 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1609 
1610 	blkctr = hib->chunktable_offset;
1611 
1612 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1613 	    &kp_none, &kd_nowait);
1614 
1615 	if (!chunktable)
1616 		return (1);
1617 
1618 	/* Map chunktable pages */
1619 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE)
1620 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1621 		    PROT_READ | PROT_WRITE);
1622 	pmap_update(pmap_kernel());
1623 
1624 	/* Read the chunktable from disk into the piglet chunktable */
1625 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1626 	    i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE)
1627 		hibernate_block_io(hib, blkctr, MAXPHYS,
1628 		    chunktable + i, 0);
1629 
1630 	blkctr = hib->image_offset;
1631 	compressed_size = 0;
1632 
1633 	chunks = (struct hibernate_disk_chunk *)chunktable;
1634 
1635 	for (i = 0; i < hib->chunk_ctr; i++)
1636 		compressed_size += chunks[i].compressed_size;
1637 
1638 	disk_size = compressed_size;
1639 
1640 	printf("unhibernating @ block %lld length %lu bytes\n",
1641 	    hib->sig_offset - chunktable_size,
1642 	    compressed_size);
1643 
1644 	/* Allocate the pig area */
1645 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1646 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) {
1647 		status = 1;
1648 		goto unmap;
1649 	}
1650 
1651 	pig_end = pig_start + pig_sz;
1652 
1653 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1654 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1655 	image_start = image_end - disk_size;
1656 
1657 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1658 	    chunks);
1659 
1660 	/* Prepare the resume time pmap/page table */
1661 	hibernate_populate_resume_pt(hib, image_start, image_end);
1662 
1663 unmap:
1664 	/* Unmap chunktable pages */
1665 	pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE);
1666 	pmap_update(pmap_kernel());
1667 
1668 	return (status);
1669 }
1670 
1671 /*
1672  * Read the hibernated memory chunks from disk (chunk information at this
1673  * point is stored in the piglet) into the pig area specified by
1674  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1675  * only chunk with overlap possibilities.
1676  */
1677 int
1678 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1679     paddr_t pig_end, size_t image_compr_size,
1680     struct hibernate_disk_chunk *chunks)
1681 {
1682 	paddr_t img_cur, piglet_base;
1683 	daddr_t blkctr;
1684 	size_t processed, compressed_size, read_size;
1685 	int nchunks, nfchunks, num_io_pages;
1686 	vaddr_t tempva, hibernate_fchunk_area;
1687 	short *fchunks, i, j;
1688 
1689 	tempva = (vaddr_t)NULL;
1690 	hibernate_fchunk_area = (vaddr_t)NULL;
1691 	nfchunks = 0;
1692 	piglet_base = hib->piglet_pa;
1693 	global_pig_start = pig_start;
1694 
1695 	/*
1696 	 * These mappings go into the resuming kernel's page table, and are
1697 	 * used only during image read. They dissappear from existence
1698 	 * when the suspended kernel is unpacked on top of us.
1699 	 */
1700 	tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none,
1701 		&kd_nowait);
1702 	if (!tempva)
1703 		return (1);
1704 	hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any,
1705 	    &kp_none, &kd_nowait);
1706 	if (!hibernate_fchunk_area)
1707 		return (1);
1708 
1709 	/* Final output chunk ordering VA */
1710 	fchunks = (short *)hibernate_fchunk_area;
1711 
1712 	/* Map the chunk ordering region */
1713 	for(i = 0; i < 24 ; i++)
1714 		pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE),
1715 			piglet_base + ((4 + i) * PAGE_SIZE),
1716 			PROT_READ | PROT_WRITE);
1717 	pmap_update(pmap_kernel());
1718 
1719 	nchunks = hib->chunk_ctr;
1720 
1721 	/* Initially start all chunks as unplaced */
1722 	for (i = 0; i < nchunks; i++)
1723 		chunks[i].flags = 0;
1724 
1725 	/*
1726 	 * Search the list for chunks that are outside the pig area. These
1727 	 * can be placed first in the final output list.
1728 	 */
1729 	for (i = 0; i < nchunks; i++) {
1730 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1731 			fchunks[nfchunks] = i;
1732 			nfchunks++;
1733 			chunks[i].flags |= HIBERNATE_CHUNK_PLACED;
1734 		}
1735 	}
1736 
1737 	/*
1738 	 * Walk the ordering, place the chunks in ascending memory order.
1739 	 */
1740 	for (i = 0; i < nchunks; i++) {
1741 		if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) {
1742 			fchunks[nfchunks] = i;
1743 			nfchunks++;
1744 			chunks[i].flags = HIBERNATE_CHUNK_PLACED;
1745 		}
1746 	}
1747 
1748 	img_cur = pig_start;
1749 
1750 	for (i = 0; i < nfchunks; i++) {
1751 		blkctr = chunks[fchunks[i]].offset;
1752 		processed = 0;
1753 		compressed_size = chunks[fchunks[i]].compressed_size;
1754 
1755 		while (processed < compressed_size) {
1756 			if (compressed_size - processed >= MAXPHYS)
1757 				read_size = MAXPHYS;
1758 			else
1759 				read_size = compressed_size - processed;
1760 
1761 			/*
1762 			 * We're reading read_size bytes, offset from the
1763 			 * start of a page by img_cur % PAGE_SIZE, so the
1764 			 * end will be read_size + (img_cur % PAGE_SIZE)
1765 			 * from the start of the first page.  Round that
1766 			 * up to the next page size.
