xref: /openbsd-src/sys/kern/kern_time.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: kern_time.c,v 1.65 2008/09/19 23:36:24 djm Exp $	*/
2 /*	$NetBSD: kern_time.c,v 1.20 1996/02/18 11:57:06 fvdl Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
33  */
34 
35 #include <sys/param.h>
36 #include <sys/resourcevar.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/vnode.h>
41 #include <sys/signalvar.h>
42 #ifdef __HAVE_TIMECOUNTER
43 #include <sys/timetc.h>
44 #endif
45 
46 #include <sys/mount.h>
47 #include <sys/syscallargs.h>
48 
49 #include <machine/cpu.h>
50 
51 void	itimerround(struct timeval *);
52 
53 /*
54  * Time of day and interval timer support.
55  *
56  * These routines provide the kernel entry points to get and set
57  * the time-of-day and per-process interval timers.  Subroutines
58  * here provide support for adding and subtracting timeval structures
59  * and decrementing interval timers, optionally reloading the interval
60  * timers when they expire.
61  */
62 
63 /* This function is used by clock_settime and settimeofday */
64 #ifdef __HAVE_TIMECOUNTER
65 int
66 settime(struct timespec *ts)
67 {
68 	struct timespec now;
69 
70 
71 	/*
72 	 * Don't allow the time to be set forward so far it will wrap
73 	 * and become negative, thus allowing an attacker to bypass
74 	 * the next check below.  The cutoff is 1 year before rollover
75 	 * occurs, so even if the attacker uses adjtime(2) to move
76 	 * the time past the cutoff, it will take a very long time
77 	 * to get to the wrap point.
78 	 *
79 	 * XXX: we check against INT_MAX since on 64-bit
80 	 *	platforms, sizeof(int) != sizeof(long) and
81 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
82 	 */
83 	if (ts->tv_sec > INT_MAX - 365*24*60*60) {
84 		printf("denied attempt to set clock forward to %ld\n",
85 		    ts->tv_sec);
86 		return (EPERM);
87 	}
88 	/*
89 	 * If the system is secure, we do not allow the time to be
90 	 * set to an earlier value (it may be slowed using adjtime,
91 	 * but not set back). This feature prevent interlopers from
92 	 * setting arbitrary time stamps on files.
93 	 */
94 	nanotime(&now);
95 	if (securelevel > 1 && timespeccmp(ts, &now, <)) {
96 		printf("denied attempt to set clock back %ld seconds\n",
97 		    now.tv_sec - ts->tv_sec);
98 		return (EPERM);
99 	}
100 
101 	tc_setclock(ts);
102 	resettodr();
103 
104 	return (0);
105 }
106 #else
107 int
108 settime(struct timespec *ts)
109 {
110 	struct timeval delta, tvv, *tv;
111 	int s;
112 
113 	/* XXX - Ugh. */
114 	tv = &tvv;
115 	tvv.tv_sec = ts->tv_sec;
116 	tvv.tv_usec = ts->tv_nsec / 1000;
117 
118 	/*
119 	 * Don't allow the time to be set forward so far it will wrap
120 	 * and become negative, thus allowing an attacker to bypass
121 	 * the next check below.  The cutoff is 1 year before rollover
122 	 * occurs, so even if the attacker uses adjtime(2) to move
123 	 * the time past the cutoff, it will take a very long time
124 	 * to get to the wrap point.
125 	 *
126 	 * XXX: we check against INT_MAX since on 64-bit
127 	 *	platforms, sizeof(int) != sizeof(long) and
128 	 *	time_t is 32 bits even when atv.tv_sec is 64 bits.
129 	 */
130 	if (tv->tv_sec > INT_MAX - 365*24*60*60) {
131 		printf("denied attempt to set clock forward to %ld\n",
132 		    tv->tv_sec);
133 		return (EPERM);
134 	}
135 	/*
136 	 * If the system is secure, we do not allow the time to be
137 	 * set to an earlier value (it may be slowed using adjtime,
138 	 * but not set back). This feature prevent interlopers from
139 	 * setting arbitrary time stamps on files.
