xref: /openbsd-src/sys/kern/kern_time.c (revision 46035553bfdd96e63c94e32da0210227ec2e3cf1)
1 /*	$OpenBSD: kern_time.c,v 1.151 2020/12/23 20:45:02 cheloha Exp $	*/
2 /*	$NetBSD: kern_time.c,v 1.20 1996/02/18 11:57:06 fvdl Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
33  */
34 
35 #include <sys/param.h>
36 #include <sys/resourcevar.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 #include <sys/rwlock.h>
40 #include <sys/proc.h>
41 #include <sys/ktrace.h>
42 #include <sys/vnode.h>
43 #include <sys/signalvar.h>
44 #include <sys/stdint.h>
45 #include <sys/pledge.h>
46 #include <sys/task.h>
47 #include <sys/timeout.h>
48 #include <sys/timetc.h>
49 
50 #include <sys/mount.h>
51 #include <sys/syscallargs.h>
52 
53 #include <dev/clock_subr.h>
54 
55 /*
56  * Time of day and interval timer support.
57  *
58  * These routines provide the kernel entry points to get and set
59  * the time-of-day and per-process interval timers.  Subroutines
60  * here provide support for adding and subtracting timeval structures
61  * and decrementing interval timers, optionally reloading the interval
62  * timers when they expire.
63  */
64 
65 /* This function is used by clock_settime and settimeofday */
66 int
67 settime(const struct timespec *ts)
68 {
69 	struct timespec now;
70 
71 	/*
72 	 * Don't allow the time to be set forward so far it will wrap
73 	 * and become negative, thus allowing an attacker to bypass
74 	 * the next check below.  The cutoff is 1 year before rollover
75 	 * occurs, so even if the attacker uses adjtime(2) to move
76 	 * the time past the cutoff, it will take a very long time
77 	 * to get to the wrap point.
78 	 *
79 	 * XXX: we check against UINT_MAX until we can figure out
80 	 *	how to deal with the hardware RTCs.
81 	 */
82 	if (ts->tv_sec > UINT_MAX - 365*24*60*60) {
83 		printf("denied attempt to set clock forward to %lld\n",
84 		    (long long)ts->tv_sec);
85 		return (EPERM);
86 	}
87 	/*
88 	 * If the system is secure, we do not allow the time to be
89 	 * set to an earlier value (it may be slowed using adjtime,
90 	 * but not set back). This feature prevent interlopers from
91 	 * setting arbitrary time stamps on files.
92 	 */
93 	nanotime(&now);
94 	if (securelevel > 1 && timespeccmp(ts, &now, <=)) {
95 		printf("denied attempt to set clock back %lld seconds\n",
96 		    (long long)now.tv_sec - ts->tv_sec);
97 		return (EPERM);
98 	}
99 
100 	tc_setrealtimeclock(ts);
101 	KERNEL_LOCK();
102 	resettodr();
103 	KERNEL_UNLOCK();
104 
105 	return (0);
106 }
107 
108 int
109 clock_gettime(struct proc *p, clockid_t clock_id, struct timespec *tp)
110 {
111 	struct proc *q;
112 	int error = 0;
113 
114 	switch (clock_id) {
115 	case CLOCK_REALTIME:
116 		nanotime(tp);
117 		break;
118 	case CLOCK_UPTIME:
119 		nanoruntime(tp);
120 		break;
121 	case CLOCK_MONOTONIC:
122 	case CLOCK_BOOTTIME:
123 		nanouptime(tp);
124 		break;
125 	case CLOCK_PROCESS_CPUTIME_ID:
126 		nanouptime(tp);
127 		timespecsub(tp, &curcpu()->ci_schedstate.spc_runtime, tp);
128 		timespecadd(tp, &p->p_p->ps_tu.tu_runtime, tp);
129 		timespecadd(tp, &p->p_rtime, tp);
130 		break;
131 	case CLOCK_THREAD_CPUTIME_ID:
132 		nanouptime(tp);
133 		timespecsub(tp, &curcpu()->ci_schedstate.spc_runtime, tp);
134 		timespecadd(tp, &p->p_tu.tu_runtime, tp);
