1 /* $OpenBSD: subr_hibernate.c,v 1.110 2014/12/17 19:42:15 tedu Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* 39 * Hibernate piglet layout information 40 * 41 * The piglet is a scratch area of memory allocated by the suspending kernel. 42 * Its phys and virt addrs are recorded in the signature block. The piglet is 43 * used to guarantee an unused area of memory that can be used by the resuming 44 * kernel for various things. The piglet is excluded during unpack operations. 45 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 46 * 47 * Offset from piglet_base Purpose 48 * ---------------------------------------------------------------------------- 49 * 0 Private page for suspend I/O write functions 50 * 1*PAGE_SIZE I/O page used during hibernate suspend 51 * 2*PAGE_SIZE I/O page used during hibernate suspend 52 * 3*PAGE_SIZE copy page used during hibernate suspend 53 * 4*PAGE_SIZE final chunk ordering list (24 pages) 54 * 28*PAGE_SIZE RLE utility page 55 * 29*PAGE_SIZE start of hiballoc area 56 * 109*PAGE_SIZE end of hiballoc area (80 pages) 57 * ... unused 58 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 59 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 60 * 4*HIBERNATE_CHUNK_SIZE end of piglet 61 */ 62 63 /* Temporary vaddr ranges used during hibernate */ 64 vaddr_t hibernate_temp_page; 65 vaddr_t hibernate_copy_page; 66 vaddr_t hibernate_rle_page; 67 68 /* Hibernate info as read from disk during resume */ 69 union hibernate_info disk_hib; 70 71 /* 72 * Global copy of the pig start address. This needs to be a global as we 73 * switch stacks after computing it - it can't be stored on the stack. 74 */ 75 paddr_t global_pig_start; 76 77 /* 78 * Global copies of the piglet start addresses (PA/VA). We store these 79 * as globals to avoid having to carry them around as parameters, as the 80 * piglet is allocated early and freed late - its lifecycle extends beyond 81 * that of the hibernate info union which is calculated on suspend/resume. 82 */ 83 vaddr_t global_piglet_va; 84 paddr_t global_piglet_pa; 85 86 /* #define HIB_DEBUG */ 87 #ifdef HIB_DEBUG 88 int hib_debug = 99; 89 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 90 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 91 #else 92 #define DPRINTF(x...) 93 #define DNPRINTF(n,x...) 94 #endif 95 96 #ifndef NO_PROPOLICE 97 extern long __guard_local; 98 #endif /* ! NO_PROPOLICE */ 99 100 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 101 int hibernate_calc_rle(paddr_t, paddr_t); 102 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 103 size_t *); 104 105 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 106 107 /* 108 * Hib alloc enforced alignment. 109 */ 110 #define HIB_ALIGN 8 /* bytes alignment */ 111 112 /* 113 * sizeof builtin operation, but with alignment constraint. 114 */ 115 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 116 117 struct hiballoc_entry { 118 size_t hibe_use; 119 size_t hibe_space; 120 RB_ENTRY(hiballoc_entry) hibe_entry; 121 }; 122 123 /* 124 * Sort hibernate memory ranges by ascending PA 125 */ 126 void 127 hibernate_sort_ranges(union hibernate_info *hib_info) 128 { 129 int i, j; 130 struct hibernate_memory_range *ranges; 131 paddr_t base, end; 132 133 ranges = hib_info->ranges; 134 135 for (i = 1; i < hib_info->nranges; i++) { 136 j = i; 137 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 138 base = ranges[j].base; 139 end = ranges[j].end; 140 ranges[j].base = ranges[j - 1].base; 141 ranges[j].end = ranges[j - 1].end; 142 ranges[j - 1].base = base; 143 ranges[j - 1].end = end; 144 j--; 145 } 146 } 147 } 148 149 /* 150 * Compare hiballoc entries based on the address they manage. 151 * 152 * Since the address is fixed, relative to struct hiballoc_entry, 153 * we just compare the hiballoc_entry pointers. 154 */ 155 static __inline int 156 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 157 { 158 return l < r ? -1 : (l > r); 159 } 160 161 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 162 163 /* 164 * Given a hiballoc entry, return the address it manages. 165 */ 166 static __inline void * 167 hib_entry_to_addr(struct hiballoc_entry *entry) 168 { 169 caddr_t addr; 170 171 addr = (caddr_t)entry; 172 addr += HIB_SIZEOF(struct hiballoc_entry); 173 return addr; 174 } 175 176 /* 177 * Given an address, find the hiballoc that corresponds. 178 */ 179 static __inline struct hiballoc_entry* 180 hib_addr_to_entry(void *addr_param) 181 { 182 caddr_t addr; 183 184 addr = (caddr_t)addr_param; 185 addr -= HIB_SIZEOF(struct hiballoc_entry); 186 return (struct hiballoc_entry*)addr; 187 } 188 189 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 190 191 /* 192 * Allocate memory from the arena. 193 * 194 * Returns NULL if no memory is available. 195 */ 196 void * 197 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 198 { 199 struct hiballoc_entry *entry, *new_entry; 200 size_t find_sz; 201 202 /* 203 * Enforce alignment of HIB_ALIGN bytes. 204 * 205 * Note that, because the entry is put in front of the allocation, 206 * 0-byte allocations are guaranteed a unique address. 207 */ 208 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 209 210 /* 211 * Find an entry with hibe_space >= find_sz. 212 * 213 * If the root node is not large enough, we switch to tree traversal. 214 * Because all entries are made at the bottom of the free space, 215 * traversal from the end has a slightly better chance of yielding 216 * a sufficiently large space. 217 */ 218 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 219 entry = RB_ROOT(&arena->hib_addrs); 220 if (entry != NULL && entry->hibe_space < find_sz) { 221 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 222 if (entry->hibe_space >= find_sz) 223 break; 224 } 225 } 226 227 /* 228 * Insufficient or too fragmented memory. 229 */ 230 if (entry == NULL) 231 return NULL; 232 233 /* 234 * Create new entry in allocated space. 235 */ 236 new_entry = (struct hiballoc_entry*)( 237 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 238 new_entry->hibe_space = entry->hibe_space - find_sz; 239 new_entry->hibe_use = alloc_sz; 240 241 /* 242 * Insert entry. 243 */ 244 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 245 panic("hib_alloc: insert failure"); 246 entry->hibe_space = 0; 247 248 /* Return address managed by entry. */ 249 return hib_entry_to_addr(new_entry); 250 } 251 252 /* 253 * Free a pointer previously allocated from this arena. 254 * 255 * If addr is NULL, this will be silently accepted. 256 */ 257 void 258 hib_free(struct hiballoc_arena *arena, void *addr) 259 { 260 struct hiballoc_entry *entry, *prev; 261 262 if (addr == NULL) 263 return; 264 265 /* 266 * Derive entry from addr and check it is really in this arena. 