140 	 */
141 	if (securelevel > 1 && timercmp(tv, &time, <)) {
142 		printf("denied attempt to set clock back %ld seconds\n",
143 		    time_second - tv->tv_sec);
144 		return (EPERM);
145 	}
146 
147 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
148 	s = splclock();
149 	timersub(tv, &time, &delta);
150 	time = *tv;
151 	timeradd(&boottime, &delta, &boottime);
152 	splx(s);
153 	resettodr();
154 
155 	return (0);
156 }
157 #endif
158 
159 /* ARGSUSED */
160 int
161 sys_clock_gettime(struct proc *p, void *v, register_t *retval)
162 {
163 	struct sys_clock_gettime_args /* {
164 		syscallarg(clockid_t) clock_id;
165 		syscallarg(struct timespec *) tp;
166 	} */ *uap = v;
167 	clockid_t clock_id;
168 	struct timespec ats;
169 
170 	clock_id = SCARG(uap, clock_id);
171 	switch (clock_id) {
172 	case CLOCK_REALTIME:
173 		nanotime(&ats);
174 		break;
175 	case CLOCK_MONOTONIC:
176 		nanouptime(&ats);
177 		break;
178 	case CLOCK_PROF:
179 		ats.tv_sec = p->p_rtime.tv_sec;
180 		ats.tv_nsec = p->p_rtime.tv_usec * 1000;
181 		break;
182 	default:
183 		return (EINVAL);
184 	}
185 
186 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
187 }
188 
189 /* ARGSUSED */
190 int
191 sys_clock_settime(struct proc *p, void *v, register_t *retval)
192 {
193 	struct sys_clock_settime_args /* {
194 		syscallarg(clockid_t) clock_id;
195 		syscallarg(const struct timespec *) tp;
196 	} */ *uap = v;
197 	struct timespec ats;
198 	clockid_t clock_id;
199 	int error;
200 
201 	if ((error = suser(p, 0)) != 0)
202 		return (error);
203 
204 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
205 		return (error);
206 
207 	clock_id = SCARG(uap, clock_id);
208 	switch (clock_id) {
209 	case CLOCK_REALTIME:
210 		if ((error = settime(&ats)) != 0)
211 			return (error);
212 		break;
213 	default:	/* Other clocks are read-only */
214 		return (EINVAL);
215 	}
216 
217 	return (0);
218 }
219 
220 int
221 sys_clock_getres(struct proc *p, void *v, register_t *retval)
222 {
223 	struct sys_clock_getres_args /* {
224 		syscallarg(clockid_t) clock_id;
225 		syscallarg(struct timespec *) tp;
226 	} */ *uap = v;
227 	clockid_t clock_id;
228 	struct timespec ts;
229 	int error = 0;
230 
231 	clock_id = SCARG(uap, clock_id);
232 	switch (clock_id) {
233 	case CLOCK_REALTIME:
234 	case CLOCK_MONOTONIC:
235 		ts.tv_sec = 0;
236 		ts.tv_nsec = 1000000000 / hz;
237 		break;
238 	default:
239 		return (EINVAL);
240 	}
241 
242 	if (SCARG(uap, tp))
243 		error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
244 
245 	return error;
246 }
247 
248 /* ARGSUSED */
249 int
250 sys_nanosleep(struct proc *p, void *v, register_t *retval)
251 {
252 	static int nanowait;
253 	struct sys_nanosleep_args/* {
254 		syscallarg(const struct timespec *) rqtp;
255 		syscallarg(struct timespec *) rmtp;
256 	} */ *uap = v;
257 	struct timespec rqt, rmt;
258 	struct timespec sts, ets;
259 	struct timeval tv;