135 		timespecadd(tp, &p->p_rtime, tp);
136 		break;
137 	default:
138 		/* check for clock from pthread_getcpuclockid() */
139 		if (__CLOCK_TYPE(clock_id) == CLOCK_THREAD_CPUTIME_ID) {
140 			KERNEL_LOCK();
141 			q = tfind(__CLOCK_PTID(clock_id) - THREAD_PID_OFFSET);
142 			if (q == NULL || q->p_p != p->p_p)
143 				error = ESRCH;
144 			else
145 				*tp = q->p_tu.tu_runtime;
146 			KERNEL_UNLOCK();
147 		} else
148 			error = EINVAL;
149 		break;
150 	}
151 	return (error);
152 }
153 
154 int
155 sys_clock_gettime(struct proc *p, void *v, register_t *retval)
156 {
157 	struct sys_clock_gettime_args /* {
158 		syscallarg(clockid_t) clock_id;
159 		syscallarg(struct timespec *) tp;
160 	} */ *uap = v;
161 	struct timespec ats;
162 	int error;
163 
164 	memset(&ats, 0, sizeof(ats));
165 	if ((error = clock_gettime(p, SCARG(uap, clock_id), &ats)) != 0)
166 		return (error);
167 
168 	error = copyout(&ats, SCARG(uap, tp), sizeof(ats));
169 #ifdef KTRACE
170 	if (error == 0 && KTRPOINT(p, KTR_STRUCT))
171 		ktrabstimespec(p, &ats);
172 #endif
173 	return (error);
174 }
175 
176 int
177 sys_clock_settime(struct proc *p, void *v, register_t *retval)
178 {
179 	struct sys_clock_settime_args /* {
180 		syscallarg(clockid_t) clock_id;
181 		syscallarg(const struct timespec *) tp;
182 	} */ *uap = v;
183 	struct timespec ats;
184 	clockid_t clock_id;
185 	int error;
186 
187 	if ((error = suser(p)) != 0)
188 		return (error);
189 
190 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
191 		return (error);
192 
193 	clock_id = SCARG(uap, clock_id);
194 	switch (clock_id) {
195 	case CLOCK_REALTIME:
196 		if (!timespecisvalid(&ats))
197 			return (EINVAL);
198 		if ((error = settime(&ats)) != 0)
199 			return (error);
200 		break;
201 	default:	/* Other clocks are read-only */
202 		return (EINVAL);
203 	}
204 
205 	return (0);
206 }
207 
208 int
209 sys_clock_getres(struct proc *p, void *v, register_t *retval)
210 {
211 	struct sys_clock_getres_args /* {
212 		syscallarg(clockid_t) clock_id;
213 		syscallarg(struct timespec *) tp;
214 	} */ *uap = v;
215 	clockid_t clock_id;
216 	struct bintime bt;
217 	struct timespec ts;
218 	struct proc *q;
219 	u_int64_t scale;
220 	int error = 0, realstathz;
221 
222 	memset(&ts, 0, sizeof(ts));
223 	realstathz = (stathz == 0) ? hz : stathz;
224 	clock_id = SCARG(uap, clock_id);
225 
226 	switch (clock_id) {
227 	case CLOCK_REALTIME:
228 	case CLOCK_MONOTONIC:
229 	case CLOCK_BOOTTIME:
230 	case CLOCK_UPTIME:
231 		memset(&bt, 0, sizeof(bt));
232 		rw_enter_read(&tc_lock);
233 		scale = ((1ULL << 63) / tc_getfrequency()) * 2;
234 		bt.frac = tc_getprecision() * scale;
235 		rw_exit_read(&tc_lock);
236 		BINTIME_TO_TIMESPEC(&bt, &ts);
237 		break;
238 	case CLOCK_PROCESS_CPUTIME_ID:
239 	case CLOCK_THREAD_CPUTIME_ID:
240 		ts.tv_nsec = 1000000000 / realstathz;
241 		break;
242 	default:
243 		/* check for clock from pthread_getcpuclockid() */
244 		if (__CLOCK_TYPE(clock_id) == CLOCK_THREAD_CPUTIME_ID) {
245 			KERNEL_LOCK();
246 			q = tfind(__CLOCK_PTID(clock_id) - THREAD_PID_OFFSET);
247 			if (q == NULL || q->p_p != p->p_p)
248 				error = ESRCH;
249 			else
250 				ts.tv_nsec = 1000000000 / realstathz;
251 			KERNEL_UNLOCK();
252 		} else
253 			error = EINVAL;
254 		break;
255 	}
256 
257 	if (error == 0 && SCARG(uap, tp)) {
