xref: /openbsd-src/sys/kern/kern_time.c (revision 9bcfcad5a8f89fd60010f3485ee44bf251abde23)
1 /*	$OpenBSD: kern_time.c,v 1.162 2023/02/04 19:33:03 cheloha Exp $	*/
2 /*	$NetBSD: kern_time.c,v 1.20 1996/02/18 11:57:06 fvdl Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
33  */
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 #include <sys/mutex.h>
39 #include <sys/rwlock.h>
40 #include <sys/proc.h>
41 #include <sys/ktrace.h>
42 #include <sys/signalvar.h>
43 #include <sys/stdint.h>
44 #include <sys/pledge.h>
45 #include <sys/task.h>
46 #include <sys/timeout.h>
47 #include <sys/timetc.h>
48 
49 #include <sys/mount.h>
50 #include <sys/syscallargs.h>
51 
52 #include <dev/clock_subr.h>
53 
54 int itimerfix(struct itimerval *);
55 
56 /*
57  * Time of day and interval timer support.
58  *
59  * These routines provide the kernel entry points to get and set
60  * the time-of-day and per-process interval timers.  Subroutines
61  * here provide support for adding and subtracting timeval structures
62  * and decrementing interval timers, optionally reloading the interval
63  * timers when they expire.
64  */
65 
66 /* This function is used by clock_settime and settimeofday */
67 int
68 settime(const struct timespec *ts)
69 {
70 	struct timespec now;
71 
72 	/*
73 	 * Don't allow the time to be set forward so far it will wrap
74 	 * and become negative, thus allowing an attacker to bypass
75 	 * the next check below.  The cutoff is 1 year before rollover
76 	 * occurs, so even if the attacker uses adjtime(2) to move
77 	 * the time past the cutoff, it will take a very long time
78 	 * to get to the wrap point.
79 	 *
80 	 * XXX: we check against UINT_MAX until we can figure out
81 	 *	how to deal with the hardware RTCs.
82 	 */
83 	if (ts->tv_sec > UINT_MAX - 365*24*60*60) {
84 		printf("denied attempt to set clock forward to %lld\n",
85 		    (long long)ts->tv_sec);
86 		return (EPERM);
87 	}
88 	/*
89 	 * If the system is secure, we do not allow the time to be
90 	 * set to an earlier value (it may be slowed using adjtime,
91 	 * but not set back). This feature prevent interlopers from
92 	 * setting arbitrary time stamps on files.
93 	 */
94 	nanotime(&now);
95 	if (securelevel > 1 && timespeccmp(ts, &now, <=)) {
96 		printf("denied attempt to set clock back %lld seconds\n",
97 		    (long long)now.tv_sec - ts->tv_sec);
98 		return (EPERM);
99 	}
100 
101 	tc_setrealtimeclock(ts);
102 	KERNEL_LOCK();
103 	resettodr();
104 	KERNEL_UNLOCK();
105 
106 	return (0);
107 }
108 
109 int
110 clock_gettime(struct proc *p, clockid_t clock_id, struct timespec *tp)
111 {
112 	struct proc *q;
113 	int error = 0;
114 
115 	switch (clock_id) {
116 	case CLOCK_REALTIME:
117 		nanotime(tp);
118 		break;
119 	case CLOCK_UPTIME:
120 		nanoruntime(tp);
121 		break;
122 	case CLOCK_MONOTONIC:
123 	case CLOCK_BOOTTIME:
124 		nanouptime(tp);
125 		break;
126 	case CLOCK_PROCESS_CPUTIME_ID:
127 		nanouptime(tp);
128 		timespecsub(tp, &curcpu()->ci_schedstate.spc_runtime, tp);
129 		timespecadd(tp, &p->p_p->ps_tu.tu_runtime, tp);
130 		timespecadd(tp, &p->p_rtime, tp);
131 		break;
132 	case CLOCK_THREAD_CPUTIME_ID:
133 		nanouptime(tp);
134 		timespecsub(tp, &curcpu()->ci_schedstate.spc_runtime, tp);
135 		timespecadd(tp, &p->p_tu.tu_runtime, tp);
