1 /* $OpenBSD: sched_bsd.c,v 1.75 2023/06/20 16:30:30 cheloha Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/resourcevar.h> 46 #include <uvm/uvm_extern.h> 47 #include <sys/sched.h> 48 #include <sys/timeout.h> 49 #include <sys/smr.h> 50 #include <sys/tracepoint.h> 51 52 #ifdef KTRACE 53 #include <sys/ktrace.h> 54 #endif 55 56 57 int lbolt; /* once a second sleep address */ 58 int rrticks_init; /* # of hardclock ticks per roundrobin() */ 59 60 #ifdef MULTIPROCESSOR 61 struct __mp_lock sched_lock; 62 #endif 63 64 void schedcpu(void *); 65 uint32_t decay_aftersleep(uint32_t, uint32_t); 66 67 /* 68 * Force switch among equal priority processes every 100ms. 69 */ 70 void 71 roundrobin(struct cpu_info *ci) 72 { 73 struct schedstate_percpu *spc = &ci->ci_schedstate; 74 75 spc->spc_rrticks = rrticks_init; 76 77 if (ci->ci_curproc != NULL) { 78 if (spc->spc_schedflags & SPCF_SEENRR) { 79 /* 80 * The process has already been through a roundrobin 81 * without switching and may be hogging the CPU. 82 * Indicate that the process should yield. 83 */ 84 atomic_setbits_int(&spc->spc_schedflags, 85 SPCF_SHOULDYIELD); 86 } else { 87 atomic_setbits_int(&spc->spc_schedflags, 88 SPCF_SEENRR); 89 } 90 } 91 92 if (spc->spc_nrun) 93 need_resched(ci); 94 } 95 96 /* 97 * Constants for digital decay and forget: 98 * 90% of (p_estcpu) usage in 5 * loadav time 99 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 100 * Note that, as ps(1) mentions, this can let percentages 101 * total over 100% (I've seen 137.9% for 3 processes). 102 * 103 * Note that hardclock updates p_estcpu and p_cpticks independently. 104 * 105 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 106 * That is, the system wants to compute a value of decay such 107 * that the following for loop: 108 * for (i = 0; i < (5 * loadavg); i++) 109 * p_estcpu *= decay; 110 * will compute 111 * p_estcpu *= 0.1; 112 * for all values of loadavg: 113 * 114 * Mathematically this loop can be expressed by saying: 115 * decay ** (5 * loadavg) ~= .1 116 * 117 * The system computes decay as: 118 * decay = (2 * loadavg) / (2 * loadavg + 1) 119 * 120 * We wish to prove that the system's computation of decay 121 * will always fulfill the equation: 122 * decay ** (5 * loadavg) ~= .1 123 * 124 * If we compute b as: 125 * b = 2 * loadavg 126 * then 127 * decay = b / (b + 1) 128 * 129 * We now need to prove two things: 130 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 131 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 132 * 133 * Facts: 134 * For x close to zero, exp(x) =~ 1 + x, since 135 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 136 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 137 * For x close to zero, ln(1+x) =~ x, since 138 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 139 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 140 * ln(.1) =~ -2.30 141 * 142 * Proof of (1): 143 * Solve (factor)**(power) =~ .1 given power (5*loadav): 144 * solving for factor, 145 * ln(factor) =~ (-2.30/5*loadav), or 146 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 147 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 148 * 149 * Proof of (2): 150 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 151 * solving for power, 152 * power*ln(b/(b+1)) =~ -2.30, or 153 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 154 * 155 * Actual power values for the implemented algorithm are as follows: 