258 		ts.tv_nsec = MAX(ts.tv_nsec, 1);
259 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
260 #ifdef KTRACE
261 		if (error == 0 && KTRPOINT(p, KTR_STRUCT))
262 			ktrreltimespec(p, &ts);
263 #endif
264 	}
265 
266 	return error;
267 }
268 
269 int
270 sys_nanosleep(struct proc *p, void *v, register_t *retval)
271 {
272 	static int chan;
273 	struct sys_nanosleep_args/* {
274 		syscallarg(const struct timespec *) rqtp;
275 		syscallarg(struct timespec *) rmtp;
276 	} */ *uap = v;
277 	struct timespec elapsed, remainder, request, start, stop;
278 	uint64_t nsecs;
279 	struct timespec *rmtp;
280 	int copyout_error, error;
281 
282 	rmtp = SCARG(uap, rmtp);
283 	error = copyin(SCARG(uap, rqtp), &request, sizeof(request));
284 	if (error)
285 		return (error);
286 #ifdef KTRACE
287 	if (KTRPOINT(p, KTR_STRUCT))
288 		ktrreltimespec(p, &request);
289 #endif
290 
291 	if (request.tv_sec < 0 || !timespecisvalid(&request))
292 		return (EINVAL);
293 
294 	do {
295 		getnanouptime(&start);
296 		nsecs = MAX(1, MIN(TIMESPEC_TO_NSEC(&request), MAXTSLP));
297 		error = tsleep_nsec(&chan, PWAIT | PCATCH, "nanoslp", nsecs);
298 		getnanouptime(&stop);
299 		timespecsub(&stop, &start, &elapsed);
300 		timespecsub(&request, &elapsed, &request);
301 		if (request.tv_sec < 0)
302 			timespecclear(&request);
303 		if (error != EWOULDBLOCK)
304 			break;
305 	} while (timespecisset(&request));
306 
307 	if (error == ERESTART)
308 		error = EINTR;
309 	if (error == EWOULDBLOCK)
310 		error = 0;
311 
312 	if (rmtp) {
313 		memset(&remainder, 0, sizeof(remainder));
314 		remainder = request;
315 		copyout_error = copyout(&remainder, rmtp, sizeof(remainder));
316 		if (copyout_error)
317 			error = copyout_error;
318 #ifdef KTRACE
319 		if (copyout_error == 0 && KTRPOINT(p, KTR_STRUCT))
320 			ktrreltimespec(p, &remainder);
321 #endif
322 	}
323 
324 	return error;
325 }
326 
327 int
328 sys_gettimeofday(struct proc *p, void *v, register_t *retval)
329 {
330 	struct sys_gettimeofday_args /* {
331 		syscallarg(struct timeval *) tp;
332 		syscallarg(struct timezone *) tzp;
333 	} */ *uap = v;
334 	struct timeval atv;
335 	static const struct timezone zerotz = { 0, 0 };
336 	struct timeval *tp;
337 	struct timezone *tzp;
338 	int error = 0;
339 
340 	tp = SCARG(uap, tp);
341 	tzp = SCARG(uap, tzp);
342 
343 	if (tp) {
344 		memset(&atv, 0, sizeof(atv));
345 		microtime(&atv);
346 		if ((error = copyout(&atv, tp, sizeof (atv))))
347 			return (error);
348 #ifdef KTRACE
349 		if (KTRPOINT(p, KTR_STRUCT))
350 			ktrabstimeval(p, &atv);
351 #endif
352 	}
353 	if (tzp)
354 		error = copyout(&zerotz, tzp, sizeof(zerotz));
355 	return (error);
356 }
357 
358 int
359 sys_settimeofday(struct proc *p, void *v, register_t *retval)
360 {
361 	struct sys_settimeofday_args /* {
362 		syscallarg(const struct timeval *) tv;
363 		syscallarg(const struct timezone *) tzp;
364 	} */ *uap = v;
365 	struct timezone atz;
366 	struct timeval atv;
367 	const struct timeval *tv;
368 	const struct timezone *tzp;
369 	int error;
370 
371 	tv = SCARG(uap, tv);
372 	tzp = SCARG(uap, tzp);
373 
374 	if ((error = suser(p)))
375 		return (error);
376 	/* Verify all parameters before changing time. */
377 	if (tv && (error = copyin(tv, &atv, sizeof(atv))))
378 		return (error);