267 */ 268 entry = hib_addr_to_entry(addr); 269 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 270 panic("hib_free: freed item %p not in hib arena", addr); 271 272 /* 273 * Give the space in entry to its predecessor. 274 * 275 * If entry has no predecessor, change its used space into free space 276 * instead. 277 */ 278 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 279 if (prev != NULL && 280 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 281 prev->hibe_use + prev->hibe_space) == entry) { 282 /* Merge entry. */ 283 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 284 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 285 entry->hibe_use + entry->hibe_space; 286 } else { 287 /* Flip used memory to free space. */ 288 entry->hibe_space += entry->hibe_use; 289 entry->hibe_use = 0; 290 } 291 } 292 293 /* 294 * Initialize hiballoc. 295 * 296 * The allocator will manage memmory at ptr, which is len bytes. 297 */ 298 int 299 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 300 { 301 struct hiballoc_entry *entry; 302 caddr_t ptr; 303 size_t len; 304 305 RB_INIT(&arena->hib_addrs); 306 307 /* 308 * Hib allocator enforces HIB_ALIGN alignment. 309 * Fixup ptr and len. 310 */ 311 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 312 len = p_len - ((size_t)ptr - (size_t)p_ptr); 313 len &= ~((size_t)HIB_ALIGN - 1); 314 315 /* 316 * Insufficient memory to be able to allocate and also do bookkeeping. 317 */ 318 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 319 return ENOMEM; 320 321 /* 322 * Create entry describing space. 323 */ 324 entry = (struct hiballoc_entry*)ptr; 325 entry->hibe_use = 0; 326 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 327 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 328 329 return 0; 330 } 331 332 /* 333 * Zero all free memory. 334 */ 335 void 336 uvm_pmr_zero_everything(void) 337 { 338 struct uvm_pmemrange *pmr; 339 struct vm_page *pg; 340 int i; 341 342 uvm_lock_fpageq(); 343 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 344 /* Zero single pages. */ 345 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 346 != NULL) { 347 uvm_pmr_remove(pmr, pg); 348 uvm_pagezero(pg); 349 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 350 uvmexp.zeropages++; 351 uvm_pmr_insert(pmr, pg, 0); 352 } 353 354 /* Zero multi page ranges. */ 355 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 356 != NULL) { 357 pg--; /* Size tree always has second page. */ 358 uvm_pmr_remove(pmr, pg); 359 for (i = 0; i < pg->fpgsz; i++) { 360 uvm_pagezero(&pg[i]); 361 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 362 uvmexp.zeropages++; 363 } 364 uvm_pmr_insert(pmr, pg, 0); 365 } 366 } 367 uvm_unlock_fpageq(); 368 } 369 370 /* 371 * Mark all memory as dirty. 372 * 373 * Used to inform the system that the clean memory isn't clean for some 374 * reason, for example because we just came back from hibernate. 375 */ 376 void 377 uvm_pmr_dirty_everything(void) 378 { 379 struct uvm_pmemrange *pmr; 380 struct vm_page *pg; 381 int i; 382 383 uvm_lock_fpageq(); 384 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 385 /* Dirty single pages. */ 386 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 387 != NULL) { 388 uvm_pmr_remove(pmr, pg); 389 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 390 uvm_pmr_insert(pmr, pg, 0); 391 } 392 393 /* Dirty multi page ranges. */ 394 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 395 != NULL) { 396 pg--; /* Size tree always has second page. */ 397 uvm_pmr_remove(pmr, pg); 398 for (i = 0; i < pg->fpgsz; i++) 399 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 400 uvm_pmr_insert(pmr, pg, 0); 401 } 402 } 403 404 uvmexp.zeropages = 0; 405 uvm_unlock_fpageq(); 406 } 407 408 /* 409 * Allocate an area that can hold sz bytes and doesn't overlap with 410 * the piglet at piglet_pa. 411 */ 412 int 413 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 414 { 415 struct uvm_constraint_range pig_constraint; 416 struct kmem_pa_mode kp_pig = { 417 .kp_constraint = &pig_constraint, 418 .kp_maxseg = 1 419 }; 420 vaddr_t va; 421 422 sz = round_page(sz); 423 424 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 425 pig_constraint.ucr_high = -1; 426 427 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 428 if (va == 0) { 429 pig_constraint.ucr_low = 0; 430 pig_constraint.ucr_high = piglet_pa - 1; 431 432 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 433 if (va == 0) 434 return ENOMEM; 435 } 436 437 pmap_extract(pmap_kernel(), va, pa); 438 return 0; 439 } 440 441 /* 442 * Allocate a piglet area. 443 * 444 * This needs to be in DMA-safe memory. 445 * Piglets are aligned. 446 * 447 * sz and align in bytes. 448 * 449 * The call will sleep for the pagedaemon to attempt to free memory. 450 * The pagedaemon may decide its not possible to free enough memory, causing 451 * the allocation to fail. 452 */ 453 int 454 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 455 { 456 struct kmem_pa_mode kp_piglet = { 457 .kp_constraint = &dma_constraint, 458 .kp_align = align, 459 .kp_maxseg = 1 460 }; 461 462 /* Ensure align is a power of 2 */ 463 KASSERT((align & (align - 1)) == 0); 464 465 /* 466 * Fixup arguments: align must be at least PAGE_SIZE, 467 * sz will be converted to pagecount, since that is what 468 * pmemrange uses internally. 469 */ 470 if (align < PAGE_SIZE) 471 align = PAGE_SIZE; 472 sz = round_page(sz); 473 474 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 475 if (*va == 0) 476 return ENOMEM; 477 478 pmap_extract(pmap_kernel(), *va, pa); 479 return 0; 480 } 481 482 /* 483 * Free a piglet area. 484 */ 485 void 486 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 487 { 488 /* 489 * Fix parameters. 490 */ 491 sz = round_page(sz); 492 493 /* 494 * Free the physical and virtual memory. 495 */ 496 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 497 } 498 499 /* 500 * Physmem RLE compression support. 501 * 502 * Given a physical page address, return the number of pages starting at the 503 * address that are free. Clamps to the number of pages in 504 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 505 */ 506 int 507 uvm_page_rle(paddr_t addr) 508 { 509 struct vm_page *pg, *pg_end; 510 struct vm_physseg *vmp; 511 int pseg_idx, off_idx; 512 513 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 514 if (pseg_idx == -1) 515 return 0; 516 517 vmp = &vm_physmem[pseg_idx]; 518 pg = &vmp->pgs[off_idx]; 519 if (!