260 	int error, error1;
261 
262 	error = copyin((const void *)SCARG(uap, rqtp), (void *)&rqt,
263 	    sizeof(struct timespec));
264 	if (error)
265 		return (error);
266 
267 	TIMESPEC_TO_TIMEVAL(&tv, &rqt);
268 	if (itimerfix(&tv))
269 		return (EINVAL);
270 
271 	if (SCARG(uap, rmtp))
272 		getnanouptime(&sts);
273 
274 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep",
275 	    MAX(1, tvtohz(&tv)));
276 	if (error == ERESTART)
277 		error = EINTR;
278 	if (error == EWOULDBLOCK)
279 		error = 0;
280 
281 	if (SCARG(uap, rmtp)) {
282 		getnanouptime(&ets);
283 
284 		timespecsub(&ets, &sts, &sts);
285 		timespecsub(&rqt, &sts, &rmt);
286 
287 		if (rmt.tv_sec < 0)
288 			timespecclear(&rmt);
289 
290 		error1 = copyout((void *)&rmt, (void *)SCARG(uap,rmtp),
291 		    sizeof(rmt));
292 		if (error1 != 0)
293 			error = error1;
294 	}
295 
296 	return error;
297 }
298 
299 /* ARGSUSED */
300 int
301 sys_gettimeofday(struct proc *p, void *v, register_t *retval)
302 {
303 	struct sys_gettimeofday_args /* {
304 		syscallarg(struct timeval *) tp;
305 		syscallarg(struct timezone *) tzp;
306 	} */ *uap = v;
307 	struct timeval atv;
308 	int error = 0;
309 
310 	if (SCARG(uap, tp)) {
311 		microtime(&atv);
312 		if ((error = copyout((void *)&atv, (void *)SCARG(uap, tp),
313 		    sizeof (atv))))
314 			return (error);
315 	}
316 	if (SCARG(uap, tzp))
317 		error = copyout((void *)&tz, (void *)SCARG(uap, tzp),
318 		    sizeof (tz));
319 	return (error);
320 }
321 
322 /* ARGSUSED */
323 int
324 sys_settimeofday(struct proc *p, void *v, register_t *retval)
325 {
326 	struct sys_settimeofday_args /* {
327 		syscallarg(const struct timeval *) tv;
328 		syscallarg(const struct timezone *) tzp;
329 	} */ *uap = v;
330 	struct timezone atz;
331 	struct timeval atv;
332 	int error;
333 
334 	if ((error = suser(p, 0)))
335 		return (error);
336 	/* Verify all parameters before changing time. */
337 	if (SCARG(uap, tv) && (error = copyin((void *)SCARG(uap, tv),
338 	    (void *)&atv, sizeof(atv))))
339 		return (error);
340 	if (SCARG(uap, tzp) && (error = copyin((void *)SCARG(uap, tzp),
341 	    (void *)&atz, sizeof(atz))))
342 		return (error);
343 	if (SCARG(uap, tv)) {
344 		struct timespec ts;
345 
346 		TIMEVAL_TO_TIMESPEC(&atv, &ts);
347 		if ((error = settime(&ts)) != 0)
348 			return (error);
349 	}
350 	if (SCARG(uap, tzp))
351 		tz = atz;
352 	return (0);
353 }
354 
355 #ifdef __HAVE_TIMECOUNTER
356 struct timeval adjtimedelta;		/* unapplied time correction */
357 #else
358 int	tickdelta;			/* current clock skew, us. per tick */
359 long	timedelta;			/* unapplied time correction, us. */
360 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
361 int64_t	ntp_tick_permanent;
362 int64_t	ntp_tick_acc;
363 #endif
364 
365 /* ARGSUSED */
366 int
367 sys_adjfreq(struct proc *p, void *v, register_t *retval)
368 {
369 	struct sys_adjfreq_args /* {