379 	if (tzp && (error = copyin(tzp, &atz, sizeof(atz))))
380 		return (error);
381 	if (tv) {
382 		struct timespec ts;
383 
384 #ifdef KTRACE
385 		if (KTRPOINT(p, KTR_STRUCT))
386 			ktrabstimeval(p, &atv);
387 #endif
388 		if (!timerisvalid(&atv))
389 			return (EINVAL);
390 		TIMEVAL_TO_TIMESPEC(&atv, &ts);
391 		if ((error = settime(&ts)) != 0)
392 			return (error);
393 	}
394 
395 	return (0);
396 }
397 
398 #define ADJFREQ_MAX (500000000LL << 32)
399 #define ADJFREQ_MIN (-500000000LL << 32)
400 
401 int
402 sys_adjfreq(struct proc *p, void *v, register_t *retval)
403 {
404 	struct sys_adjfreq_args /* {
405 		syscallarg(const int64_t *) freq;
406 		syscallarg(int64_t *) oldfreq;
407 	} */ *uap = v;
408 	int error = 0;
409 	int64_t f, oldf;
410 	const int64_t *freq = SCARG(uap, freq);
411 	int64_t *oldfreq = SCARG(uap, oldfreq);
412 
413 	if (freq) {
414 		if ((error = suser(p)))
415 			return (error);
416 		if ((error = copyin(freq, &f, sizeof(f))))
417 			return (error);
418 		if (f < ADJFREQ_MIN || f > ADJFREQ_MAX)
419 			return (EINVAL);
420 	}
421 
422 	rw_enter(&tc_lock, (freq == NULL) ? RW_READ : RW_WRITE);
423 	if (oldfreq) {
424 		tc_adjfreq(&oldf, NULL);
425 		if ((error = copyout(&oldf, oldfreq, sizeof(oldf))))
426 			goto out;
427 	}
428 	if (freq)
429 		tc_adjfreq(NULL, &f);
430 out:
431 	rw_exit(&tc_lock);
432 	return (error);
433 }
434 
435 int
436 sys_adjtime(struct proc *p, void *v, register_t *retval)
437 {
438 	struct sys_adjtime_args /* {
439 		syscallarg(const struct timeval *) delta;
440 		syscallarg(struct timeval *) olddelta;
441 	} */ *uap = v;
442 	struct timeval atv;
443 	const struct timeval *delta = SCARG(uap, delta);
444 	struct timeval *olddelta = SCARG(uap, olddelta);
445 	int64_t adjustment, remaining;
446 	int error;
447 
448 	error = pledge_adjtime(p, delta);
449 	if (error)
450 		return error;
451 
452 	if (delta) {
453 		if ((error = suser(p)))
454 			return (error);
455 		if ((error = copyin(delta, &atv, sizeof(struct timeval))))
456 			return (error);
457 #ifdef KTRACE
458 		if (KTRPOINT(p, KTR_STRUCT))
459 			ktrreltimeval(p, &atv);
460 #endif
461 		if (!timerisvalid(&atv))
462 			return (EINVAL);
463 
464 		if (atv.tv_sec > INT64_MAX / 1000000)
465 			return EINVAL;
466 		if (atv.tv_sec < INT64_MIN / 1000000)
467 			return EINVAL;
468 		adjustment = atv.tv_sec * 1000000;
469 		if (adjustment > INT64_MAX - atv.tv_usec)
470 			return EINVAL;
471 		adjustment += atv.tv_usec;
472 
473 		rw_enter_write(&tc_lock);
474 	}
475 
476 	if (olddelta) {
477 		tc_adjtime(&remaining, NULL);
478 		memset(&atv, 0, sizeof(atv));
479 		atv.tv_sec =  remaining / 1000000;
480 		atv.tv_usec = remaining % 1000000;
481 		if (atv.tv_usec < 0) {
482 			atv.tv_usec += 1000000;
483 			atv.tv_sec--;
484 		}
485 
486 		if ((error = copyout(&atv, olddelta, sizeof(struct timeval))))
487 			goto out;
488 	}
489 
490 	if (delta)
491 		tc_adjtime(NULL, &adjustment);
492 out:
493 	if (delta)
494 		rw_exit_write(&tc_lock);
495 	return (error);
496 }
497 
498 
499 struct mutex itimer_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
500 
501 /*
502  * Get or set value of an interval timer.  The process virtual and
503  * profiling virtual time timers are kept internally in the
504  * way they are specified externally: in time until they expire.