1767 			 */
1768 			num_io_pages = (read_size + (img_cur % PAGE_SIZE)
1769 				+ PAGE_SIZE - 1) / PAGE_SIZE;
1770 
1771 			KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1);
1772 
1773 			/* Map pages for this read */
1774 			for (j = 0; j < num_io_pages; j ++)
1775 				pmap_kenter_pa(tempva + j * PAGE_SIZE,
1776 				    img_cur + j * PAGE_SIZE,
1777 				    PROT_READ | PROT_WRITE);
1778 
1779 			pmap_update(pmap_kernel());
1780 
1781 			hibernate_block_io(hib, blkctr, read_size,
1782 			    tempva + (img_cur & PAGE_MASK), 0);
1783 
1784 			blkctr += (read_size / DEV_BSIZE);
1785 
1786 			pmap_kremove(tempva, num_io_pages * PAGE_SIZE);
1787 			pmap_update(pmap_kernel());
1788 
1789 			processed += read_size;
1790 			img_cur += read_size;
1791 		}
1792 	}
1793 
1794 	pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE);
1795 	pmap_update(pmap_kernel());
1796 
1797 	return (0);
1798 }
1799 
1800 /*
1801  * Hibernating a machine comprises the following operations:
1802  *  1. Calculating this machine's hibernate_info information
1803  *  2. Allocating a piglet and saving the piglet's physaddr
1804  *  3. Calculating the memory chunks
1805  *  4. Writing the compressed chunks to disk
1806  *  5. Writing the chunk table
1807  *  6. Writing the signature block (hibernate_info)
1808  *
1809  * On most architectures, the function calling hibernate_suspend would
1810  * then power off the machine using some MD-specific implementation.
1811  */
1812 int
1813 hibernate_suspend(void)
1814 {
1815 	union hibernate_info hib;
1816 	u_long start, end;
1817 
1818 	/*
1819 	 * Calculate memory ranges, swap offsets, etc.
1820 	 * This also allocates a piglet whose physaddr is stored in
1821 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1822 	 */
1823 	if (get_hibernate_info(&hib, 1)) {
1824 		DPRINTF("failed to obtain hibernate info\n");
1825 		return (1);
1826 	}
1827 
1828 	/* Find a page-addressed region in swap [start,end] */
1829 	if (uvm_hibswap(hib.dev, &start, &end)) {
1830 		printf("hibernate: cannot find any swap\n");
1831 		return (1);
1832 	}
1833 
1834 	if (end - start < 1000) {
1835 		printf("hibernate: insufficient swap (%lu is too small)\n",
1836 			end - start);
1837 		return (1);
1838 	}
1839 
1840 	/* Calculate block offsets in swap */
1841 	hib.image_offset = ctod(start);
1842 
1843 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1844 	    hib.image_offset, ctod(end) - ctod(start));
1845 
1846 	pmap_activate(curproc);
1847 	DPRINTF("hibernate: writing chunks\n");
1848 	if (hibernate_write_chunks(&hib)) {
1849 		DPRINTF("hibernate_write_chunks failed\n");
1850 		return (1);
1851 	}
1852 
1853 	DPRINTF("hibernate: writing chunktable\n");
1854 	if (hibernate_write_chunktable(&hib)) {
1855 		DPRINTF("hibernate_write_chunktable failed\n");
1856 		return (1);
1857 	}
1858 
1859 	DPRINTF("hibernate: writing signature\n");
1860 	if (hibernate_write_signature(&hib)) {
1861 		DPRINTF("hibernate_write_signature failed\n");
1862 		return (1);
1863 	}
1864 
1865 	/* Allow the disk to settle */
1866 	delay(500000);
1867 
1868 	/*
1869 	 * Give the device-specific I/O function a notification that we're
1870 	 * done, and that it can clean up or shutdown as needed.
1871 	 */
1872 	hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
1873 	return (0);
1874 }
1875 
1876 int
1877 hibernate_alloc(void)
1878 {
1879 	KASSERT(global_piglet_va == 0);
1880 	KASSERT(hibernate_temp_page == 0);
1881 
1882 	pmap_activate(curproc);
1883 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1884 		PROT_READ | PROT_WRITE);
1885 
1886 	/* Allocate a piglet, store its addresses in the supplied globals */
1887 	if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
1888 	    HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE))
1889 		return (ENOMEM);
1890 
1891 	/*
1892 	 * Allocate VA for the temp page.
1893 	 *
1894 	 * This will become part of the suspended kernel and will
1895 	 * be freed in hibernate_free, upon resume (or hibernate
1896 	 * failure)
1897 	 */
1898 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1899 	    &kp_none, &kd_nowait);
1900 	if (!hibernate_temp_page) {
1901 		DPRINTF("out of memory allocating hibernate_temp_page\n");
1902 		return (ENOMEM);
1903 	}
1904 
1905 	return (0);
1906 }
1907 
1908 /*
1909  * Free items allocated by hibernate_alloc()
1910  */
1911 void
1912 hibernate_free(void)
1913 {
1914 	pmap_activate(curproc);
1915 
1916 	if (global_piglet_va)
1917 		uvm_pmr_free_piglet(global_piglet_va,
1918 		    4 * HIBERNATE_CHUNK_SIZE);
1919 
1920 	if (hibernate_temp_page) {
1921 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1922 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
1923 		    &kv_any, &kp_none);
1924 	}
1925 
1926 	global_piglet_va = 0;
1927 	hibernate_temp_page = 0;
1928 	pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
1929 	pmap_update(pmap_kernel());
1930 }
1931