370 		syscallarg(const int64_t *) freq;
371 		syscallarg(int64_t *) oldfreq;
372 	} */ *uap = v;
373 	int error;
374 	int64_t f;
375 #ifndef __HAVE_TIMECOUNTER
376 	int s;
377 
378 	if (SCARG(uap, oldfreq)) {
379 		f = ntp_tick_permanent * hz;
380 		if ((error = copyout((void *)&f, (void *)SCARG(uap, oldfreq),
381 		    sizeof(int64_t))))
382 			return (error);
383 	}
384 	if (SCARG(uap, freq)) {
385 		if ((error = suser(p, 0)))
386 			return (error);
387 		if ((error = copyin((void *)SCARG(uap, freq), (void *)&f,
388 		    sizeof(int64_t))))
389 			return (error);
390 		s = splclock();
391 		ntp_tick_permanent = f / hz;
392 		splx(s);
393 	}
394 #else
395 	if (SCARG(uap, oldfreq)) {
396 		if ((error = tc_adjfreq(&f, NULL)) != 0)
397 			return (error);
398 		if ((error = copyout(&f, SCARG(uap, oldfreq), sizeof(f))) != 0)
399 			return (error);
400 	}
401 	if (SCARG(uap, freq)) {
402 		if ((error = suser(p, 0)))
403 			return (error);
404 		if ((error = copyin(SCARG(uap, freq), &f, sizeof(f))) != 0)
405 			return (error);
406 		if ((error = tc_adjfreq(NULL, &f)) != 0)
407 			return (error);
408 	}
409 #endif
410 	return (0);
411 }
412 
413 /* ARGSUSED */
414 int
415 sys_adjtime(struct proc *p, void *v, register_t *retval)
416 {
417 	struct sys_adjtime_args /* {
418 		syscallarg(const struct timeval *) delta;
419 		syscallarg(struct timeval *) olddelta;
420 	} */ *uap = v;
421 #ifdef __HAVE_TIMECOUNTER
422 	int error;
423 
424 	if (SCARG(uap, olddelta))
425 		if ((error = copyout((void *)&adjtimedelta,
426 		    (void *)SCARG(uap, olddelta), sizeof(struct timeval))))
427 			return (error);
428 
429 	if (SCARG(uap, delta)) {
430 		if ((error = suser(p, 0)))
431 			return (error);
432 
433 		if ((error = copyin((void *)SCARG(uap, delta),
434 		    (void *)&adjtimedelta, sizeof(struct timeval))))
435 			return (error);
436 	}
437 
438 	/* Normalize the correction. */
439 	while (adjtimedelta.tv_usec >= 1000000) {
440 		adjtimedelta.tv_usec -= 1000000;
441 		adjtimedelta.tv_sec += 1;
442 	}
443 	while (adjtimedelta.tv_usec < 0) {
444 		adjtimedelta.tv_usec += 1000000;
445 		adjtimedelta.tv_sec -= 1;
446 	}
447 	return (0);
448 #else
449 	struct timeval atv;
450 	long ndelta, ntickdelta, odelta;
451 	int s, error;
452 
453 	if (!SCARG(uap, delta)) {
454 		s = splclock();
455 		odelta = timedelta;
456 		splx(s);
457 		goto out;
458 	}
459 	if ((error = suser(p, 0)))
460 		return (error);
461 	if ((error = copyin((void *)SCARG(uap, delta), (void *)&atv,
462 	    sizeof(struct timeval))))
463 		return (error);
464 
465 	/*
466 	 * Compute the total correction and the rate at which to apply it.
467 	 * Round the adjustment down to a whole multiple of the per-tick
468 	 * delta, so that after some number of incremental changes in
469 	 * hardclock(), tickdelta will become zero, lest the correction
470 	 * overshoot and start taking us away from the desired final time.