505  *
506  * The real time interval timer's it_value, in contrast, is kept as an
507  * absolute time rather than as a delta, so that it is easy to keep
508  * periodic real-time signals from drifting.
509  *
510  * Virtual time timers are processed in the hardclock() routine of
511  * kern_clock.c.  The real time timer is processed by a timeout
512  * routine, called from the softclock() routine.  Since a callout
513  * may be delayed in real time due to interrupt processing in the system,
514  * it is possible for the real time timeout routine (realitexpire, given below),
515  * to be delayed in real time past when it is supposed to occur.  It
516  * does not suffice, therefore, to reload the real timer .it_value from the
517  * real time timers .it_interval.  Rather, we compute the next time in
518  * absolute time the timer should go off.
519  */
520 void
521 setitimer(int which, const struct itimerval *itv, struct itimerval *olditv)
522 {
523 	struct itimerspec its, oldits;
524 	struct timespec now;
525 	struct itimerspec *itimer;
526 	struct process *pr;
527 
528 	KASSERT(which >= ITIMER_REAL && which <= ITIMER_PROF);
529 
530 	pr = curproc->p_p;
531 	itimer = &pr->ps_timer[which];
532 
533 	if (itv != NULL) {
534 		TIMEVAL_TO_TIMESPEC(&itv->it_value, &its.it_value);
535 		TIMEVAL_TO_TIMESPEC(&itv->it_interval, &its.it_interval);
536 	}
537 
538 	if (which == ITIMER_REAL) {
539 		mtx_enter(&pr->ps_mtx);
540 		nanouptime(&now);
541 	} else
542 		mtx_enter(&itimer_mtx);
543 
544 	if (olditv != NULL)
545 		oldits = *itimer;
546 	if (itv != NULL) {
547 		if (which == ITIMER_REAL) {
548 			if (timespecisset(&its.it_value)) {
549 				timespecadd(&its.it_value, &now, &its.it_value);
550 				timeout_at_ts(&pr->ps_realit_to, &its.it_value);
551 			} else
552 				timeout_del(&pr->ps_realit_to);
553 		}
554 		*itimer = its;
555 	}
556 
557 	if (which == ITIMER_REAL)
558 		mtx_leave(&pr->ps_mtx);
559 	else
560 		mtx_leave(&itimer_mtx);
561 
562 	if (olditv != NULL) {
563 		if (which == ITIMER_REAL && timespecisset(&oldits.it_value)) {
564 			if (timespeccmp(&oldits.it_value, &now, <))
565 				timespecclear(&oldits.it_value);
566 			else {
567 				timespecsub(&oldits.it_value, &now,
568 				    &oldits.it_value);
569 			}
570 		}
571 		TIMESPEC_TO_TIMEVAL(&olditv->it_value, &oldits.it_value);
572 		TIMESPEC_TO_TIMEVAL(&olditv->it_interval, &oldits.it_interval);
573 	}
574 }
575 
576 void
577 cancel_all_itimers(void)
578 {
579 	struct itimerval itv;
580 	int i;
581 
582 	timerclear(&itv.it_value);
583 	timerclear(&itv.it_interval);
584 
585 	for (i = 0; i < nitems(curproc->p_p->ps_timer); i++)
586 		setitimer(i, &itv, NULL);
587 }
588 
589 int
590 sys_getitimer(struct proc *p, void *v, register_t *retval)
591 {
592 	struct sys_getitimer_args /* {
593 		syscallarg(int) which;
594 		syscallarg(struct itimerval *) itv;
595 	} */ *uap = v;
596 	struct itimerval aitv;
597 	int which;
598 
599 	which = SCARG(uap, which);
600 	if (which < ITIMER_REAL || which > ITIMER_PROF)
601 		return EINVAL;
602 
603 	memset(&aitv, 0, sizeof(aitv));
604 
605 	setitimer(which, NULL, &aitv);
606 
607 	return copyout(&aitv, SCARG(uap, itv), sizeof(aitv));
608 }
609 