136 		timespecadd(tp, &p->p_rtime, tp);
137 		break;
138 	default:
139 		/* check for clock from pthread_getcpuclockid() */
140 		if (__CLOCK_TYPE(clock_id) == CLOCK_THREAD_CPUTIME_ID) {
141 			KERNEL_LOCK();
142 			q = tfind_user(__CLOCK_PTID(clock_id), p->p_p);
143 			if (q == NULL)
144 				error = ESRCH;
145 			else
146 				*tp = q->p_tu.tu_runtime;
147 			KERNEL_UNLOCK();
148 		} else
149 			error = EINVAL;
150 		break;
151 	}
152 	return (error);
153 }
154 
155 int
156 sys_clock_gettime(struct proc *p, void *v, register_t *retval)
157 {
158 	struct sys_clock_gettime_args /* {
159 		syscallarg(clockid_t) clock_id;
160 		syscallarg(struct timespec *) tp;
161 	} */ *uap = v;
162 	struct timespec ats;
163 	int error;
164 
165 	memset(&ats, 0, sizeof(ats));
166 	if ((error = clock_gettime(p, SCARG(uap, clock_id), &ats)) != 0)
167 		return (error);
168 
169 	error = copyout(&ats, SCARG(uap, tp), sizeof(ats));
170 #ifdef KTRACE
171 	if (error == 0 && KTRPOINT(p, KTR_STRUCT))
172 		ktrabstimespec(p, &ats);
173 #endif
174 	return (error);
175 }
176 
177 int
178 sys_clock_settime(struct proc *p, void *v, register_t *retval)
179 {
180 	struct sys_clock_settime_args /* {
181 		syscallarg(clockid_t) clock_id;
182 		syscallarg(const struct timespec *) tp;
183 	} */ *uap = v;
184 	struct timespec ats;
185 	clockid_t clock_id;
186 	int error;
187 
188 	if ((error = suser(p)) != 0)
189 		return (error);
190 
191 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
192 		return (error);
193 
194 	clock_id = SCARG(uap, clock_id);
195 	switch (clock_id) {
196 	case CLOCK_REALTIME:
197 		if (!timespecisvalid(&ats))
198 			return (EINVAL);
199 		if ((error = settime(&ats)) != 0)
200 			return (error);
201 		break;
202 	default:	/* Other clocks are read-only */
203 		return (EINVAL);
204 	}
205 
206 	return (0);
207 }
208 
209 int
210 sys_clock_getres(struct proc *p, void *v, register_t *retval)
211 {
212 	struct sys_clock_getres_args /* {
213 		syscallarg(clockid_t) clock_id;
214 		syscallarg(struct timespec *) tp;
215 	} */ *uap = v;
216 	clockid_t clock_id;
217 	struct bintime bt;
218 	struct timespec ts;
219 	struct proc *q;
220 	u_int64_t scale;
221 	int error = 0;
222 
223 	memset(&ts, 0, sizeof(ts));
224 	clock_id = SCARG(uap, clock_id);
225 
226 	switch (clock_id) {
227 	case CLOCK_REALTIME:
228 	case CLOCK_MONOTONIC:
229 	case CLOCK_BOOTTIME:
230 	case CLOCK_UPTIME:
231 		memset(&bt, 0, sizeof(bt));
232 		rw_enter_read(&tc_lock);
233 		scale = ((1ULL << 63) / tc_getfrequency()) * 2;
234 		bt.frac = tc_getprecision() * scale;
235 		rw_exit_read(&tc_lock);
236 		BINTIME_TO_TIMESPEC(&bt, &ts);
237 		break;
238 	case CLOCK_PROCESS_CPUTIME_ID:
239 	case CLOCK_THREAD_CPUTIME_ID:
240 		ts.tv_nsec = 1000000000 / stathz;
241 		break;
242 	default:
243 		/* check for clock from pthread_getcpuclockid() */
244 		if (__CLOCK_TYPE(clock_id) == CLOCK_THREAD_CPUTIME_ID) {
245 			KERNEL_LOCK();
246 			q = tfind_user(__CLOCK_PTID(clock_id), p->p_p);
247 			if (q == NULL)
248 				error = ESRCH;
249 			else
250 				ts.tv_nsec = 1000000000 / stathz;
251 			KERNEL_UNLOCK();
252 		} else
253 			error = EINVAL;
254 		break;
255 	}
256 
257 	if (error == 0 && SCARG(uap, tp)) {
258 		ts.tv_nsec = MAX(ts.tv_nsec, 1);