156 * loadav: 1 2 3 4 157 * power: 5.68 10.32 14.94 19.55 158 */ 159 160 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 161 #define loadfactor(loadav) (2 * (loadav)) 162 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 163 164 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 165 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 166 167 /* 168 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 169 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 170 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 171 * 172 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 173 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 174 * 175 * If you don't want to bother with the faster/more-accurate formula, you 176 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 177 * (more general) method of calculating the %age of CPU used by a process. 178 */ 179 #define CCPU_SHIFT 11 180 181 /* 182 * Recompute process priorities, every second. 183 */ 184 void 185 schedcpu(void *arg) 186 { 187 struct timeout *to = (struct timeout *)arg; 188 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 189 struct proc *p; 190 int s; 191 unsigned int newcpu; 192 193 LIST_FOREACH(p, &allproc, p_list) { 194 /* 195 * Idle threads are never placed on the runqueue, 196 * therefore computing their priority is pointless. 197 */ 198 if (p->p_cpu != NULL && 199 p->p_cpu->ci_schedstate.spc_idleproc == p) 200 continue; 201 /* 202 * Increment sleep time (if sleeping). We ignore overflow. 203 */ 204 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 205 p->p_slptime++; 206 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 207 /* 208 * If the process has slept the entire second, 209 * stop recalculating its priority until it wakes up. 210 */ 211 if (p->p_slptime > 1) 212 continue; 213 SCHED_LOCK(s); 214 /* 215 * p_pctcpu is only for diagnostic tools such as ps. 216 */ 217 #if (FSHIFT >= CCPU_SHIFT) 218 p->p_pctcpu += (stathz == 100)? 219 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 220 100 * (((fixpt_t) p->p_cpticks) 221 << (FSHIFT - CCPU_SHIFT)) / stathz; 222 #else 223 p->p_pctcpu += ((FSCALE - ccpu) * 224 (p->p_cpticks * FSCALE / stathz)) >> FSHIFT; 225 #endif 226 p->p_cpticks = 0; 227 newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu); 228 setpriority(p, newcpu, p->p_p->ps_nice); 229 230 if (p->p_stat == SRUN && 231 (p->p_runpri / SCHED_PPQ) != (p->p_usrpri / SCHED_PPQ)) { 232 remrunqueue(p); 233 setrunqueue(p->p_cpu, p, p->p_usrpri); 234 } 235 SCHED_UNLOCK(s); 236 } 237 wakeup(&lbolt); 238 timeout_add_sec(to, 1); 239 } 240 241 /* 242 * Recalculate the priority of a process after it has slept for a while. 243 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 244 * least six times the loadfactor will decay p_estcpu to zero. 245 */ 246 uint32_t 247 decay_aftersleep(uint32_t estcpu, uint32_t slptime) 248 { 249 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 250 uint32_t newcpu; 251 252 if (slptime > 5 * loadfac) 253 newcpu = 0; 254 else { 255 newcpu = estcpu; 256 slptime--; /* the first time was done in schedcpu */ 257 while (newcpu && --slptime) 258 newcpu = decay_cpu(loadfac, newcpu); 259 260 } 261 262 return (newcpu); 263 } 264 265 /* 266 * General yield call. Puts the current process back on its run queue and 267 * performs a voluntary context switch. 