610 int
611 sys_setitimer(struct proc *p, void *v, register_t *retval)
612 {
613 	struct sys_setitimer_args /* {
614 		syscallarg(int) which;
615 		syscallarg(const struct itimerval *) itv;
616 		syscallarg(struct itimerval *) oitv;
617 	} */ *uap = v;
618 	struct itimerval aitv, olditv;
619 	struct itimerval *newitvp, *olditvp;
620 	int error, which;
621 
622 	which = SCARG(uap, which);
623 	if (which < ITIMER_REAL || which > ITIMER_PROF)
624 		return EINVAL;
625 
626 	newitvp = olditvp = NULL;
627 	if (SCARG(uap, itv) != NULL) {
628 		error = copyin(SCARG(uap, itv), &aitv, sizeof(aitv));
629 		if (error)
630 			return error;
631 		if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
632 			return EINVAL;
633 		if (!timerisset(&aitv.it_value))
634 			timerclear(&aitv.it_interval);
635 		newitvp = &aitv;
636 	}
637 	if (SCARG(uap, oitv) != NULL) {
638 		memset(&olditv, 0, sizeof(olditv));
639 		olditvp = &olditv;
640 	}
641 	if (newitvp == NULL && olditvp == NULL)
642 		return 0;
643 
644 	setitimer(which, newitvp, olditvp);
645 
646 	if (SCARG(uap, oitv) != NULL)
647 		return copyout(&olditv, SCARG(uap, oitv), sizeof(olditv));
648 
649 	return 0;
650 }
651 
652 /*
653  * Real interval timer expired:
654  * send process whose timer expired an alarm signal.
655  * If time is not set up to reload, then just return.
656  * Else compute next time timer should go off which is > current time.
657  * This is where delay in processing this timeout causes multiple
658  * SIGALRM calls to be compressed into one.
659  */
660 void
661 realitexpire(void *arg)
662 {
663 	struct timespec cts;
664 	struct process *pr = arg;
665 	struct itimerspec *tp = &pr->ps_timer[ITIMER_REAL];
666 	int need_signal = 0;
667 
668 	mtx_enter(&pr->ps_mtx);
669 
670 	/*
671 	 * Do nothing if the timer was cancelled or rescheduled while we
672 	 * were entering the mutex.
673 	 */
674 	if (!timespecisset(&tp->it_value) || timeout_pending(&pr->ps_realit_to))
675 		goto out;
676 
677 	/* The timer expired.  We need to send the signal. */
678 	need_signal = 1;
679 
680 	/* One-shot timers are not reloaded. */
681 	if (!timespecisset(&tp->it_interval)) {
682 		timespecclear(&tp->it_value);
683 		goto out;
684 	}
685 
686 	/*
687 	 * Find the nearest future expiration point and restart
688 	 * the timeout.
689 	 */
690 	nanouptime(&cts);
691 	while (timespeccmp(&tp->it_value, &cts, <=))
692 		timespecadd(&tp->it_value, &tp->it_interval, &tp->it_value);
693 	if ((pr->ps_flags & PS_EXITING) == 0)
694 		timeout_at_ts(&pr->ps_realit_to, &tp->it_value);
695 
696 out:
697 	mtx_leave(&pr->ps_mtx);
698 
699 	if (need_signal)
700 		prsignal(pr, SIGALRM);
701 }
702 
703 /*
704  * Check that a proposed value to load into the .it_value or
705  * .it_interval part of an interval timer is acceptable.
706  */
707 int
708 itimerfix(struct timeval *tv)
709 {
710 
711 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
712 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
713 		return (EINVAL);
714 
715 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
716 		tv->tv_usec = tick;
717 
718 	return (0);
719 }
720 
721 /*
722  * Decrement an interval timer by the given number of nanoseconds.
