xref: /openbsd-src/sys/kern/kern_tc.c (revision c90a81c56dcebd6a1b73fe4aff9b03385b8e63b3)
1 /*	$OpenBSD: kern_tc.c,v 1.34 2018/09/18 20:47:11 bluhm Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/timeout.h>
28 #include <sys/sysctl.h>
29 #include <sys/syslog.h>
30 #include <sys/systm.h>
31 #include <sys/timetc.h>
32 #include <sys/malloc.h>
33 #include <dev/rndvar.h>
34 
35 /*
36  * A large step happens on boot.  This constant detects such steps.
37  * It is relatively small so that ntp_update_second gets called enough
38  * in the typical 'missed a couple of seconds' case, but doesn't loop
39  * forever when the time step is large.
40  */
41 #define LARGE_STEP	200
42 
43 u_int dummy_get_timecount(struct timecounter *);
44 
45 void ntp_update_second(int64_t *);
46 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
47 int sysctl_tc_choice(void *, size_t *, void *, size_t);
48 
49 /*
50  * Implement a dummy timecounter which we can use until we get a real one
51  * in the air.  This allows the console and other early stuff to use
52  * time services.
53  */
54 
55 u_int
56 dummy_get_timecount(struct timecounter *tc)
57 {
58 	static u_int now;
59 
60 	return (++now);
61 }
62 
63 static struct timecounter dummy_timecounter = {
64 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
65 };
66 
67 struct timehands {
68 	/* These fields must be initialized by the driver. */
69 	struct timecounter	*th_counter;
70 	int64_t			th_adjustment;
71 	u_int64_t		th_scale;
72 	u_int	 		th_offset_count;
73 	struct bintime		th_offset;
74 	struct timeval		th_microtime;
75 	struct timespec		th_nanotime;
76 	/* Fields not to be copied in tc_windup start with th_generation. */
77 	volatile u_int		th_generation;
78 	struct timehands	*th_next;
79 };
80 
81 static struct timehands th0;
82 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
83 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
84 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
85 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
86 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
87 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
88 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
89 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
90 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
91 static struct timehands th0 = {
92 	&dummy_timecounter,
93 	0,
94 	(uint64_t)-1 / 1000000,
95 	0,
96 	{1, 0},
97 	{0, 0},
98 	{0, 0},
99 	1,
100 	&th1
101 };
102 
103 static struct timehands *volatile timehands = &th0;
104 struct timecounter *timecounter = &dummy_timecounter;
105 static struct timecounter *timecounters = &dummy_timecounter;
106 
107 volatile time_t time_second = 1;
108 volatile time_t time_uptime = 0;
109 
110 struct bintime naptime;
111 static struct bintime boottimebin;
112 static int timestepwarnings;
113 
114 void tc_windup(void);
115 
116 /*
117  * Return the difference between the timehands' counter value now and what
118  * was when we copied it to the timehands' offset_count.
119  */
120 static __inline u_int
121 tc_delta(struct timehands *th)
122 {
123 	struct timecounter *tc;
124 
125 	tc = th->th_counter;
126 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
127 	    tc->tc_counter_mask);
128 }
129 
130 /*
131  * Functions for reading the time.  We have to loop until we are sure that
132  * the timehands that we operated on was not updated under our feet.  See
133  * the comment in <sys/time.h> for a description of these 12 functions.