268 */ 269 void 270 yield(void) 271 { 272 struct proc *p = curproc; 273 int s; 274 275 SCHED_LOCK(s); 276 setrunqueue(p->p_cpu, p, p->p_usrpri); 277 p->p_ru.ru_nvcsw++; 278 mi_switch(); 279 SCHED_UNLOCK(s); 280 } 281 282 /* 283 * General preemption call. Puts the current process back on its run queue 284 * and performs an involuntary context switch. If a process is supplied, 285 * we switch to that process. Otherwise, we use the normal process selection 286 * criteria. 287 */ 288 void 289 preempt(void) 290 { 291 struct proc *p = curproc; 292 int s; 293 294 SCHED_LOCK(s); 295 setrunqueue(p->p_cpu, p, p->p_usrpri); 296 p->p_ru.ru_nivcsw++; 297 mi_switch(); 298 SCHED_UNLOCK(s); 299 } 300 301 void 302 mi_switch(void) 303 { 304 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 305 struct proc *p = curproc; 306 struct proc *nextproc; 307 struct process *pr = p->p_p; 308 struct timespec ts; 309 #ifdef MULTIPROCESSOR 310 int hold_count; 311 int sched_count; 312 #endif 313 314 assertwaitok(); 315 KASSERT(p->p_stat != SONPROC); 316 317 SCHED_ASSERT_LOCKED(); 318 319 #ifdef MULTIPROCESSOR 320 /* 321 * Release the kernel_lock, as we are about to yield the CPU. 322 */ 323 sched_count = __mp_release_all_but_one(&sched_lock); 324 if (_kernel_lock_held()) 325 hold_count = __mp_release_all(&kernel_lock); 326 else 327 hold_count = 0; 328 #endif 329 330 /* 331 * Compute the amount of time during which the current 332 * process was running, and add that to its total so far. 333 */ 334 nanouptime(&ts); 335 if (timespeccmp(&ts, &spc->spc_runtime, <)) { 336 #if 0 337 printf("uptime is not monotonic! " 338 "ts=%lld.%09lu, runtime=%lld.%09lu\n", 339 (long long)tv.tv_sec, tv.tv_nsec, 340 (long long)spc->spc_runtime.tv_sec, 341 spc->spc_runtime.tv_nsec); 342 #endif 343 } else { 344 timespecsub(&ts, &spc->spc_runtime, &ts); 345 timespecadd(&p->p_rtime, &ts, &p->p_rtime); 346 } 347 348 /* add the time counts for this thread to the process's total */ 349 tuagg_unlocked(pr, p); 350 351 /* 352 * Process is about to yield the CPU; clear the appropriate 353 * scheduling flags. 354 */ 355 atomic_clearbits_int(&spc->spc_schedflags, SPCF_SWITCHCLEAR); 356 357 nextproc = sched_chooseproc(); 358 359 if (p != nextproc) { 360 uvmexp.swtch++; 361 TRACEPOINT(sched, off__cpu, nextproc->p_tid + THREAD_PID_OFFSET, 362 nextproc->p_p->ps_pid); 363 cpu_switchto(p, nextproc); 364 TRACEPOINT(sched, on__cpu, NULL); 365 } else { 366 TRACEPOINT(sched, remain__cpu, NULL); 367 p->p_stat = SONPROC; 368 } 369 370 clear_resched(curcpu()); 371 372 SCHED_ASSERT_LOCKED(); 373 374 /* 375 * To preserve lock ordering, we need to release the sched lock 376 * and grab it after we grab the big lock. 377 * In the future, when the sched lock isn't recursive, we'll 378 * just release it here. 379 */ 380 #ifdef MULTIPROCESSOR 381 __mp_unlock(&sched_lock); 382 #endif 383 384 SCHED_ASSERT_UNLOCKED(); 385 386 smr_idle(); 387 388 /* 389 * We're running again; record our new start time. We might 390 * be running on a new CPU now, so don't use the cache'd 391 * schedstate_percpu pointer. 392 */ 393 KASSERT(p->p_cpu == curcpu()); 394 395 nanouptime(&p->p_cpu->ci_schedstate.spc_runtime); 396 397 #ifdef MULTIPROCESSOR 398 /* 399 * Reacquire the kernel_lock now. We do this after we've 400 * released the scheduler lock to avoid deadlock, and before 401 * we reacquire the interlock and the scheduler lock. 402 */ 403 if (hold_count) 404 __mp_acquire_count(&kernel_lock, hold_count); 405 __mp_acquire_count(&sched_lock, sched_count + 1); 406 #endif 407 } 408 409 /* 410 * Change process state to be runnable, 411 * placing it on the run queue. 