259 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260 #ifdef KTRACE
261 		if (error == 0 && KTRPOINT(p, KTR_STRUCT))
262 			ktrreltimespec(p, &ts);
263 #endif
264 	}
265 
266 	return error;
267 }
268 
269 int
270 sys_nanosleep(struct proc *p, void *v, register_t *retval)
271 {
272 	static int chan;
273 	struct sys_nanosleep_args/* {
274 		syscallarg(const struct timespec *) rqtp;
275 		syscallarg(struct timespec *) rmtp;
276 	} */ *uap = v;
277 	struct timespec elapsed, remainder, request, start, stop;
278 	uint64_t nsecs;
279 	struct timespec *rmtp;
280 	int copyout_error, error;
281 
282 	rmtp = SCARG(uap, rmtp);
283 	error = copyin(SCARG(uap, rqtp), &request, sizeof(request));
284 	if (error)
285 		return (error);
286 #ifdef KTRACE
287 	if (KTRPOINT(p, KTR_STRUCT))
288 		ktrreltimespec(p, &request);
289 #endif
290 
291 	if (request.tv_sec < 0 || !timespecisvalid(&request))
292 		return (EINVAL);
293 
294 	do {
295 		getnanouptime(&start);
296 		nsecs = MAX(1, MIN(TIMESPEC_TO_NSEC(&request), MAXTSLP));
297 		error = tsleep_nsec(&chan, PWAIT | PCATCH, "nanoslp", nsecs);
298 		getnanouptime(&stop);
299 		timespecsub(&stop, &start, &elapsed);
300 		timespecsub(&request, &elapsed, &request);
301 		if (request.tv_sec < 0)
302 			timespecclear(&request);
303 		if (error != EWOULDBLOCK)
304 			break;
305 	} while (timespecisset(&request));
306 
307 	if (error == ERESTART)
308 		error = EINTR;
309 	if (error == EWOULDBLOCK)
310 		error = 0;
311 
312 	if (rmtp) {
313 		memset(&remainder, 0, sizeof(remainder));
314 		remainder = request;
315 		copyout_error = copyout(&remainder, rmtp, sizeof(remainder));
316 		if (copyout_error)
317 			error = copyout_error;
318 #ifdef KTRACE
319 		if (copyout_error == 0 && KTRPOINT(p, KTR_STRUCT))
320 			ktrreltimespec(p, &remainder);
321 #endif
322 	}
323 
324 	return error;
325 }
326 
327 int
328 sys_gettimeofday(struct proc *p, void *v, register_t *retval)
329 {
330 	struct sys_gettimeofday_args /* {
331 		syscallarg(struct timeval *) tp;
332 		syscallarg(struct timezone *) tzp;
333 	} */ *uap = v;
334 	struct timeval atv;
335 	static const struct timezone zerotz = { 0, 0 };
336 	struct timeval *tp;
337 	struct timezone *tzp;
338 	int error = 0;
339 
340 	tp = SCARG(uap, tp);
341 	tzp = SCARG(uap, tzp);
342 
343 	if (tp) {
344 		memset(&atv, 0, sizeof(atv));
345 		microtime(&atv);
346 		if ((error = copyout(&atv, tp, sizeof (atv))))
347 			return (error);
348 #ifdef KTRACE
349 		if (KTRPOINT(p, KTR_STRUCT))
350 			ktrabstimeval(p, &atv);
351 #endif
352 	}
353 	if (tzp)
354 		error = copyout(&zerotz, tzp, sizeof(zerotz));
355 	return (error);
356 }
357 
358 int
359 sys_settimeofday(struct proc *p, void *v, register_t *retval)
360 {
361 	struct sys_settimeofday_args /* {
362 		syscallarg(const struct timeval *) tv;
363 		syscallarg(const struct timezone *) tzp;
364 	} */ *uap = v;
365 	struct timezone atz;
366 	struct timeval atv;
367 	const struct timeval *tv;
368 	const struct timezone *tzp;
369 	int error;
370 
371 	tv = SCARG(uap, tv);
372 	tzp = SCARG(uap, tzp);
373 
374 	if ((error = suser(p)))
375 		return (error);
376 	/* Verify all parameters before changing time. */
377 	if (tv && (error = copyin(tv, &atv, sizeof(atv))))
378 		return (error);
379 	if (tzp && (error = copyin(tzp, &atz, sizeof(atz))))