471 	 */
472 	if (atv.tv_sec > LONG_MAX / 1000000L)
473 		ndelta = LONG_MAX;
474 	else if (atv.tv_sec < LONG_MIN / 1000000L)
475 		ndelta = LONG_MIN;
476 	else {
477 		ndelta = atv.tv_sec * 1000000L;
478 		odelta = ndelta;
479 		ndelta += atv.tv_usec;
480 		if (atv.tv_usec > 0 && ndelta <= odelta)
481 			ndelta = LONG_MAX;
482 		else if (atv.tv_usec < 0 && ndelta >= odelta)
483 			ndelta = LONG_MIN;
484 	}
485 
486 	if (ndelta > bigadj || ndelta < -bigadj)
487 		ntickdelta = 10 * tickadj;
488 	else
489 		ntickdelta = tickadj;
490 	if (ndelta % ntickdelta)
491 		ndelta = ndelta / ntickdelta * ntickdelta;
492 
493 	/*
494 	 * To make hardclock()'s job easier, make the per-tick delta negative
495 	 * if we want time to run slower; then hardclock can simply compute
496 	 * tick + tickdelta, and subtract tickdelta from timedelta.
497 	 */
498 	if (ndelta < 0)
499 		ntickdelta = -ntickdelta;
500 	s = splclock();
501 	odelta = timedelta;
502 	timedelta = ndelta;
503 	tickdelta = ntickdelta;
504 	splx(s);
505 
506 out:
507 	if (SCARG(uap, olddelta)) {
508 		atv.tv_sec = odelta / 1000000;
509 		atv.tv_usec = odelta % 1000000;
510 		if ((error = copyout((void *)&atv, (void *)SCARG(uap, olddelta),
511 		    sizeof(struct timeval))))
512 			return (error);
513 	}
514 	return (0);
515 #endif
516 }
517 
518 
519 /*
520  * Get value of an interval timer.  The process virtual and
521  * profiling virtual time timers are kept in the p_stats area, since
522  * they can be swapped out.  These are kept internally in the
523  * way they are specified externally: in time until they expire.
524  *
525  * The real time interval timer is kept in the process table slot
526  * for the process, and its value (it_value) is kept as an
527  * absolute time rather than as a delta, so that it is easy to keep
528  * periodic real-time signals from drifting.
529  *
530  * Virtual time timers are processed in the hardclock() routine of
531  * kern_clock.c.  The real time timer is processed by a timeout
532  * routine, called from the softclock() routine.  Since a callout
533  * may be delayed in real time due to interrupt processing in the system,
534  * it is possible for the real time timeout routine (realitexpire, given below),
535  * to be delayed in real time past when it is supposed to occur.  It
536  * does not suffice, therefore, to reload the real timer .it_value from the
537  * real time timers .it_interval.  Rather, we compute the next time in
538  * absolute time the timer should go off.
539  */
540 /* ARGSUSED */
541 int
542 sys_getitimer(struct proc *p, void *v, register_t *retval)
543 {
544 	struct sys_getitimer_args /* {
545 		syscallarg(int) which;
546 		syscallarg(struct itimerval *) itv;
547 	} */ *uap = v;
548 	struct itimerval aitv;
549 	int s;
550 
551 	if (SCARG(uap, which) < ITIMER_REAL || SCARG(uap, which) > ITIMER_PROF)
552 		return (EINVAL);
553 	s = splclock();
554 	if (SCARG(uap, which) == ITIMER_REAL) {
555 		struct timeval now;
556 
557 		getmicrouptime(&now);
558 		/*
559 		 * Convert from absolute to relative time in .it_value
560 		 * part of real time timer.  If time for real time timer
561 		 * has passed return 0, else return difference between
562 		 * current time and time for the timer to go off.