412 */ 413 void 414 setrunnable(struct proc *p) 415 { 416 struct process *pr = p->p_p; 417 u_char prio; 418 419 SCHED_ASSERT_LOCKED(); 420 421 switch (p->p_stat) { 422 case 0: 423 case SRUN: 424 case SONPROC: 425 case SDEAD: 426 case SIDL: 427 default: 428 panic("setrunnable"); 429 case SSTOP: 430 /* 431 * If we're being traced (possibly because someone attached us 432 * while we were stopped), check for a signal from the debugger. 433 */ 434 if ((pr->ps_flags & PS_TRACED) != 0 && pr->ps_xsig != 0) 435 atomic_setbits_int(&p->p_siglist, sigmask(pr->ps_xsig)); 436 prio = p->p_usrpri; 437 unsleep(p); 438 break; 439 case SSLEEP: 440 prio = p->p_slppri; 441 unsleep(p); /* e.g. when sending signals */ 442 break; 443 } 444 setrunqueue(NULL, p, prio); 445 if (p->p_slptime > 1) { 446 uint32_t newcpu; 447 448 newcpu = decay_aftersleep(p->p_estcpu, p->p_slptime); 449 setpriority(p, newcpu, pr->ps_nice); 450 } 451 p->p_slptime = 0; 452 } 453 454 /* 455 * Compute the priority of a process. 456 */ 457 void 458 setpriority(struct proc *p, uint32_t newcpu, uint8_t nice) 459 { 460 unsigned int newprio; 461 462 newprio = min((PUSER + newcpu + NICE_WEIGHT * (nice - NZERO)), MAXPRI); 463 464 SCHED_ASSERT_LOCKED(); 465 p->p_estcpu = newcpu; 466 p->p_usrpri = newprio; 467 } 468 469 /* 470 * We adjust the priority of the current process. The priority of a process 471 * gets worse as it accumulates CPU time. The cpu usage estimator (p_estcpu) 472 * is increased here. The formula for computing priorities (in kern_synch.c) 473 * will compute a different value each time p_estcpu increases. This can 474 * cause a switch, but unless the priority crosses a PPQ boundary the actual 475 * queue will not change. The cpu usage estimator ramps up quite quickly 476 * when the process is running (linearly), and decays away exponentially, at 477 * a rate which is proportionally slower when the system is busy. The basic 478 * principle is that the system will 90% forget that the process used a lot 479 * of CPU time in 5 * loadav seconds. This causes the system to favor 480 * processes which haven't run much recently, and to round-robin among other 481 * processes. 482 */ 483 void 484 schedclock(struct proc *p) 485 { 486 struct cpu_info *ci = curcpu(); 487 struct schedstate_percpu *spc = &ci->ci_schedstate; 488 uint32_t newcpu; 489 int s; 490 491 if (p == spc->spc_idleproc || spc->spc_spinning) 492 return; 493 494 SCHED_LOCK(s); 495 newcpu = ESTCPULIM(p->p_estcpu + 1); 496 setpriority(p, newcpu, p->p_p->ps_nice); 497 SCHED_UNLOCK(s); 498 } 499 500 void (*cpu_setperf)(int); 501 502 #define PERFPOL_MANUAL 0 503 #define PERFPOL_AUTO 1 504 #define PERFPOL_HIGH 2 505 int perflevel = 100; 506 int perfpolicy = PERFPOL_AUTO; 507 508 #ifndef SMALL_KERNEL 509 /* 510 * The code below handles CPU throttling. 511 */ 512 #include <sys/sysctl.h> 513 514 void setperf_auto(void *); 515 struct timeout setperf_to = TIMEOUT_INITIALIZER(setperf_auto, NULL); 516 extern int hw_power; 517 518 void 519 setperf_auto(void *v) 520 { 521 static uint64_t *idleticks, *totalticks; 522 static int downbeats; 523 int i, j = 0; 524 int speedup = 0; 525 CPU_INFO_ITERATOR cii; 526 struct cpu_info *ci; 527 uint64_t idle, total, allidle = 0, alltotal = 0; 528 529 if (perfpolicy != PERFPOL_AUTO) 530 return; 531 532 if (cpu_setperf == NULL) 533 return; 534 535 if (hw_power) { 536 speedup = 1; 537 goto faster; 538 } 539 540 if (!idleticks) 541 if (!