134  */
135 
136 void
137 binuptime(struct bintime *bt)
138 {
139 	struct timehands *th;
140 	u_int gen;
141 
142 	do {
143 		th = timehands;
144 		gen = th->th_generation;
145 		membar_consumer();
146 		*bt = th->th_offset;
147 		bintime_addx(bt, th->th_scale * tc_delta(th));
148 		membar_consumer();
149 	} while (gen == 0 || gen != th->th_generation);
150 }
151 
152 void
153 nanouptime(struct timespec *tsp)
154 {
155 	struct bintime bt;
156 
157 	binuptime(&bt);
158 	bintime2timespec(&bt, tsp);
159 }
160 
161 void
162 microuptime(struct timeval *tvp)
163 {
164 	struct bintime bt;
165 
166 	binuptime(&bt);
167 	bintime2timeval(&bt, tvp);
168 }
169 
170 void
171 bintime(struct bintime *bt)
172 {
173 
174 	binuptime(bt);
175 	bintime_add(bt, &boottimebin);
176 }
177 
178 void
179 nanotime(struct timespec *tsp)
180 {
181 	struct bintime bt;
182 
183 	bintime(&bt);
184 	bintime2timespec(&bt, tsp);
185 }
186 
187 void
188 microtime(struct timeval *tvp)
189 {
190 	struct bintime bt;
191 
192 	bintime(&bt);
193 	bintime2timeval(&bt, tvp);
194 }
195 
196 void
197 getnanouptime(struct timespec *tsp)
198 {
199 	struct timehands *th;
200 	u_int gen;
201 
202 	do {
203 		th = timehands;
204 		gen = th->th_generation;
205 		membar_consumer();
206 		bintime2timespec(&th->th_offset, tsp);
207 		membar_consumer();
208 	} while (gen == 0 || gen != th->th_generation);
209 }
210 
211 void
212 getmicrouptime(struct timeval *tvp)
213 {
214 	struct timehands *th;
215 	u_int gen;
216 
217 	do {
218 		th = timehands;
219 		gen = th->th_generation;
220 		membar_consumer();
221 		bintime2timeval(&th->th_offset, tvp);
222 		membar_consumer();
223 	} while (gen == 0 || gen != th->th_generation);
224 }
225 
226 void
227 getnanotime(struct timespec *tsp)
228 {
229 	struct timehands *th;
230 	u_int gen;
231 
232 	do {
233 		th = timehands;
234 		gen = th->th_generation;
235 		membar_consumer();
236 		*tsp = th->th_nanotime;
237 		membar_consumer();
238 	} while (gen == 0 || gen != th->th_generation);
239 }
240 
241 void
242 getmicrotime(struct timeval *tvp)
243 {
244 	struct timehands *th;
245 	u_int gen;
246 
247 	do {
248 		th = timehands;
249 		gen = th->th_generation;
250 		membar_consumer();
251 		*tvp = th->th_microtime;
252 		membar_consumer();
253 	} while (gen == 0 || gen != th->th_generation);
254 }
255 
256 /*
257  * Initialize a new timecounter and possibly use it.
258  */
259 void
260 tc_init(struct timecounter *tc)
261 {
262 	u_int u;
263 
264 	u = tc->tc_frequency / tc->tc_counter_mask;
265 	/* XXX: We need some margin here, 10% is a guess */
266 	u *= 11;
267 	u /= 10;
268 	if (tc->tc_quality >= 0) {
269 		if (u > hz) {
270 			tc->tc_quality = -2000;
271 			printf("Timecounter \"%s\" frequency %lu Hz",
272 			    tc->tc_name, (unsigned long)tc->tc_frequency);
273 			printf(" -- Insufficient hz, needs at least %u\n", u);
274 		}
275 	}
276 
277 	tc->tc_next = timecounters;
278 	timecounters = tc;
279 	/*
280 	 * Never automatically use a timecounter with negative quality.
281 	 * Even though we run on the dummy counter, switching here may be
282 	 * worse since this timecounter may not be monotonic.
283 	 */
284 	if (tc->tc_quality < 0)
285 		return;
286 	if (tc->tc_quality < timecounter->tc_quality)
287 		return;
288 	if (tc->tc_quality == timecounter->tc_quality &&
289 	    tc->tc_frequency < timecounter->tc_frequency)
290 		return;
291 	(void)tc->tc_get_timecount(tc);
292 	enqueue_randomness(tc->tc_get_timecount(tc));
293 
294 	timecounter = tc;
295 }
296 
297 /* Report the frequency of the current timecounter. */
298 u_int64_t
299 tc_getfrequency(void)
300 {
301 
302 	return (timehands->th_counter->tc_frequency);
303 }
304 
305 /*
306  * Step our concept of UTC, aka the realtime clock.