563 		 */
564 		aitv = p->p_realtimer;
565 		if (timerisset(&aitv.it_value)) {
566 			if (timercmp(&aitv.it_value, &now, <))
567 				timerclear(&aitv.it_value);
568 			else
569 				timersub(&aitv.it_value, &now,
570 				    &aitv.it_value);
571 		}
572 	} else
573 		aitv = p->p_stats->p_timer[SCARG(uap, which)];
574 	splx(s);
575 	return (copyout((void *)&aitv, (void *)SCARG(uap, itv),
576 	    sizeof (struct itimerval)));
577 }
578 
579 /* ARGSUSED */
580 int
581 sys_setitimer(struct proc *p, void *v, register_t *retval)
582 {
583 	struct sys_setitimer_args /* {
584 		syscallarg(int) which;
585 		syscallarg(const struct itimerval *) itv;
586 		syscallarg(struct itimerval *) oitv;
587 	} */ *uap = v;
588 	struct sys_getitimer_args getargs;
589 	struct itimerval aitv;
590 	const struct itimerval *itvp;
591 	int error;
592 	int timo;
593 
594 	if (SCARG(uap, which) < ITIMER_REAL || SCARG(uap, which) > ITIMER_PROF)
595 		return (EINVAL);
596 	itvp = SCARG(uap, itv);
597 	if (itvp && (error = copyin((void *)itvp, (void *)&aitv,
598 	    sizeof(struct itimerval))))
599 		return (error);
600 	if (SCARG(uap, oitv) != NULL) {
601 		SCARG(&getargs, which) = SCARG(uap, which);
602 		SCARG(&getargs, itv) = SCARG(uap, oitv);
603 		if ((error = sys_getitimer(p, &getargs, retval)))
604 			return (error);
605 	}
606 	if (itvp == 0)
607 		return (0);
608 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
609 		return (EINVAL);
610 	if (SCARG(uap, which) == ITIMER_REAL) {
611 		struct timeval ctv;
612 
613 		timeout_del(&p->p_realit_to);
614 		getmicrouptime(&ctv);
615 		if (timerisset(&aitv.it_value)) {
616 			timo = tvtohz(&aitv.it_value);
617 			timeout_add(&p->p_realit_to, timo);
618 			timeradd(&aitv.it_value, &ctv, &aitv.it_value);
619 		}
620 		p->p_realtimer = aitv;
621 	} else {
622 		int s;
623 
624 		itimerround(&aitv.it_interval);
625 		s = splclock();
626 		p->p_stats->p_timer[SCARG(uap, which)] = aitv;
627 		splx(s);
628 	}
629 
630 	return (0);
631 }
632 
633 /*
634  * Real interval timer expired:
635  * send process whose timer expired an alarm signal.
636  * If time is not set up to reload, then just return.
637  * Else compute next time timer should go off which is > current time.
638  * This is where delay in processing this timeout causes multiple
639  * SIGALRM calls to be compressed into one.
640  */
641 void
642 realitexpire(void *arg)
643 {
644 	struct proc *p;
645 
646 	p = (struct proc *)arg;
647 	psignal(p, SIGALRM);
648 	if (!timerisset(&p->p_realtimer.it_interval)) {
649 		timerclear(&p->p_realtimer.it_value);
650 		return;
651 	}
652 	for (;;) {
653 		struct timeval ctv, ntv;
654 		int timo;
655 
656 		timeradd(&p->p_realtimer.it_value,
657 		    &p->p_realtimer.it_interval, &p->p_realtimer.it_value);
658 		getmicrouptime(&ctv);
659 		if (timercmp(&p->p_realtimer.it_value, &ctv, >)) {
660 			ntv = p->p_realtimer.it_value;
661 			timersub(&ntv, &ctv, &ntv);
662 			timo = tvtohz(&ntv) - 1;
663 			if (timo <= 0)
664 				timo = 1;
665 			if ((p->p_flag & P_WEXIT) == 0)
666 				timeout_add(&p->p_realit_to, timo);
667 			return;
668 		}
669 	}
670 }
671 
672 /*
673  * Check that a proposed value to load into the .it_value or
674  * .it_interval part of an interval timer is acceptable.
675  */
676 int
677 itimerfix(struct timeval *tv)
678 {
679 
680 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
681 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
682 		return (EINVAL);
683 
684 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
685 		tv->tv_usec = tick;
686 
687 	return (0);
688 }
689 
690 /*
691  * Nonzero timer interval smaller than the resolution of the
692  * system clock are rounded up.