(pg->pg_flags & PQ_FREE)) 520 return 0; 521 522 /* 523 * Search for the first non-free page after pg. 524 * Note that the page may not be the first page in a free pmemrange, 525 * therefore pg->fpgsz cannot be used. 526 */ 527 for (pg_end = pg; pg_end <= vmp->lastpg && 528 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 529 ; 530 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 531 } 532 533 /* 534 * Fills out the hibernate_info union pointed to by hib 535 * with information about this machine (swap signature block 536 * offsets, number of memory ranges, kernel in use, etc) 537 */ 538 int 539 get_hibernate_info(union hibernate_info *hib, int suspend) 540 { 541 struct disklabel dl; 542 char err_string[128], *dl_ret; 543 544 #ifndef NO_PROPOLICE 545 /* Save propolice guard */ 546 hib->guard = __guard_local; 547 #endif /* ! NO_PROPOLICE */ 548 549 /* Determine I/O function to use */ 550 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 551 if (hib->io_func == NULL) 552 return (1); 553 554 /* Calculate hibernate device */ 555 hib->dev = swdevt[0].sw_dev; 556 557 /* Read disklabel (used to calculate signature and image offsets) */ 558 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 559 560 if (dl_ret) { 561 printf("Hibernate error reading disklabel: %s\n", dl_ret); 562 return (1); 563 } 564 565 /* Make sure we have a swap partition. */ 566 if (dl.d_partitions[1].p_fstype != FS_SWAP || 567 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 568 return (1); 569 570 /* Make sure the signature can fit in one block */ 571 if (sizeof(union hibernate_info) > DEV_BSIZE) 572 return (1); 573 574 /* Magic number */ 575 hib->magic = HIBERNATE_MAGIC; 576 577 /* Calculate signature block location */ 578 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 579 sizeof(union hibernate_info)/DEV_BSIZE; 580 581 /* Stash kernel version information */ 582 memset(&hib->kernel_version, 0, 128); 583 bcopy(version, &hib->kernel_version, 584 min(strlen(version), sizeof(hib->kernel_version)-1)); 585 586 if (suspend) { 587 /* Grab the previously-allocated piglet addresses */ 588 hib->piglet_va = global_piglet_va; 589 hib->piglet_pa = global_piglet_pa; 590 hib->io_page = (void *)hib->piglet_va; 591 592 /* 593 * Initialization of the hibernate IO function for drivers 594 * that need to do prep work (such as allocating memory or 595 * setting up data structures that cannot safely be done 596 * during suspend without causing side effects). There is 597 * a matching HIB_DONE call performed after the write is 598 * completed. 599 */ 600 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 601 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 602 HIB_INIT, hib->io_page)) 603 goto fail; 604 605 } else { 606 /* 607 * Resuming kernels use a regular private page for the driver 608 * No need to free this I/O page as it will vanish as part of 609 * the resume. 610 */ 611 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 612 if (!hib->io_page) 613 goto fail; 614 } 615 616 if (get_hibernate_info_md(hib)) 617 goto fail; 618 619 return (0); 620 621 fail: 622 return (1); 623 } 624 625 /* 626 * Allocate nitems*size bytes from the hiballoc area presently in use 627 */ 628 void * 629 hibernate_zlib_alloc(void *unused, int nitems, int size) 630 { 631 struct hibernate_zlib_state *hibernate_state; 632 633 hibernate_state = 634 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 635 636 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 637 } 638 639 /* 640 * Free the memory pointed to by addr in the hiballoc area presently in 641 * use 642 */ 643 void 644 hibernate_zlib_free(void *unused, void *addr) 645 { 646 struct hibernate_zlib_state *hibernate_state; 647 648 hibernate_state = 649 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 650 651 hib_free(&hibernate_state->hiballoc_arena, addr); 652 } 653 654 /* 655 * Inflate next page of data from the image stream. 656 * The rle parameter is modified on exit to contain the number of pages to 657 * skip in the output stream (or 0 if this page was inflated into). 658 * 659 * Returns 0 if the stream contains additional data, or 1 if the stream is 660 * finished. 661 */ 662 int 663 hibernate_inflate_page(int *rle) 664 { 665 struct hibernate_zlib_state *hibernate_state; 666 int i; 667 668 hibernate_state = 669 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 670 671 /* Set up the stream for RLE code inflate */ 672 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 673 hibernate_state->hib_stream.avail_out = sizeof(*rle); 674 675 /* Inflate RLE code */ 676 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 677 if (i != Z_OK && i != Z_STREAM_END) { 678 /* 679 * XXX - this will likely reboot/hang most machines 680 * since the console output buffer will be unmapped, 681 * but there's not much else we can do here. 682 */ 683 panic("rle inflate stream error"); 684 } 685 686 if (hibernate_state->hib_stream.avail_out != 0) { 687 /* 688 * XXX - this will likely reboot/hang most machines 689 * since the console output buffer will be unmapped, 690 * but there's not much else we can do here. 691 */ 692 panic("rle short inflate error"); 693 } 694 695 if (*rle < 0 || *rle > 1024) { 696 /* 697 * XXX - this will likely reboot/hang most machines 698 * since the console output buffer will be unmapped, 699 * but there's not much else we can do here. 700 */ 701 panic("invalid rle count"); 702 } 703 704 if (i == Z_STREAM_END) 705 return (1); 706 707 if (*rle != 0) 708 return (0); 709 710 /* Set up the stream for page inflate */ 711 hibernate_state->hib_stream.next_out = 712 (unsigned char *)HIBERNATE_INFLATE_PAGE; 713 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 714 715 /* Process next block of data */ 716 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 717 if (i != Z_OK && i != Z_STREAM_END) { 718 /* 719 * XXX - this will likely reboot/hang most machines 720 * since the console output buffer will be unmapped, 721 * but there's not much else we can do here. 722 */ 723 panic("inflate error"); 724 } 725 726 /* We should always have extracted a full page ... */ 727 if (hibernate_state->hib_stream.avail_out != 0) { 728 /* 729 * XXX - this will likely reboot/hang most machines 730 * since the console output buffer will be unmapped, 731 * but there's not much else we can do here. 732 */ 733 panic("incomplete page"); 734 } 735 736 return (i == Z_STREAM_END); 737 } 738 739 /* 740 * Inflate size bytes from src into dest, skipping any pages in 741 * [src..dest] that are special (see hibernate_inflate_skip) 742 * 743 * This function executes while using the resume-time stack 744 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 745 * will likely hang or reset the machine since the console output buffer 746 * will be unmapped. 