723  * If the timer expires and it is periodic then reload it.  When reloading
724  * the timer we subtract any overrun from the next period so that the timer
725  * does not drift.
726  */
727 int
728 itimerdecr(struct itimerspec *itp, long nsec)
729 {
730 	struct timespec decrement;
731 
732 	NSEC_TO_TIMESPEC(nsec, &decrement);
733 
734 	mtx_enter(&itimer_mtx);
735 
736 	/*
737 	 * Double-check that the timer is enabled.  A different thread
738 	 * in setitimer(2) may have disabled it while we were entering
739 	 * the mutex.
740 	 */
741 	if (!timespecisset(&itp->it_value)) {
742 		mtx_leave(&itimer_mtx);
743 		return (1);
744 	}
745 
746 	/*
747 	 * The timer is enabled.  Update and reload it as needed.
748 	 */
749 	timespecsub(&itp->it_value, &decrement, &itp->it_value);
750 	if (itp->it_value.tv_sec >= 0 && timespecisset(&itp->it_value)) {
751 		mtx_leave(&itimer_mtx);
752 		return (1);
753 	}
754 	if (!timespecisset(&itp->it_interval)) {
755 		timespecclear(&itp->it_value);
756 		mtx_leave(&itimer_mtx);
757 		return (0);
758 	}
759 	while (itp->it_value.tv_sec < 0 || !timespecisset(&itp->it_value))
760 		timespecadd(&itp->it_value, &itp->it_interval, &itp->it_value);
761 	mtx_leave(&itimer_mtx);
762 	return (0);
763 }
764 
765 /*
766  * ratecheck(): simple time-based rate-limit checking.  see ratecheck(9)
767  * for usage and rationale.
768  */
769 int
770 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
771 {
772 	struct timeval tv, delta;
773 	int rv = 0;
774 
775 	getmicrouptime(&tv);
776 
777 	timersub(&tv, lasttime, &delta);
778 
779 	/*
780 	 * check for 0,0 is so that the message will be seen at least once,
781 	 * even if interval is huge.
782 	 */
783 	if (timercmp(&delta, mininterval, >=) ||
784 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
785 		*lasttime = tv;
786 		rv = 1;
787 	}
788 
789 	return (rv);
790 }
791 
792 /*
793  * ppsratecheck(): packets (or events) per second limitation.
794  */
795 int
796 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
797 {
798 	struct timeval tv, delta;
799 	int rv;
800 
801 	microuptime(&tv);
802 
803 	timersub(&tv, lasttime, &delta);
804 
805 	/*
806 	 * check for 0,0 is so that the message will be seen at least once.
807 	 * if more than one second have passed since the last update of
808 	 * lasttime, reset the counter.
809 	 *
810 	 * we do increment *curpps even in *curpps < maxpps case, as some may
811 	 * try to use *curpps for stat purposes as well.
812 	 */
813 	if (maxpps == 0)
814 		rv = 0;
815 	else if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
816 	    delta.tv_sec >= 1) {
817 		*lasttime = tv;
818 		*curpps = 0;
819 		rv = 1;
820 	} else if (maxpps < 0)
821 		rv = 1;
822 	else if (*curpps < maxpps)
823 		rv = 1;
824 	else
825 		rv = 0;
826 
827 #if 1 /*DIAGNOSTIC?*/
828 	/* be careful about wrap-around */
829 	if (*curpps + 1 > *curpps)
830 		*curpps = *curpps + 1;
831 #else
832 	/*
833 	 * assume that there's not too many calls to this function.
834 	 * not sure if the assumption holds, as it depends on *caller's*
835 	 * behavior, not the behavior of this function.
836 	 * IMHO it is wrong to make assumption on the caller's behavior,
837 	 * so the above #if is #if 1, not #ifdef DIAGNOSTIC.
838 	 */
839 	*curpps = *curpps + 1;
840 #endif
841 
842 	return (rv);
843 }
844 
845 todr_chip_handle_t todr_handle;
846 int inittodr_done;
847 
848 #define MINYEAR		((OpenBSD / 100) - 1)	/* minimum plausible year */
849 
850 /*
851  * inittodr:
852  *
853  *      Initialize time from the time-of-day register.