380 		return (error);
381 	if (tv) {
382 		struct timespec ts;
383 
384 #ifdef KTRACE
385 		if (KTRPOINT(p, KTR_STRUCT))
386 			ktrabstimeval(p, &atv);
387 #endif
388 		if (!timerisvalid(&atv))
389 			return (EINVAL);
390 		TIMEVAL_TO_TIMESPEC(&atv, &ts);
391 		if ((error = settime(&ts)) != 0)
392 			return (error);
393 	}
394 
395 	return (0);
396 }
397 
398 #define ADJFREQ_MAX (500000000LL << 32)
399 #define ADJFREQ_MIN (-ADJFREQ_MAX)
400 
401 int
402 sys_adjfreq(struct proc *p, void *v, register_t *retval)
403 {
404 	struct sys_adjfreq_args /* {
405 		syscallarg(const int64_t *) freq;
406 		syscallarg(int64_t *) oldfreq;
407 	} */ *uap = v;
408 	int error = 0;
409 	int64_t f, oldf;
410 	const int64_t *freq = SCARG(uap, freq);
411 	int64_t *oldfreq = SCARG(uap, oldfreq);
412 
413 	if (freq) {
414 		if ((error = suser(p)))
415 			return (error);
416 		if ((error = copyin(freq, &f, sizeof(f))))
417 			return (error);
418 		if (f < ADJFREQ_MIN || f > ADJFREQ_MAX)
419 			return (EINVAL);
420 	}
421 
422 	rw_enter(&tc_lock, (freq == NULL) ? RW_READ : RW_WRITE);
423 	if (oldfreq) {
424 		tc_adjfreq(&oldf, NULL);
425 		if ((error = copyout(&oldf, oldfreq, sizeof(oldf))))
426 			goto out;
427 	}
428 	if (freq)
429 		tc_adjfreq(NULL, &f);
430 out:
431 	rw_exit(&tc_lock);
432 	return (error);
433 }
434 
435 int
436 sys_adjtime(struct proc *p, void *v, register_t *retval)
437 {
438 	struct sys_adjtime_args /* {
439 		syscallarg(const struct timeval *) delta;
440 		syscallarg(struct timeval *) olddelta;
441 	} */ *uap = v;
442 	struct timeval atv;
443 	const struct timeval *delta = SCARG(uap, delta);
444 	struct timeval *olddelta = SCARG(uap, olddelta);
445 	int64_t adjustment, remaining;
446 	int error;
447 
448 	error = pledge_adjtime(p, delta);
449 	if (error)
450 		return error;
451 
452 	if (delta) {
453 		if ((error = suser(p)))
454 			return (error);
455 		if ((error = copyin(delta, &atv, sizeof(struct timeval))))
456 			return (error);
457 #ifdef KTRACE
458 		if (KTRPOINT(p, KTR_STRUCT))
459 			ktrreltimeval(p, &atv);
460 #endif
461 		if (!timerisvalid(&atv))
462 			return (EINVAL);
463 
464 		if (atv.tv_sec > INT64_MAX / 1000000)
465 			return EINVAL;
466 		if (atv.tv_sec < INT64_MIN / 1000000)
467 			return EINVAL;
468 		adjustment = atv.tv_sec * 1000000;
469 		if (adjustment > INT64_MAX - atv.tv_usec)
470 			return EINVAL;
471 		adjustment += atv.tv_usec;
472 
473 		rw_enter_write(&tc_lock);
474 	}
475 
476 	if (olddelta) {
477 		tc_adjtime(&remaining, NULL);
478 		memset(&atv, 0, sizeof(atv));
479 		atv.tv_sec =  remaining / 1000000;
480 		atv.tv_usec = remaining % 1000000;
481 		if (atv.tv_usec < 0) {
482 			atv.tv_usec += 1000000;
483 			atv.tv_sec--;
484 		}
485 
486 		if ((error = copyout(&atv, olddelta, sizeof(struct timeval))))
487 			goto out;
488 	}
489 
490 	if (delta)
491 		tc_adjtime(NULL, &adjustment);
492 out:
493 	if (delta)
494 		rw_exit_write(&tc_lock);
495 	return (error);
496 }
497 
498 
499 struct mutex itimer_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
500 
501 /*
502  * Get or set value of an interval timer.  The process virtual and
503  * profiling virtual time timers are kept internally in the
504  * way they are specified externally: in time until they expire.