747 */ 748 void 749 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 750 paddr_t src, size_t size) 751 { 752 int end_stream = 0, rle; 753 struct hibernate_zlib_state *hibernate_state; 754 755 hibernate_state = 756 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 757 758 hibernate_state->hib_stream.next_in = (unsigned char *)src; 759 hibernate_state->hib_stream.avail_in = size; 760 761 do { 762 /* 763 * Is this a special page? If yes, redirect the 764 * inflate output to a scratch page (eg, discard it) 765 */ 766 if (hibernate_inflate_skip(hib, dest)) { 767 hibernate_enter_resume_mapping( 768 HIBERNATE_INFLATE_PAGE, 769 HIBERNATE_INFLATE_PAGE, 0); 770 } else { 771 hibernate_enter_resume_mapping( 772 HIBERNATE_INFLATE_PAGE, dest, 0); 773 } 774 775 hibernate_flush(); 776 end_stream = hibernate_inflate_page(&rle); 777 778 if (rle == 0) 779 dest += PAGE_SIZE; 780 else 781 dest += (rle * PAGE_SIZE); 782 } while (!end_stream); 783 } 784 785 /* 786 * deflate from src into the I/O page, up to 'remaining' bytes 787 * 788 * Returns number of input bytes consumed, and may reset 789 * the 'remaining' parameter if not all the output space was consumed 790 * (this information is needed to know how much to write to disk 791 */ 792 size_t 793 hibernate_deflate(union hibernate_info *hib, paddr_t src, 794 size_t *remaining) 795 { 796 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 797 struct hibernate_zlib_state *hibernate_state; 798 799 hibernate_state = 800 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 801 802 /* Set up the stream for deflate */ 803 hibernate_state->hib_stream.next_in = (unsigned char *)src; 804 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 805 hibernate_state->hib_stream.next_out = 806 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 807 hibernate_state->hib_stream.avail_out = *remaining; 808 809 /* Process next block of data */ 810 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 811 panic("hibernate zlib deflate error"); 812 813 /* Update pointers and return number of bytes consumed */ 814 *remaining = hibernate_state->hib_stream.avail_out; 815 return (PAGE_SIZE - (src & PAGE_MASK)) - 816 hibernate_state->hib_stream.avail_in; 817 } 818 819 /* 820 * Write the hibernation information specified in hiber_info 821 * to the location in swap previously calculated (last block of 822 * swap), called the "signature block". 823 */ 824 int 825 hibernate_write_signature(union hibernate_info *hib) 826 { 827 /* Write hibernate info to disk */ 828 return (hib->io_func(hib->dev, hib->sig_offset, 829 (vaddr_t)hib, DEV_BSIZE, HIB_W, 830 hib->io_page)); 831 } 832 833 /* 834 * Write the memory chunk table to the area in swap immediately 835 * preceding the signature block. The chunk table is stored 836 * in the piglet when this function is called. Returns errno. 837 */ 838 int 839 hibernate_write_chunktable(union hibernate_info *hib) 840 { 841 vaddr_t hibernate_chunk_table_start; 842 size_t hibernate_chunk_table_size; 843 int i, err; 844 845 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 846 847 hibernate_chunk_table_start = hib->piglet_va + 848 HIBERNATE_CHUNK_SIZE; 849 850 /* Write chunk table */ 851 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 852 if ((err = hib->io_func(hib->dev, 853 hib->chunktable_offset + (i/DEV_BSIZE), 854 (vaddr_t)(hibernate_chunk_table_start + i), 855 MAXPHYS, HIB_W, hib->io_page))) { 856 DPRINTF("chunktable write error: %d\n", err); 857 return (err); 858 } 859 } 860 861 return (0); 862 } 863 864 /* 865 * Write an empty hiber_info to the swap signature block, which is 866 * guaranteed to not match any valid hib. 867 */ 868 int 869 hibernate_clear_signature(void) 870 { 871 union hibernate_info blank_hiber_info; 872 union hibernate_info hib; 873 874 /* Zero out a blank hiber_info */ 875 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 876 877 /* Get the signature block location */ 878 if (get_hibernate_info(&hib, 0)) 879 return (1); 880 881 /* Write (zeroed) hibernate info to disk */ 882 DPRINTF("clearing hibernate signature block location: %lld\n", 883 hib.sig_offset); 884 if (hibernate_block_io(&hib, 885 hib.sig_offset, 886 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 887 printf("Warning: could not clear hibernate signature\n"); 888 889 return (0); 890 } 891 892 /* 893 * Compare two hibernate_infos to determine if they are the same (eg, 894 * we should be performing a hibernate resume on this machine. 895 * Not all fields are checked - just enough to verify that the machine 896 * has the same memory configuration and kernel as the one that 897 * wrote the signature previously. 898 */ 899 int 900 hibernate_compare_signature(union hibernate_info *mine, 901 union hibernate_info *disk) 902 { 903 u_int i; 904 905 if (mine->nranges != disk->nranges) { 906 DPRINTF("hibernate memory range count mismatch\n"); 907 return (1); 908 } 909 910 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 911 DPRINTF("hibernate kernel version mismatch\n"); 912 return (1); 913 } 914 915 for (i = 0; i < mine->nranges; i++) { 916 if ((mine->ranges[i].base != disk->ranges[i].base) || 917 (mine->ranges[i].end != disk->ranges[i].end) ) { 918 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 919 i, 920 (void *)mine->ranges[i].base, 921 (void *)mine->ranges[i].end, 922 (void *)disk->ranges[i].base, 923 (void *)disk->ranges[i].end); 924 return (1); 925 } 926 } 927 928 return (0); 929 } 930 931 /* 932 * Transfers xfer_size bytes between the hibernate device specified in 933 * hib_info at offset blkctr and the vaddr specified at dest. 934 * 935 * Separate offsets and pages are used to handle misaligned reads (reads 936 * that span a page boundary). 937 * 938 * blkctr specifies a relative offset (relative to the start of swap), 939 * not an absolute disk offset 940 * 941 */ 942 int 943 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 944 size_t xfer_size, vaddr_t dest, int iswrite) 945 { 946 struct buf *bp; 947 struct bdevsw *bdsw; 948 int error; 949 950 bp = geteblk(xfer_size); 951 bdsw = &bdevsw[major(hib->dev)]; 952 953 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 954 if (error) { 955 printf("hibernate_block_io open failed\n"); 956 return (1); 957 } 958 959 if (iswrite) 960 bcopy((caddr_t)dest, bp->b_data, xfer_size); 961 962 bp->b_bcount = xfer_size; 963 bp->b_blkno = blkctr; 964 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 965 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 966 bp->b_dev = hib->dev; 967 (*bdsw->d_strategy)(bp); 968 969 error = biowait(bp); 970 if (error) { 971 printf("hib block_io biowait error %d blk %lld size %zu\n", 972 error, (long long)blkctr, xfer_size); 973 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 974 curproc); 975 if (error) 976 printf("hibernate_block_io error close failed\n"); 977 return (1); 978 } 979 980 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 981 if (error) { 982 printf("hibernate_block_io close failed\n"); 983 return (1); 984 } 985 986 if (!iswrite) 987 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 988 989 bp->b_flags |= B_INVAL; 990 brelse(bp); 991 992 return (0); 993 } 994 995 /* 996 * Reads the signature block from swap, checks against the current machine's 997 * information. If the information matches, perform a resume by reading the 998 * saved image into the pig area, and unpacking. 