854  */
855 void
856 inittodr(time_t base)
857 {
858 	time_t deltat;
859 	struct timeval rtctime;
860 	struct timespec ts;
861 	int badbase;
862 
863 	inittodr_done = 1;
864 
865 	if (base < (MINYEAR - 1970) * SECYR) {
866 		printf("WARNING: preposterous time in file system\n");
867 		/* read the system clock anyway */
868 		base = (MINYEAR - 1970) * SECYR;
869 		badbase = 1;
870 	} else
871 		badbase = 0;
872 
873 	rtctime.tv_sec = base;
874 	rtctime.tv_usec = 0;
875 
876 	if (todr_handle == NULL ||
877 	    todr_gettime(todr_handle, &rtctime) != 0 ||
878 	    rtctime.tv_sec < (MINYEAR - 1970) * SECYR) {
879 		/*
880 		 * Believe the time in the file system for lack of
881 		 * anything better, resetting the TODR.
882 		 */
883 		rtctime.tv_sec = base;
884 		rtctime.tv_usec = 0;
885 		if (todr_handle != NULL && !badbase)
886 			printf("WARNING: bad clock chip time\n");
887 		ts.tv_sec = rtctime.tv_sec;
888 		ts.tv_nsec = rtctime.tv_usec * 1000;
889 		tc_setclock(&ts);
890 		goto bad;
891 	} else {
892 		ts.tv_sec = rtctime.tv_sec;
893 		ts.tv_nsec = rtctime.tv_usec * 1000;
894 		tc_setclock(&ts);
895 	}
896 
897 	if (!badbase) {
898 		/*
899 		 * See if we gained/lost two or more days; if
900 		 * so, assume something is amiss.
901 		 */
902 		deltat = rtctime.tv_sec - base;
903 		if (deltat < 0)
904 			deltat = -deltat;
905 		if (deltat < 2 * SECDAY)
906 			return;         /* all is well */
907 #ifndef SMALL_KERNEL
908 		printf("WARNING: clock %s %lld days\n",
909 		    rtctime.tv_sec < base ? "lost" : "gained",
910 		    (long long)(deltat / SECDAY));
911 #endif
912 	}
913  bad:
914 	printf("WARNING: CHECK AND RESET THE DATE!\n");
915 }
916 
917 /*
918  * resettodr:
919  *
920  *      Reset the time-of-day register with the current time.
921  */
922 void
923 resettodr(void)
924 {
925 	struct timeval rtctime;
926 
927 	/*
928 	 * Skip writing the RTC if inittodr(9) never ran.  We don't
929 	 * want to overwrite a reasonable value with a nonsense value.
930 	 */
931 	if (!inittodr_done)
932 		return;
933 
934 	microtime(&rtctime);
935 
936 	if (todr_handle != NULL &&
937 	    todr_settime(todr_handle, &rtctime) != 0)
938 		printf("WARNING: can't update clock chip time\n");
939 }
940 
941 void
942 todr_attach(struct todr_chip_handle *todr)
943 {
944 	todr_handle = todr;
945 }
946 
947 #define RESETTODR_PERIOD	1800
948 
949 void periodic_resettodr(void *);
950 void perform_resettodr(void *);
951 
952 struct timeout resettodr_to = TIMEOUT_INITIALIZER(periodic_resettodr, NULL);
953 struct task resettodr_task = TASK_INITIALIZER(perform_resettodr, NULL);
954 
955 void
956 periodic_resettodr(void *arg __unused)
957 {
958 	task_add(systq, &resettodr_task);
959 }
960 
961 void
962 perform_resettodr(void *arg __unused)
963 {
964 	resettodr();
965 	timeout_add_sec(&resettodr_to, RESETTODR_PERIOD);
966 }
967 
968 void
969 start_periodic_resettodr(void)
970 {
971 	timeout_add_sec(&resettodr_to, RESETTODR_PERIOD);
972 }
973 
974 void
975 stop_periodic_resettodr(void)
976 {
977 	timeout_del(&resettodr_to);
978 	task_del(systq, &resettodr_task);
979 }
980