(idleticks = mallocarray(ncpusfound, sizeof(*idleticks), 542 M_DEVBUF, M_NOWAIT | M_ZERO))) 543 return; 544 if (!totalticks) 545 if (!(totalticks = mallocarray(ncpusfound, sizeof(*totalticks), 546 M_DEVBUF, M_NOWAIT | M_ZERO))) { 547 free(idleticks, M_DEVBUF, 548 sizeof(*idleticks) * ncpusfound); 549 return; 550 } 551 CPU_INFO_FOREACH(cii, ci) { 552 if (!cpu_is_online(ci)) 553 continue; 554 total = 0; 555 for (i = 0; i < CPUSTATES; i++) { 556 total += ci->ci_schedstate.spc_cp_time[i]; 557 } 558 total -= totalticks[j]; 559 idle = ci->ci_schedstate.spc_cp_time[CP_IDLE] - idleticks[j]; 560 if (idle < total / 3) 561 speedup = 1; 562 alltotal += total; 563 allidle += idle; 564 idleticks[j] += idle; 565 totalticks[j] += total; 566 j++; 567 } 568 if (allidle < alltotal / 2) 569 speedup = 1; 570 if (speedup && downbeats < 5) 571 downbeats++; 572 573 if (speedup && perflevel != 100) { 574 faster: 575 perflevel = 100; 576 cpu_setperf(perflevel); 577 } else if (!speedup && perflevel != 0 && --downbeats <= 0) { 578 perflevel = 0; 579 cpu_setperf(perflevel); 580 } 581 582 timeout_add_msec(&setperf_to, 100); 583 } 584 585 int 586 sysctl_hwsetperf(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 587 { 588 int err; 589 590 if (!cpu_setperf) 591 return EOPNOTSUPP; 592 593 if (perfpolicy != PERFPOL_MANUAL) 594 return sysctl_rdint(oldp, oldlenp, newp, perflevel); 595 596 err = sysctl_int_bounded(oldp, oldlenp, newp, newlen, 597 &perflevel, 0, 100); 598 if (err) 599 return err; 600 601 if (newp != NULL) 602 cpu_setperf(perflevel); 603 604 return 0; 605 } 606 607 int 608 sysctl_hwperfpolicy(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 609 { 610 char policy[32]; 611 int err; 612 613 if (!cpu_setperf) 614 return EOPNOTSUPP; 615 616 switch (perfpolicy) { 617 case PERFPOL_MANUAL: 618 strlcpy(policy, "manual", sizeof(policy)); 619 break; 620 case PERFPOL_AUTO: 621 strlcpy(policy, "auto", sizeof(policy)); 622 break; 623 case PERFPOL_HIGH: 624 strlcpy(policy, "high", sizeof(policy)); 625 break; 626 default: 627 strlcpy(policy, "unknown", sizeof(policy)); 628 break; 629 } 630 631 if (newp == NULL) 632 return sysctl_rdstring(oldp, oldlenp, newp, policy); 633 634 err = sysctl_string(oldp, oldlenp, newp, newlen, policy, sizeof(policy)); 635 if (err) 636 return err; 637 if (strcmp(policy, "manual") == 0) 638 perfpolicy = PERFPOL_MANUAL; 639 else if (strcmp(policy, "auto") == 0) 640 perfpolicy = PERFPOL_AUTO; 641 else if (strcmp(policy, "high") == 0) 642 perfpolicy = PERFPOL_HIGH; 643 else 644 return EINVAL; 645 646 if (perfpolicy == PERFPOL_AUTO) { 647 timeout_add_msec(&setperf_to, 200); 648 } else if (perfpolicy == PERFPOL_HIGH) { 649 perflevel = 100; 650 cpu_setperf(perflevel); 651 } 652 return 0; 653 } 654 #endif 655 656 void 657 scheduler_start(void) 658 { 659 static struct timeout schedcpu_to; 660 661 /* 662 * We avoid polluting the global namespace by keeping the scheduler 663 * timeouts static in this function. 664 * We setup the timeout here and kick schedcpu once to make it do 665 * its job. 666 */ 667 timeout_set(&schedcpu_to, schedcpu, &schedcpu_to); 668 669 rrticks_init = hz / 10; 670 schedcpu(&schedcpu_to); 671 uvm_meter(NULL); 672 673 #ifndef SMALL_KERNEL 674 if (perfpolicy == PERFPOL_AUTO) 675 timeout_add_msec(&setperf_to, 200); 676 #endif 677 } 678 679