999 */ 1000 void 1001 hibernate_resume(void) 1002 { 1003 union hibernate_info hib; 1004 int s; 1005 1006 /* Get current running machine's hibernate info */ 1007 memset(&hib, 0, sizeof(hib)); 1008 if (get_hibernate_info(&hib, 0)) { 1009 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1010 return; 1011 } 1012 1013 /* Read hibernate info from disk */ 1014 s = splbio(); 1015 1016 DPRINTF("reading hibernate signature block location: %lld\n", 1017 hib.sig_offset); 1018 1019 if (hibernate_block_io(&hib, 1020 hib.sig_offset, 1021 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1022 DPRINTF("error in hibernate read"); 1023 splx(s); 1024 return; 1025 } 1026 1027 /* Check magic number */ 1028 if (disk_hib.magic != HIBERNATE_MAGIC) { 1029 DPRINTF("wrong magic number in hibernate signature: %x\n", 1030 disk_hib.magic); 1031 splx(s); 1032 return; 1033 } 1034 1035 /* 1036 * We (possibly) found a hibernate signature. Clear signature first, 1037 * to prevent accidental resume or endless resume cycles later. 1038 */ 1039 if (hibernate_clear_signature()) { 1040 DPRINTF("error clearing hibernate signature block\n"); 1041 splx(s); 1042 return; 1043 } 1044 1045 /* 1046 * If on-disk and in-memory hibernate signatures match, 1047 * this means we should do a resume from hibernate. 1048 */ 1049 if (hibernate_compare_signature(&hib, &disk_hib)) { 1050 DPRINTF("mismatched hibernate signature block\n"); 1051 splx(s); 1052 return; 1053 } 1054 1055 #ifdef MULTIPROCESSOR 1056 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1057 DPRINTF("hibernate: quiescing APs\n"); 1058 hibernate_quiesce_cpus(); 1059 #endif /* MULTIPROCESSOR */ 1060 1061 /* Read the image from disk into the image (pig) area */ 1062 if (hibernate_read_image(&disk_hib)) 1063 goto fail; 1064 1065 DPRINTF("hibernate: quiescing devices\n"); 1066 if (config_suspend_all(DVACT_QUIESCE) != 0) 1067 goto fail; 1068 1069 (void) splhigh(); 1070 hibernate_disable_intr_machdep(); 1071 cold = 1; 1072 1073 DPRINTF("hibernate: suspending devices\n"); 1074 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1075 cold = 0; 1076 hibernate_enable_intr_machdep(); 1077 goto fail; 1078 } 1079 1080 printf("Unpacking image...\n"); 1081 1082 /* Switch stacks */ 1083 DPRINTF("hibernate: switching stacks\n"); 1084 hibernate_switch_stack_machdep(); 1085 1086 #ifndef NO_PROPOLICE 1087 /* Start using suspended kernel's propolice guard */ 1088 __guard_local = disk_hib.guard; 1089 #endif /* ! NO_PROPOLICE */ 1090 1091 /* Unpack and resume */ 1092 hibernate_unpack_image(&disk_hib); 1093 1094 fail: 1095 splx(s); 1096 printf("\nUnable to resume hibernated image\n"); 1097 } 1098 1099 /* 1100 * Unpack image from pig area to original location by looping through the 1101 * list of output chunks in the order they should be restored (fchunks). 1102 * 1103 * Note that due to the stack smash protector and the fact that we have 1104 * switched stacks, it is not permitted to return from this function. 1105 */ 1106 void 1107 hibernate_unpack_image(union hibernate_info *hib) 1108 { 1109 struct hibernate_disk_chunk *chunks; 1110 union hibernate_info local_hib; 1111 paddr_t image_cur = global_pig_start; 1112 short i, *fchunks; 1113 char *pva; 1114 1115 /* Piglet will be identity mapped (VA == PA) */ 1116 pva = (char *)hib->piglet_pa; 1117 1118 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1119 1120 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1121 1122 /* Can't use hiber_info that's passed in after this point */ 1123 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1124 1125 /* VA == PA */ 1126 local_hib.piglet_va = local_hib.piglet_pa; 1127 1128 /* 1129 * Point of no return. Once we pass this point, only kernel code can 1130 * be accessed. No global variables or other kernel data structures 1131 * are guaranteed to be coherent after unpack starts. 1132 * 1133 * The image is now in high memory (pig area), we unpack from the pig 1134 * to the correct location in memory. We'll eventually end up copying 1135 * on top of ourself, but we are assured the kernel code here is the 1136 * same between the hibernated and resuming kernel, and we are running 1137 * on our own stack, so the overwrite is ok. 1138 */ 1139 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1140 hibernate_activate_resume_pt_machdep(); 1141 1142 for (i = 0; i < local_hib.chunk_ctr; i++) { 1143 /* Reset zlib for inflate */ 1144 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1145 panic("hibernate failed to reset zlib for inflate"); 1146 1147 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1148 image_cur); 1149 1150 image_cur += chunks[fchunks[i]].compressed_size; 1151 1152 } 1153 1154 /* 1155 * Resume the loaded kernel by jumping to the MD resume vector. 1156 * We won't be returning from this call. 1157 */ 1158 hibernate_resume_machdep(); 1159 } 1160 1161 /* 1162 * Bounce a compressed image chunk to the piglet, entering mappings for the 1163 * copied pages as needed 1164 */ 1165 void 1166 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1167 { 1168 size_t ct, ofs; 1169 paddr_t src = img_cur; 1170 vaddr_t dest = piglet; 1171 1172 /* Copy first partial page */ 1173 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1174 ofs = (src & PAGE_MASK); 1175 1176 if (ct < PAGE_SIZE) { 1177 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1178 (src - ofs), 0); 1179 hibernate_flush(); 1180 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1181 src += ct; 1182 dest += ct; 1183 } 1184 1185 /* Copy remaining pages */ 1186 while (src < size + img_cur) { 1187 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1188 hibernate_flush(); 1189 ct = PAGE_SIZE; 1190 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1191 hibernate_flush(); 1192 src += ct; 1193 dest += ct; 1194 } 1195 } 1196 1197 /* 1198 * Process a chunk by bouncing it to the piglet, followed by unpacking 1199 */ 1200 void 1201 hibernate_process_chunk(union hibernate_info *hib, 1202 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1203 { 1204 char *pva = (char *)hib->piglet_va; 1205 1206 hibernate_copy_chunk_to_piglet(img_cur, 1207 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1208 hibernate_inflate_region(hib, chunk->base, 1209 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1210 chunk->compressed_size); 1211 } 1212 1213 /* 1214 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1215 * inaddr and range_end. 1216 */ 1217 int 1218 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1219 { 1220 int rle; 1221 1222 rle = uvm_page_rle(inaddr); 1223 KASSERT(rle >= 0 && rle <= MAX_RLE); 1224 1225 /* Clamp RLE to range end */ 1226 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1227 rle = (range_end - inaddr) / PAGE_SIZE; 1228 1229 return (rle); 1230 } 1231 1232 /* 1233 * Write the RLE byte for page at 'inaddr' to the output stream. 