693  */
694 void
695 itimerround(struct timeval *tv)
696 {
697 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
698 		tv->tv_usec = tick;
699 }
700 
701 /*
702  * Decrement an interval timer by a specified number
703  * of microseconds, which must be less than a second,
704  * i.e. < 1000000.  If the timer expires, then reload
705  * it.  In this case, carry over (usec - old value) to
706  * reduce the value reloaded into the timer so that
707  * the timer does not drift.  This routine assumes
708  * that it is called in a context where the timers
709  * on which it is operating cannot change in value.
710  */
711 int
712 itimerdecr(struct itimerval *itp, int usec)
713 {
714 
715 	if (itp->it_value.tv_usec < usec) {
716 		if (itp->it_value.tv_sec == 0) {
717 			/* expired, and already in next interval */
718 			usec -= itp->it_value.tv_usec;
719 			goto expire;
720 		}
721 		itp->it_value.tv_usec += 1000000;
722 		itp->it_value.tv_sec--;
723 	}
724 	itp->it_value.tv_usec -= usec;
725 	usec = 0;
726 	if (timerisset(&itp->it_value))
727 		return (1);
728 	/* expired, exactly at end of interval */
729 expire:
730 	if (timerisset(&itp->it_interval)) {
731 		itp->it_value = itp->it_interval;
732 		itp->it_value.tv_usec -= usec;
733 		if (itp->it_value.tv_usec < 0) {
734 			itp->it_value.tv_usec += 1000000;
735 			itp->it_value.tv_sec--;
736 		}
737 	} else
738 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
739 	return (0);
740 }
741 
742 /*
743  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
744  * for usage and rationale.
745  */
746 int
747 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
748 {
749 	struct timeval tv, delta;
750 	int rv = 0;
751 
752 	getmicrouptime(&tv);
753 
754 	timersub(&tv, lasttime, &delta);
755 
756 	/*
757 	 * check for 0,0 is so that the message will be seen at least once,
758 	 * even if interval is huge.
759 	 */
760 	if (timercmp(&delta, mininterval, >=) ||
761 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
762 		*lasttime = tv;
763 		rv = 1;
764 	}
765 
766 	return (rv);
767 }
768 
769 /*
770  * ppsratecheck(): packets (or events) per second limitation.
771  */
772 int
773 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
774 {
775 	struct timeval tv, delta;
776 	int rv;
777 
778 	microuptime(&tv);
779 
780 	timersub(&tv, lasttime, &delta);
781 
782 	/*
783 	 * check for 0,0 is so that the message will be seen at least once.
784 	 * if more than one second have passed since the last update of
785 	 * lasttime, reset the counter.
786 	 *
787 	 * we do increment *curpps even in *curpps < maxpps case, as some may
788 	 * try to use *curpps for stat purposes as well.
789 	 */
790 	if (maxpps == 0)
791 		rv = 0;
792 	else if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
793 	    delta.tv_sec >= 1) {
794 		*lasttime = tv;
795 		*curpps = 0;
796 		rv = 1;
797 	} else if (maxpps < 0)
798 		rv = 1;
799 	else if (*curpps < maxpps)
800 		rv = 1;
801 	else
802 		rv = 0;
803 
804 #if 1 /*DIAGNOSTIC?*/
805 	/* be careful about wrap-around */
806 	if (*curpps + 1 > *curpps)
807 		*curpps = *curpps + 1;
808 #else
809 	/*
810 	 * assume that there's not too many calls to this function.
811 	 * not sure if the assumption holds, as it depends on *caller's*
812 	 * behavior, not the behavior of this function.
813 	 * IMHO it is wrong to make assumption on the caller's behavior,
814 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
815 	 */
816 	*curpps = *curpps + 1;
817 #endif
818 
819 	return (rv);
820 }
821