307  * This is done by modifying our estimate of when we booted.
308  * XXX: not locked.
309  */
310 void
311 tc_setrealtimeclock(const struct timespec *ts)
312 {
313 	struct timespec ts2;
314 	struct bintime bt, bt2;
315 
316 	binuptime(&bt2);
317 	timespec2bintime(ts, &bt);
318 	bintime_sub(&bt, &bt2);
319 	bintime_add(&bt2, &boottimebin);
320 	boottimebin = bt;
321 	bintime2timespec(&bt, &boottime);
322 	enqueue_randomness(ts->tv_sec);
323 
324 	/* XXX fiddle all the little crinkly bits around the fiords... */
325 	tc_windup();
326 	if (timestepwarnings) {
327 		bintime2timespec(&bt2, &ts2);
328 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
329 		    (long long)ts2.tv_sec, ts2.tv_nsec,
330 		    (long long)ts->tv_sec, ts->tv_nsec);
331 	}
332 }
333 
334 /*
335  * Step the monotonic and realtime clocks, triggering any timeouts that
336  * should have occurred across the interval.
337  * XXX: not locked.
338  */
339 void
340 tc_setclock(const struct timespec *ts)
341 {
342 	struct bintime bt, bt2;
343 #ifndef SMALL_KERNEL
344 	long long adj_ticks;
345 #endif
346 
347 	/*
348 	 * When we're called for the first time, during boot when
349 	 * the root partition is mounted, boottime is still zero:
350 	 * we just need to set it.
351 	 */
352 	if (boottimebin.sec == 0) {
353 		tc_setrealtimeclock(ts);
354 		return;
355 	}
356 
357 	enqueue_randomness(ts->tv_sec);
358 
359 	timespec2bintime(ts, &bt);
360 	bintime_sub(&bt, &boottimebin);
361 	bt2 = timehands->th_offset;
362 	timehands->th_offset = bt;
363 
364 	/* XXX fiddle all the little crinkly bits around the fiords... */
365 	tc_windup();
366 
367 #ifndef SMALL_KERNEL
368 	/* convert the bintime to ticks */
369 	bintime_sub(&bt, &bt2);
370 	bintime_add(&naptime, &bt);
371 	adj_ticks = (uint64_t)hz * bt.sec +
372 	    (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
373 	if (adj_ticks > 0) {
374 		if (adj_ticks > INT_MAX)
375 			adj_ticks = INT_MAX;
376 		timeout_adjust_ticks(adj_ticks);
377 	}
378 #endif
379 }
380 
381 /*
382  * Initialize the next struct timehands in the ring and make
383  * it the active timehands.  Along the way we might switch to a different
384  * timecounter and/or do seconds processing in NTP.  Slightly magic.
385  */
386 void
387 tc_windup(void)
388 {
389 	struct bintime bt;
390 	struct timehands *th, *tho;
391 	u_int64_t scale;
392 	u_int delta, ncount, ogen;
393 	int i;
394 
395 	/*
396 	 * Make the next timehands a copy of the current one, but do not
397 	 * overwrite the generation or next pointer.  While we update
398 	 * the contents, the generation must be zero.
399 	 */
400 	tho = timehands;
401 	th = tho->th_next;
402 	ogen = th->th_generation;
403 	th->th_generation = 0;
404 	membar_producer();
405 	memcpy(th, tho, offsetof(struct timehands, th_generation));
406 
407 	/*
408 	 * Capture a timecounter delta on the current timecounter and if
409 	 * changing timecounters, a counter value from the new timecounter.
410 	 * Update the offset fields accordingly.