1234 * Returns the number of pages to be skipped at 'inaddr'. 1235 */ 1236 int 1237 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1238 paddr_t range_end, daddr_t *blkctr, 1239 size_t *out_remaining) 1240 { 1241 int rle, err, *rleloc; 1242 struct hibernate_zlib_state *hibernate_state; 1243 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1244 1245 hibernate_state = 1246 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1247 1248 rle = hibernate_calc_rle(inaddr, range_end); 1249 1250 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1251 *rleloc = rle; 1252 1253 /* Deflate the RLE byte into the stream */ 1254 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1255 1256 /* Did we fill the output page? If so, flush to disk */ 1257 if (*out_remaining == 0) { 1258 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1259 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1260 hib->io_page))) { 1261 DPRINTF("hib write error %d\n", err); 1262 return (err); 1263 } 1264 1265 *blkctr += PAGE_SIZE / DEV_BSIZE; 1266 *out_remaining = PAGE_SIZE; 1267 1268 /* If we didn't deflate the entire RLE byte, finish it now */ 1269 if (hibernate_state->hib_stream.avail_in != 0) 1270 hibernate_deflate(hib, 1271 (vaddr_t)hibernate_state->hib_stream.next_in, 1272 out_remaining); 1273 } 1274 1275 return (rle); 1276 } 1277 1278 /* 1279 * Write a compressed version of this machine's memory to disk, at the 1280 * precalculated swap offset: 1281 * 1282 * end of swap - signature block size - chunk table size - memory size 1283 * 1284 * The function begins by looping through each phys mem range, cutting each 1285 * one into MD sized chunks. These chunks are then compressed individually 1286 * and written out to disk, in phys mem order. Some chunks might compress 1287 * more than others, and for this reason, each chunk's size is recorded 1288 * in the chunk table, which is written to disk after the image has 1289 * properly been compressed and written (in hibernate_write_chunktable). 1290 * 1291 * When this function is called, the machine is nearly suspended - most 1292 * devices are quiesced/suspended, interrupts are off, and cold has 1293 * been set. This means that there can be no side effects once the 1294 * write has started, and the write function itself can also have no 1295 * side effects. This also means no printfs are permitted (since printf 1296 * has side effects.) 1297 * 1298 * Return values : 1299 * 1300 * 0 - success 1301 * EIO - I/O error occurred writing the chunks 1302 * EINVAL - Failed to write a complete range 1303 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1304 */ 1305 int 1306 hibernate_write_chunks(union hibernate_info *hib) 1307 { 1308 paddr_t range_base, range_end, inaddr, temp_inaddr; 1309 size_t nblocks, out_remaining, used; 1310 struct hibernate_disk_chunk *chunks; 1311 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1312 daddr_t blkctr = 0; 1313 int i, rle, err; 1314 struct hibernate_zlib_state *hibernate_state; 1315 1316 hibernate_state = 1317 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1318 1319 hib->chunk_ctr = 0; 1320 1321 /* 1322 * Map the utility VAs to the piglet. See the piglet map at the 1323 * top of this file for piglet layout information. 1324 */ 1325 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1326 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1327 1328 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1329 HIBERNATE_CHUNK_SIZE); 1330 1331 /* Calculate the chunk regions */ 1332 for (i = 0; i < hib->nranges; i++) { 1333 range_base = hib->ranges[i].base; 1334 range_end = hib->ranges[i].end; 1335 1336 inaddr = range_base; 1337 1338 while (inaddr < range_end) { 1339 chunks[hib->chunk_ctr].base = inaddr; 1340 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1341 chunks[hib->chunk_ctr].end = inaddr + 1342 HIBERNATE_CHUNK_SIZE; 1343 else 1344 chunks[hib->chunk_ctr].end = range_end; 1345 1346 inaddr += HIBERNATE_CHUNK_SIZE; 1347 hib->chunk_ctr ++; 1348 } 1349 } 1350 1351 uvm_pmr_dirty_everything(); 1352 uvm_pmr_zero_everything(); 1353 1354 /* Compress and write the chunks in the chunktable */ 1355 for (i = 0; i < hib->chunk_ctr; i++) { 1356 range_base = chunks[i].base; 1357 range_end = chunks[i].end; 1358 1359 chunks[i].offset = blkctr + hib->image_offset; 1360 1361 /* Reset zlib for deflate */ 1362 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1363 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1364 return (ENOMEM); 1365 } 1366 1367 inaddr = range_base; 1368 1369 /* 1370 * For each range, loop through its phys mem region 1371 * and write out the chunks (the last chunk might be 1372 * smaller than the chunk size). 1373 */ 1374 while (inaddr < range_end) { 1375 out_remaining = PAGE_SIZE; 1376 while (out_remaining > 0 && inaddr < range_end) { 1377 /* 1378 * Adjust for regions that are not evenly 1379 * divisible by PAGE_SIZE or overflowed 1380 * pages from the previous iteration. 1381 */ 1382 temp_inaddr = (inaddr & PAGE_MASK) + 1383 hibernate_copy_page; 1384 1385 /* Deflate from temp_inaddr to IO page */ 1386 if (inaddr != range_end) { 1387 if (inaddr % PAGE_SIZE == 0) { 1388 rle = hibernate_write_rle(hib, 1389 inaddr, 1390 range_end, 1391 &blkctr, 1392 &out_remaining); 1393 } 1394 1395 if (rle == 0) { 1396 pmap_kenter_pa(hibernate_temp_page, 1397 inaddr & PMAP_PA_MASK, 1398 PROT_READ); 1399 1400 pmap_activate(curproc); 1401 1402 bcopy((caddr_t)hibernate_temp_page, 1403 (caddr_t)hibernate_copy_page, 1404 PAGE_SIZE); 1405 inaddr += hibernate_deflate(hib, 1406 temp_inaddr, 1407 &out_remaining); 1408 } else { 1409 inaddr += rle * PAGE_SIZE; 1410 if (inaddr > range_end) 1411 inaddr = range_end; 1412 } 1413 1414 } 1415 1416 if (out_remaining == 0) { 1417 /* Filled up the page */ 1418 nblocks = PAGE_SIZE / DEV_BSIZE; 1419 1420 if ((err = hib->io_func(hib->dev, 1421 blkctr + hib->image_offset, 1422 (vaddr_t)hibernate_io_page, 1423 PAGE_SIZE, HIB_W, hib->io_page))) { 1424 DPRINTF("hib write error %d\n", 1425 err); 1426 return (err); 1427 } 1428 1429 blkctr += nblocks; 1430 } 1431 } 1432 } 1433 1434 if (inaddr != range_end) { 1435 DPRINTF("deflate range ended prematurely\n"); 1436 return (EINVAL); 1437 } 1438 1439 /* 1440 * End of range. Round up to next secsize bytes 1441 * after finishing compress 1442 */ 1443 if (out_remaining == 0) 1444 out_remaining = PAGE_SIZE; 1445 1446 /* Finish compress */ 1447 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1448 hibernate_state->hib_stream.avail_in = 0; 1449 hibernate_state->hib_stream.next_out = 1450 (unsigned char *)hibernate_io_page + 1451 (PAGE_SIZE - out_remaining); 1452 1453 /* We have an extra output page available for finalize */ 1454 hibernate_state->hib_stream.avail_out = 1455 out_remaining + PAGE_SIZE; 1456 1457 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1458 Z_STREAM_END) { 1459 DPRINTF("deflate error in output stream: %d\n", err); 1460 return (err); 1461 } 1462 1463 out_remaining = hibernate_state->hib_stream.avail_out; 1464 1465 used = 2 * PAGE_SIZE - out_remaining; 1466 nblocks = used / DEV_BSIZE; 1467 1468 /* Round up to next block if needed */ 1469 if (used % DEV_BSIZE != 0) 1470 nblocks ++; 1471 1472 /* Write final block(s) for this chunk */ 1473 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1474 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1475 HIB_W, hib->io_page))) { 1476 DPRINTF("hib final write error %d\n", err); 1477 return (err); 1478 } 1479 1480 blkctr += nblocks; 1481 1482 chunks[i].compressed_size = (blkctr + hib->image_offset - 1483 chunks[i].offset) * DEV_BSIZE; 1484 } 1485 1486 hib->chunktable_offset = hib->image_offset + blkctr; 1487 return (0); 1488 } 1489 1490 /* 1491 * Reset the zlib stream state and allocate a new hiballoc area for either 1492 * inflate or deflate. This function is called once for each hibernate chunk. 1493 * Calling hiballoc_init multiple times is acceptable since the memory it is 1494 * provided is unmanaged memory (stolen). We use the memory provided to us 1495 * by the piglet allocated via the supplied hib. 1496 */ 1497 int 1498 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1499 { 1500 vaddr_t hibernate_zlib_start; 1501 size_t hibernate_zlib_size; 1502 char *pva = (char *)hib->piglet_va; 1503 struct hibernate_zlib_state *hibernate_state; 1504 1505 hibernate_state = 1506 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1507 1508 if (!deflate) 1509 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1510 1511 /* 1512 * See piglet layout information at the start of this file for 1513 * information on the zlib page assignments. 1514 */ 1515 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1516 hibernate_zlib_size = 80 * PAGE_SIZE; 1517 1518 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1519 memset(hibernate_state, 0, PAGE_SIZE); 1520 1521 /* Set up stream structure */ 1522 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1523 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1524 1525 /* Initialize the hiballoc arena for zlib allocs/frees */ 1526 hiballoc_init(&hibernate_state->hiballoc_arena, 1527 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1528 1529 if (deflate) { 1530 return deflateInit(&hibernate_state->hib_stream, 1531 Z_BEST_SPEED); 1532 } else 1533 return inflateInit(&hibernate_state->hib_stream); 1534 } 1535 1536 /* 1537 * Reads the hibernated memory image from disk, whose location and 1538 * size are recorded in hib. Begin by reading the persisted 1539 * chunk table, which records the original chunk placement location 1540 * and compressed size for each. Next, allocate a pig region of 1541 * sufficient size to hold the compressed image. Next, read the 1542 * chunks into the pig area (calling hibernate_read_chunks to do this), 1543 * and finally, if all of the above succeeds, clear the hibernate signature. 1544 * The function will then return to hibernate_resume, which will proceed 1545 * to unpack the pig image to the correct place in memory. 1546 */ 1547 int 1548 hibernate_read_image(union hibernate_info *hib) 1549 { 1550 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1551 paddr_t image_start, image_end, pig_start, pig_end; 1552 struct hibernate_disk_chunk *chunks; 1553 daddr_t blkctr; 1554 vaddr_t chunktable = (vaddr_t)NULL; 1555 paddr_t piglet_chunktable = hib->piglet_pa + 1556 HIBERNATE_CHUNK_SIZE; 1557 int i, status; 1558 1559 status = 0; 1560 pmap_activate(curproc); 1561 1562 /* Calculate total chunk table size in disk blocks */ 1563 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1564 1565 blkctr = hib->chunktable_offset; 1566 1567 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1568 &kp_none, &kd_nowait); 1569 1570 if (!chunktable) 1571 return (1); 1572 1573 /* Map chunktable pages */ 1574 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1575 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1576 PROT_READ | PROT_WRITE); 1577 pmap_update(pmap_kernel()); 1578 1579 /* Read the chunktable from disk into the piglet chunktable */ 1580 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1581 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1582 hibernate_block_io(hib, blkctr, MAXPHYS, 1583 chunktable + i, 0); 1584 1585 blkctr = hib->image_offset; 1586 compressed_size = 0; 1587 1588 chunks = (struct hibernate_disk_chunk *)chunktable; 1589 1590 for (i = 0; i < hib->chunk_ctr; i++) 1591 compressed_size += chunks[i].compressed_size; 1592 1593 disk_size = compressed_size; 1594 1595 printf("unhibernating @ block %lld length %lu bytes\n", 1596 hib->sig_offset - chunktable_size, 1597 compressed_size); 1598 1599 /* Allocate the pig area */ 1600 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1601 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1602 status = 1; 1603 goto unmap; 1604 } 1605 1606 pig_end = pig_start + pig_sz; 1607 1608 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1609 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1610 image_start = image_end - disk_size; 1611 1612 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1613 chunks); 1614 1615 /* Prepare the resume time pmap/page table */ 1616 hibernate_populate_resume_pt(hib, image_start, image_end); 1617 1618 unmap: 1619 /* Unmap chunktable pages */ 1620 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1621 pmap_update(pmap_kernel()); 1622 1623 return (status); 1624 } 1625 1626 /* 1627 * Read the hibernated memory chunks from disk (chunk information at this 1628 * point is stored in the piglet) into the pig area specified by 1629 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1630 * only chunk with overlap possibilities. 