505  *
506  * The real time interval timer's it_value, in contrast, is kept as an
507  * absolute time rather than as a delta, so that it is easy to keep
508  * periodic real-time signals from drifting.
509  *
510  * Virtual time timers are processed in the hardclock() routine of
511  * kern_clock.c.  The real time timer is processed by a timeout
512  * routine, called from the softclock() routine.  Since a callout
513  * may be delayed in real time due to interrupt processing in the system,
514  * it is possible for the real time timeout routine (realitexpire, given below),
515  * to be delayed in real time past when it is supposed to occur.  It
516  * does not suffice, therefore, to reload the real timer .it_value from the
517  * real time timers .it_interval.  Rather, we compute the next time in
518  * absolute time the timer should go off.
519  */
520 void
521 setitimer(int which, const struct itimerval *itv, struct itimerval *olditv)
522 {
523 	struct itimerspec its, oldits;
524 	struct timespec now;
525 	struct itimerspec *itimer;
526 	struct process *pr;
527 
528 	KASSERT(which >= ITIMER_REAL && which <= ITIMER_PROF);
529 
530 	pr = curproc->p_p;
531 	itimer = &pr->ps_timer[which];
532 
533 	if (itv != NULL) {
534 		TIMEVAL_TO_TIMESPEC(&itv->it_value, &its.it_value);
535 		TIMEVAL_TO_TIMESPEC(&itv->it_interval, &its.it_interval);
536 	}
537 
538 	if (which == ITIMER_REAL) {
539 		mtx_enter(&pr->ps_mtx);
540 		nanouptime(&now);
541 	} else
542 		mtx_enter(&itimer_mtx);
543 
544 	if (olditv != NULL)
545 		oldits = *itimer;
546 	if (itv != NULL) {
547 		if (which == ITIMER_REAL) {
548 			if (timespecisset(&its.it_value)) {
549 				timespecadd(&its.it_value, &now, &its.it_value);
550 				timeout_abs_ts(&pr->ps_realit_to,&its.it_value);
551 			} else
552 				timeout_del(&pr->ps_realit_to);
553 		}
554 		*itimer = its;
555 	}
556 
557 	if (which == ITIMER_REAL)
558 		mtx_leave(&pr->ps_mtx);
559 	else
560 		mtx_leave(&itimer_mtx);
561 
562 	if (olditv != NULL) {
563 		if (which == ITIMER_REAL && timespecisset(&oldits.it_value)) {
564 			if (timespeccmp(&oldits.it_value, &now, <))
565 				timespecclear(&oldits.it_value);
566 			else {
567 				timespecsub(&oldits.it_value, &now,
568 				    &oldits.it_value);
569 			}
570 		}
571 		TIMESPEC_TO_TIMEVAL(&olditv->it_value, &oldits.it_value);
572 		TIMESPEC_TO_TIMEVAL(&olditv->it_interval, &oldits.it_interval);
573 	}
574 }
575 
576 void
577 cancel_all_itimers(void)
578 {
579 	struct itimerval itv;
580 	int i;
581 
582 	timerclear(&itv.it_value);
583 	timerclear(&itv.it_interval);
584 
585 	for (i = 0; i < nitems(curproc->p_p->ps_timer); i++)
586 		setitimer(i, &itv, NULL);
587 }
588 
589 int
590 sys_getitimer(struct proc *p, void *v, register_t *retval)
591 {
592 	struct sys_getitimer_args /* {
593 		syscallarg(int) which;
594 		syscallarg(struct itimerval *) itv;
595 	} */ *uap = v;
596 	struct itimerval aitv;
597 	int which;
598 
599 	which = SCARG(uap, which);
600 	if (which < ITIMER_REAL || which > ITIMER_PROF)
601 		return EINVAL;
602 
603 	memset(&aitv, 0, sizeof(aitv));
604 
605 	setitimer(which, NULL, &aitv);
606 
607 	return copyout(&aitv, SCARG(uap, itv), sizeof(aitv));
608 }
609 
610 int
611 sys_setitimer(struct proc *p, void *v, register_t *retval)
612 {
613 	struct sys_setitimer_args /* {
614 		syscallarg(int) which;
615 		syscallarg(const struct itimerval *) itv;