411 	 */
412 	delta = tc_delta(th);
413 	if (th->th_counter != timecounter)
414 		ncount = timecounter->tc_get_timecount(timecounter);
415 	else
416 		ncount = 0;
417 	th->th_offset_count += delta;
418 	th->th_offset_count &= th->th_counter->tc_counter_mask;
419 	bintime_addx(&th->th_offset, th->th_scale * delta);
420 
421 #ifdef notyet
422 	/*
423 	 * Hardware latching timecounters may not generate interrupts on
424 	 * PPS events, so instead we poll them.  There is a finite risk that
425 	 * the hardware might capture a count which is later than the one we
426 	 * got above, and therefore possibly in the next NTP second which might
427 	 * have a different rate than the current NTP second.  It doesn't
428 	 * matter in practice.
429 	 */
430 	if (tho->th_counter->tc_poll_pps)
431 		tho->th_counter->tc_poll_pps(tho->th_counter);
432 #endif
433 
434 	/*
435 	 * Deal with NTP second processing.  The for loop normally
436 	 * iterates at most once, but in extreme situations it might
437 	 * keep NTP sane if timeouts are not run for several seconds.
438 	 * At boot, the time step can be large when the TOD hardware
439 	 * has been read, so on really large steps, we call
440 	 * ntp_update_second only twice.  We need to call it twice in
441 	 * case we missed a leap second.
442 	 */
443 	bt = th->th_offset;
444 	bintime_add(&bt, &boottimebin);
445 	i = bt.sec - tho->th_microtime.tv_sec;
446 	if (i > LARGE_STEP)
447 		i = 2;
448 	for (; i > 0; i--)
449 		ntp_update_second(&th->th_adjustment);
450 
451 	/* Update the UTC timestamps used by the get*() functions. */
452 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
453 	bintime2timeval(&bt, &th->th_microtime);
454 	bintime2timespec(&bt, &th->th_nanotime);
455 
456 	/* Now is a good time to change timecounters. */
457 	if (th->th_counter != timecounter) {
458 		th->th_counter = timecounter;
459 		th->th_offset_count = ncount;
460 	}
461 
462 	/*-
463 	 * Recalculate the scaling factor.  We want the number of 1/2^64
464 	 * fractions of a second per period of the hardware counter, taking
465 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
466 	 * processing provides us with.
467 	 *
468 	 * The th_adjustment is nanoseconds per second with 32 bit binary
469 	 * fraction and we want 64 bit binary fraction of second:
470 	 *
471 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
472 	 *
473 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
474 	 * we can only multiply by about 850 without overflowing, but that
475 	 * leaves suitably precise fractions for multiply before divide.
476 	 *
477 	 * Divide before multiply with a fraction of 2199/512 results in a
478 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
479 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
480  	 *
481 	 * We happily sacrifice the lowest of the 64 bits of our result
482 	 * to the goddess of code clarity.
483 	 *
484 	 */
485 	scale = (u_int64_t)1 << 63;
486 	scale += (th->th_adjustment / 1024) * 2199;
487 	scale /= th->th_counter->tc_frequency;
488 	th->th_scale = scale * 2;
489 
490 	/*
491 	 * Now that the struct timehands is again consistent, set the new
492 	 * generation number, making sure to not make it zero.