1631 */ 1632 int 1633 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1634 paddr_t pig_end, size_t image_compr_size, 1635 struct hibernate_disk_chunk *chunks) 1636 { 1637 paddr_t img_cur, piglet_base; 1638 daddr_t blkctr; 1639 size_t processed, compressed_size, read_size; 1640 int nchunks, nfchunks, num_io_pages; 1641 vaddr_t tempva, hibernate_fchunk_area; 1642 short *fchunks, i, j; 1643 1644 tempva = (vaddr_t)NULL; 1645 hibernate_fchunk_area = (vaddr_t)NULL; 1646 nfchunks = 0; 1647 piglet_base = hib->piglet_pa; 1648 global_pig_start = pig_start; 1649 1650 /* 1651 * These mappings go into the resuming kernel's page table, and are 1652 * used only during image read. They dissappear from existence 1653 * when the suspended kernel is unpacked on top of us. 1654 */ 1655 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1656 &kd_nowait); 1657 if (!tempva) 1658 return (1); 1659 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1660 &kp_none, &kd_nowait); 1661 if (!hibernate_fchunk_area) 1662 return (1); 1663 1664 /* Final output chunk ordering VA */ 1665 fchunks = (short *)hibernate_fchunk_area; 1666 1667 /* Map the chunk ordering region */ 1668 for(i = 0; i < 24 ; i++) 1669 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1670 piglet_base + ((4 + i) * PAGE_SIZE), 1671 PROT_READ | PROT_WRITE); 1672 pmap_update(pmap_kernel()); 1673 1674 nchunks = hib->chunk_ctr; 1675 1676 /* Initially start all chunks as unplaced */ 1677 for (i = 0; i < nchunks; i++) 1678 chunks[i].flags = 0; 1679 1680 /* 1681 * Search the list for chunks that are outside the pig area. These 1682 * can be placed first in the final output list. 1683 */ 1684 for (i = 0; i < nchunks; i++) { 1685 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1686 fchunks[nfchunks] = i; 1687 nfchunks++; 1688 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1689 } 1690 } 1691 1692 /* 1693 * Walk the ordering, place the chunks in ascending memory order. 1694 */ 1695 for (i = 0; i < nchunks; i++) { 1696 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1697 fchunks[nfchunks] = i; 1698 nfchunks++; 1699 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1700 } 1701 } 1702 1703 img_cur = pig_start; 1704 1705 for (i = 0; i < nfchunks; i++) { 1706 blkctr = chunks[fchunks[i]].offset; 1707 processed = 0; 1708 compressed_size = chunks[fchunks[i]].compressed_size; 1709 1710 while (processed < compressed_size) { 1711 if (compressed_size - processed >= MAXPHYS) 1712 read_size = MAXPHYS; 1713 else 1714 read_size = compressed_size - processed; 1715 1716 /* 1717 * We're reading read_size bytes, offset from the 1718 * start of a page by img_cur % PAGE_SIZE, so the 1719 * end will be read_size + (img_cur % PAGE_SIZE) 1720 * from the start of the first page. Round that 1721 * up to the next page size. 1722 */ 1723 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1724 + PAGE_SIZE - 1) / PAGE_SIZE; 1725 1726 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1727 1728 /* Map pages for this read */ 1729 for (j = 0; j < num_io_pages; j ++) 1730 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1731 img_cur + j * PAGE_SIZE, 1732 PROT_READ | PROT_WRITE); 1733 1734 pmap_update(pmap_kernel()); 1735 1736 hibernate_block_io(hib, blkctr, read_size, 1737 tempva + (img_cur & PAGE_MASK), 0); 1738 1739 blkctr += (read_size / DEV_BSIZE); 1740 1741 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1742 pmap_update(pmap_kernel()); 1743 1744 processed += read_size; 1745 img_cur += read_size; 1746 } 1747 } 1748 1749 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1750 pmap_update(pmap_kernel()); 1751 1752 return (0); 1753 } 1754 1755 /* 1756 * Hibernating a machine comprises the following operations: 1757 * 1. Calculating this machine's hibernate_info information 1758 * 2. Allocating a piglet and saving the piglet's physaddr 1759 * 3. Calculating the memory chunks 1760 * 4. Writing the compressed chunks to disk 1761 * 5. Writing the chunk table 1762 * 6. Writing the signature block (hibernate_info) 1763 * 1764 * On most architectures, the function calling hibernate_suspend would 1765 * then power off the machine using some MD-specific implementation. 1766 */ 1767 int 1768 hibernate_suspend(void) 1769 { 1770 union hibernate_info hib; 1771 u_long start, end; 1772 1773 /* 1774 * Calculate memory ranges, swap offsets, etc. 1775 * This also allocates a piglet whose physaddr is stored in 1776 * hib->piglet_pa and vaddr stored in hib->piglet_va 1777 */ 1778 if (get_hibernate_info(&hib, 1)) { 1779 DPRINTF("failed to obtain hibernate info\n"); 1780 return (1); 1781 } 1782 1783 /* Find a page-addressed region in swap [start,end] */ 1784 if (uvm_hibswap(hib.dev, &start, &end)) { 1785 printf("hibernate: cannot find any swap\n"); 1786 return (1); 1787 } 1788 1789 if (end - start < 1000) { 1790 printf("hibernate: insufficient swap (%lu is too small)\n", 1791 end - start); 1792 return (1); 1793 } 1794 1795 /* Calculate block offsets in swap */ 1796 hib.image_offset = ctod(start); 1797 1798 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1799 hib.image_offset, ctod(end) - ctod(start)); 1800 1801 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1802 PROT_READ | PROT_WRITE); 1803 pmap_activate(curproc); 1804 1805 DPRINTF("hibernate: writing chunks\n"); 1806 if (hibernate_write_chunks(&hib)) { 1807 DPRINTF("hibernate_write_chunks failed\n"); 1808 goto fail; 1809 } 1810 1811 DPRINTF("hibernate: writing chunktable\n"); 1812 if (hibernate_write_chunktable(&hib)) { 1813 DPRINTF("hibernate_write_chunktable failed\n"); 1814 goto fail; 1815 } 1816 1817 DPRINTF("hibernate: writing signature\n"); 1818 if (hibernate_write_signature(&hib)) { 1819 DPRINTF("hibernate_write_signature failed\n"); 1820 goto fail; 1821 } 1822 1823 /* Allow the disk to settle */ 1824 delay(500000); 1825 1826 /* 1827 * Give the device-specific I/O function a notification that we're 1828 * done, and that it can clean up or shutdown as needed. 1829 */ 1830 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1831 1832 return (0); 1833 fail: 1834 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 1835 pmap_update(pmap_kernel()); 1836 return (1); 1837 } 1838 1839 int 1840 hibernate_alloc(void) 1841 { 1842 KASSERT(global_piglet_va == 0); 1843 KASSERT(hibernate_temp_page == 0); 1844 1845 /* Allocate a piglet, store its addresses in the supplied globals */ 1846 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1847 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1848 return (ENOMEM); 1849 1850 /* 1851 * Allocate VA for the temp page. 1852 * 1853 * This will become part of the suspended kernel and will 1854 * be freed in hibernate_free, upon resume (or hibernate 1855 * failure) 1856 */ 1857 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1858 &kp_none, &kd_nowait); 1859 if (!hibernate_temp_page) { 1860 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1861 return (ENOMEM); 1862 } 1863 1864 return (0); 1865 } 1866 1867 /* 1868 * Free items allocated by hibernate_alloc() 1869 */ 1870 void 1871 hibernate_free(void) 1872 { 1873 if (global_piglet_va) 1874 uvm_pmr_free_piglet(global_piglet_va, 1875 4 * HIBERNATE_CHUNK_SIZE); 1876 1877 if (hibernate_temp_page) { 1878 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1879 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1880 &kv_any, &kp_none); 1881 } 1882 1883 global_piglet_va = 0; 1884 hibernate_temp_page = 0; 1885 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 1886 pmap_update(pmap_kernel()); 1887 } 1888