616 		syscallarg(struct itimerval *) oitv;
617 	} */ *uap = v;
618 	struct itimerval aitv, olditv;
619 	struct itimerval *newitvp, *olditvp;
620 	int error, which;
621 
622 	which = SCARG(uap, which);
623 	if (which < ITIMER_REAL || which > ITIMER_PROF)
624 		return EINVAL;
625 
626 	newitvp = olditvp = NULL;
627 	if (SCARG(uap, itv) != NULL) {
628 		error = copyin(SCARG(uap, itv), &aitv, sizeof(aitv));
629 		if (error)
630 			return error;
631 		error = itimerfix(&aitv);
632 		if (error)
633 			return error;
634 		newitvp = &aitv;
635 	}
636 	if (SCARG(uap, oitv) != NULL) {
637 		memset(&olditv, 0, sizeof(olditv));
638 		olditvp = &olditv;
639 	}
640 	if (newitvp == NULL && olditvp == NULL)
641 		return 0;
642 
643 	setitimer(which, newitvp, olditvp);
644 
645 	if (SCARG(uap, oitv) != NULL)
646 		return copyout(&olditv, SCARG(uap, oitv), sizeof(olditv));
647 
648 	return 0;
649 }
650 
651 /*
652  * Real interval timer expired:
653  * send process whose timer expired an alarm signal.
654  * If time is not set up to reload, then just return.
655  * Else compute next time timer should go off which is > current time.
656  * This is where delay in processing this timeout causes multiple
657  * SIGALRM calls to be compressed into one.
658  */
659 void
660 realitexpire(void *arg)
661 {
662 	struct timespec cts;
663 	struct process *pr = arg;
664 	struct itimerspec *tp = &pr->ps_timer[ITIMER_REAL];
665 	int need_signal = 0;
666 
667 	mtx_enter(&pr->ps_mtx);
668 
669 	/*
670 	 * Do nothing if the timer was cancelled or rescheduled while we
671 	 * were entering the mutex.
672 	 */
673 	if (!timespecisset(&tp->it_value) || timeout_pending(&pr->ps_realit_to))
674 		goto out;
675 
676 	/* The timer expired.  We need to send the signal. */
677 	need_signal = 1;
678 
679 	/* One-shot timers are not reloaded. */
680 	if (!timespecisset(&tp->it_interval)) {
681 		timespecclear(&tp->it_value);
682 		goto out;
683 	}
684 
685 	/*
686 	 * Find the nearest future expiration point and restart
687 	 * the timeout.
688 	 */
689 	nanouptime(&cts);
690 	while (timespeccmp(&tp->it_value, &cts, <=))
691 		timespecadd(&tp->it_value, &tp->it_interval, &tp->it_value);
692 	if ((pr->ps_flags & PS_EXITING) == 0)
693 		timeout_abs_ts(&pr->ps_realit_to, &tp->it_value);
694 
695 out:
696 	mtx_leave(&pr->ps_mtx);
697 
698 	if (need_signal)
699 		prsignal(pr, SIGALRM);
700 }
701 
702 /*
703  * Check if the given setitimer(2) input is valid.  Clear it_interval
704  * if it_value is unset.  Round it_interval up to the minimum interval
705  * if necessary.
706  */
707 int
708 itimerfix(struct itimerval *itv)
709 {
710 	static const struct timeval max = { .tv_sec = UINT_MAX, .tv_usec = 0 };
711 	struct timeval min_interval = { .tv_sec = 0, .tv_usec = tick };
712 
713 	if (itv->it_value.tv_sec < 0 || !timerisvalid(&itv->it_value))
714 		return EINVAL;
715 	if (timercmp(&itv->it_value, &max, >))
716 		return EINVAL;
717 	if (itv->it_interval.tv_sec < 0 || !timerisvalid(&itv->it_interval))
718 		return EINVAL;
719 	if (timercmp(&itv->it_interval, &max, >))
720 		return EINVAL;
721 
722 	if (!timerisset(&itv->it_value))
723 		timerclear(&itv->it_interval);
724 	if (timerisset(&itv->it_interval)) {
725 		if (timercmp(&itv->it_interval, &min_interval, <))
726 			itv->it_interval = min_interval;
727 	}
728 
729 	return 0;
730 }
731 
732 /*
733  * Decrement an interval timer by the given number of nanoseconds.