493 	 */
494 	if (++ogen == 0)
495 		ogen = 1;
496 	membar_producer();
497 	th->th_generation = ogen;
498 
499 	/* Go live with the new struct timehands. */
500 	time_second = th->th_microtime.tv_sec;
501 	time_uptime = th->th_offset.sec;
502 	membar_producer();
503 	timehands = th;
504 }
505 
506 /* Report or change the active timecounter hardware. */
507 int
508 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
509 {
510 	char newname[32];
511 	struct timecounter *newtc, *tc;
512 	int error;
513 
514 	tc = timecounter;
515 	strlcpy(newname, tc->tc_name, sizeof(newname));
516 
517 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
518 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
519 		return (error);
520 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
521 		if (strcmp(newname, newtc->tc_name) != 0)
522 			continue;
523 
524 		/* Warm up new timecounter. */
525 		(void)newtc->tc_get_timecount(newtc);
526 		(void)newtc->tc_get_timecount(newtc);
527 
528 		timecounter = newtc;
529 		return (0);
530 	}
531 	return (EINVAL);
532 }
533 
534 /* Report or change the active timecounter hardware. */
535 int
536 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
537 {
538 	char buf[32], *spc, *choices;
539 	struct timecounter *tc;
540 	int error, maxlen;
541 
542 	spc = "";
543 	maxlen = 0;
544 	for (tc = timecounters; tc != NULL; tc = tc->tc_next)
545 		maxlen += sizeof(buf);
546 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
547 	*choices = '\0';
548 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
549 		snprintf(buf, sizeof(buf), "%s%s(%d)",
550 		    spc, tc->tc_name, tc->tc_quality);
551 		spc = " ";
552 		strlcat(choices, buf, maxlen);
553 	}
554 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
555 	free(choices, M_TEMP, maxlen);
556 	return (error);
557 }
558 
559 /*
560  * Timecounters need to be updated every so often to prevent the hardware
561  * counter from overflowing.  Updating also recalculates the cached values
562  * used by the get*() family of functions, so their precision depends on
563  * the update frequency.
564  */
565 static int tc_tick;
566 
567 void
568 tc_ticktock(void)
569 {
570 	static int count;
571 
572 	if (++count < tc_tick)
573 		return;
574 	count = 0;
575 	tc_windup();
576 }
577 
578 void
579 inittimecounter(void)
580 {
581 #ifdef DEBUG
582 	u_int p;
583 #endif
584 
585 	/*
586 	 * Set the initial timeout to
587 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
588 	 * People should probably not use the sysctl to set the timeout
589 	 * to smaller than its initial value, since that value is the
590 	 * smallest reasonable one.  If they want better timestamps they
591 	 * should use the non-"get"* functions.
592 	 */
593 	if (hz > 1000)
594 		tc_tick = (hz + 500) / 1000;
595 	else
596 		tc_tick = 1;
597 #ifdef DEBUG
598 	p = (tc_tick * 1000000) / hz;
599 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
600 #endif
601 
602 	/* warm up new timecounter (again) and get rolling. */
603 	(void)timecounter->tc_get_timecount(timecounter);
604 	(void)timecounter->tc_get_timecount(timecounter);
605 }
606 
607 /*
608  * Return timecounter-related information.
609  */
610 int
611 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
612     void *newp, size_t newlen)
613 {
614 	if (namelen != 1)
615 		return (ENOTDIR);
616 
617 	switch (name[0]) {
618 	case KERN_TIMECOUNTER_TICK:
619 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
620 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
621 		return (sysctl_int(oldp, oldlenp, newp, newlen,
622 		    &timestepwarnings));
623 	case KERN_TIMECOUNTER_HARDWARE:
624 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
625 	case KERN_TIMECOUNTER_CHOICE:
626 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
627 	default:
628 		return (EOPNOTSUPP);
629 	}
630 	/* NOTREACHED */
631 }
632 
633 void
634 ntp_update_second(int64_t *adjust)
635 {
636 	int64_t adj;
637 
638 	/* Skew time according to any adjtime(2) adjustments. */
639 	if (adjtimedelta > 0)
640 		adj = MIN(5000, adjtimedelta);
641 	else
642 		adj = MAX(-5000, adjtimedelta);
643 	adjtimedelta -= adj;
644 	*adjust = (adj * 1000) << 32;
645 	*adjust += timecounter->tc_freq_adj;
646 }
647 
648 int
649 tc_adjfreq(int64_t *old, int64_t *new)
650 {
651 	if (old != NULL) {
652 		*old = timecounter->tc_freq_adj;
653 	}
654 	if (new != NULL) {
655 		timecounter->tc_freq_adj = *new;
656 	}
657 	return 0;
658 }
659