734  * If the timer expires and it is periodic then reload it.  When reloading
735  * the timer we subtract any overrun from the next period so that the timer
736  * does not drift.
737  */
738 int
739 itimerdecr(struct itimerspec *itp, long nsec)
740 {
741 	struct timespec decrement;
742 
743 	NSEC_TO_TIMESPEC(nsec, &decrement);
744 
745 	mtx_enter(&itimer_mtx);
746 
747 	/*
748 	 * Double-check that the timer is enabled.  A different thread
749 	 * in setitimer(2) may have disabled it while we were entering
750 	 * the mutex.
751 	 */
752 	if (!timespecisset(&itp->it_value)) {
753 		mtx_leave(&itimer_mtx);
754 		return (1);
755 	}
756 
757 	/*
758 	 * The timer is enabled.  Update and reload it as needed.
759 	 */
760 	timespecsub(&itp->it_value, &decrement, &itp->it_value);
761 	if (itp->it_value.tv_sec >= 0 && timespecisset(&itp->it_value)) {
762 		mtx_leave(&itimer_mtx);
763 		return (1);
764 	}
765 	if (!timespecisset(&itp->it_interval)) {
766 		timespecclear(&itp->it_value);
767 		mtx_leave(&itimer_mtx);
768 		return (0);
769 	}
770 	while (itp->it_value.tv_sec < 0 || !timespecisset(&itp->it_value))
771 		timespecadd(&itp->it_value, &itp->it_interval, &itp->it_value);
772 	mtx_leave(&itimer_mtx);
773 	return (0);
774 }
775 
776 struct mutex ratecheck_mtx = MUTEX_INITIALIZER(IPL_HIGH);
777 
778 /*
779  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
780  * for usage and rationale.
781  */
782 int
783 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
784 {
785 	struct timeval tv, delta;
786 	int rv = 0;
787 
788 	getmicrouptime(&tv);
789 
790 	mtx_enter(&ratecheck_mtx);
791 	timersub(&tv, lasttime, &delta);
792 
793 	/*
794 	 * check for 0,0 is so that the message will be seen at least once,
795 	 * even if interval is huge.
796 	 */
797 	if (timercmp(&delta, mininterval, >=) ||
798 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
799 		*lasttime = tv;
800 		rv = 1;
801 	}
802 	mtx_leave(&ratecheck_mtx);
803 
804 	return (rv);
805 }
806 
807 struct mutex ppsratecheck_mtx = MUTEX_INITIALIZER(IPL_HIGH);
808 
809 /*
810  * ppsratecheck(): packets (or events) per second limitation.
811  */
812 int
813 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
814 {
815 	struct timeval tv, delta;
816 	int rv;
817 
818 	microuptime(&tv);
819 
820 	mtx_enter(&ppsratecheck_mtx);
821 	timersub(&tv, lasttime, &delta);
822 
823 	/*
824 	 * check for 0,0 is so that the message will be seen at least once.
825 	 * if more than one second have passed since the last update of
826 	 * lasttime, reset the counter.
827 	 *
828 	 * we do increment *curpps even in *curpps < maxpps case, as some may
829 	 * try to use *curpps for stat purposes as well.
830 	 */
831 	if (maxpps == 0)
832 		rv = 0;
833 	else if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
834 	    delta.tv_sec >= 1) {
835 		*lasttime = tv;
836 		*curpps = 0;
837 		rv = 1;
838 	} else if (maxpps < 0)
839 		rv = 1;
840 	else if (*curpps < maxpps)
841 		rv = 1;
842 	else
843 		rv = 0;
844 
845 	/* be careful about wrap-around */
846 	if (*curpps + 1 > *curpps)
847 		*curpps = *curpps + 1;
848 
849 	mtx_leave(&ppsratecheck_mtx);
850 
851 	return (rv);
852 }
853 
854 todr_chip_handle_t todr_handle;
855 int inittodr_done;
856 
857 #define MINYEAR		((OpenBSD / 100) - 1)	/* minimum plausible year */
858 
859 /*
860  * inittodr:
861  *
862  *      Initialize time from the time-of-day register.
863  */
864 void
865 inittodr(time_t base)
866 {
867 	time_t deltat;
868 	struct timeval rtctime;
869 	struct timespec ts;
870 	int badbase;
871 
872 	inittodr_done = 1;
873 
874 	if (base < (MINYEAR - 1970) * SECYR) {
875 		printf("WARNING: preposterous time in file system\n");
876 		/* read the system clock anyway */
877 		base = (MINYEAR - 1970) * SECYR;
878 		badbase = 1;
879 	} else
880 		badbase = 0;
881 
882 	rtctime.tv_sec = base;
883 	rtctime.tv_usec = 0;
884 
885 	if (todr_handle == NULL ||
886 	    todr_gettime(todr_handle, &rtctime) != 0 ||
887 	    rtctime.tv_sec < (MINYEAR - 1970) * SECYR) {
888 		/*
889 		 * Believe the time in the file system for lack of
890 		 * anything better, resetting the TODR.
891 		 */
892 		rtctime.tv_sec = base;
893 		rtctime.tv_usec = 0;
894 		if (todr_handle != NULL && !badbase)
895 			printf("WARNING: bad clock chip time\n");
896 		ts.tv_sec = rtctime.tv_sec;
897 		ts.tv_nsec = rtctime.tv_usec * 1000;
898 		tc_setclock(&ts);
899 		goto bad;
900 	} else {
901 		ts.tv_sec = rtctime.tv_sec;
902 		ts.tv_nsec = rtctime.tv_usec * 1000;
903 		tc_setclock(&ts);
904 	}
905 
906 	if (!badbase) {
907 		/*
908 		 * See if we gained/lost two or more days; if
909 		 * so, assume something is amiss.
910 		 */
911 		deltat = rtctime.tv_sec - base;
912 		if (deltat < 0)
913 			deltat = -deltat;
914 		if (deltat < 2 * SECDAY)
915 			return;         /* all is well */
916 #ifndef SMALL_KERNEL
917 		printf("WARNING: clock %s %lld days\n",
918 		    rtctime.tv_sec < base ? "lost" : "gained",
919 		    (long long)(deltat / SECDAY));
920 #endif
921 	}
922  bad:
923 	printf("WARNING: CHECK AND RESET THE DATE!\n");
924 }
925 
926 /*
927  * resettodr:
928  *
929  *      Reset the time-of-day register with the current time.
930  */
931 void
932 resettodr(void)
933 {
934 	struct timeval rtctime;
935 
936 	/*
937 	 * Skip writing the RTC if inittodr(9) never ran.  We don't
938 	 * want to overwrite a reasonable value with a nonsense value.
939 	 */
940 	if (!inittodr_done)
941 		return;
942 
943 	microtime(&rtctime);
944 
945 	if (todr_handle != NULL &&
946 	    todr_settime(todr_handle, &rtctime) != 0)
947 		printf("WARNING: can't update clock chip time\n");
948 }
949 
950 void
951 todr_attach(struct todr_chip_handle *todr)
952 {
953 	if (todr_handle == NULL ||
954 	    todr->todr_quality > todr_handle->todr_quality)
955 		todr_handle = todr;
956 }
957 
958 #define RESETTODR_PERIOD	1800
959 
960 void periodic_resettodr(void *);
961 void perform_resettodr(void *);
962 
963 struct timeout resettodr_to = TIMEOUT_INITIALIZER(periodic_resettodr, NULL);
964 struct task resettodr_task = TASK_INITIALIZER(perform_resettodr, NULL);
965 
966 void
967 periodic_resettodr(void *arg __unused)
968 {
969 	task_add(systq, &resettodr_task);
970 }
971 
972 void
973 perform_resettodr(void *arg __unused)
974 {
975 	resettodr();
976 	timeout_add_sec(&resettodr_to, RESETTODR_PERIOD);
977 }
978 
979 void
980 start_periodic_resettodr(void)
981 {
982 	timeout_add_sec(&resettodr_to, RESETTODR_PERIOD);
983 }
984 
985 void
986 stop_periodic_resettodr(void)
987 {
988 	timeout_del(&resettodr_to);
989 	task_del(systq, &resettodr_task);
990 }
991