xref: /openbsd-src/sys/kern/kern_tc.c (revision ac9b4aacc1da35008afea06a5d23c2f2dea9b93e)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * $OpenBSD: kern_tc.c,v 1.17 2012/05/24 07:17:42 guenther Exp $
10  * $FreeBSD: src/sys/kern/kern_tc.c,v 1.148 2003/03/18 08:45:23 phk Exp $
11  */
12 
13 #include <sys/param.h>
14 #include <sys/kernel.h>
15 #include <sys/proc.h>
16 #include <sys/sysctl.h>
17 #include <sys/syslog.h>
18 #include <sys/systm.h>
19 #include <sys/timetc.h>
20 #include <sys/malloc.h>
21 #include <dev/rndvar.h>
22 
23 #ifdef __HAVE_TIMECOUNTER
24 /*
25  * A large step happens on boot.  This constant detects such steps.
26  * It is relatively small so that ntp_update_second gets called enough
27  * in the typical 'missed a couple of seconds' case, but doesn't loop
28  * forever when the time step is large.
29  */
30 #define LARGE_STEP	200
31 
32 u_int dummy_get_timecount(struct timecounter *);
33 
34 void ntp_update_second(int64_t *, time_t *);
35 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
36 int sysctl_tc_choice(void *, size_t *, void *, size_t);
37 
38 /*
39  * Implement a dummy timecounter which we can use until we get a real one
40  * in the air.  This allows the console and other early stuff to use
41  * time services.
42  */
43 
44 u_int
45 dummy_get_timecount(struct timecounter *tc)
46 {
47 	static u_int now;
48 
49 	return (++now);
50 }
51 
52 static struct timecounter dummy_timecounter = {
53 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
54 };
55 
56 struct timehands {
57 	/* These fields must be initialized by the driver. */
58 	struct timecounter	*th_counter;
59 	int64_t			th_adjustment;
60 	u_int64_t		th_scale;
61 	u_int	 		th_offset_count;
62 	struct bintime		th_offset;
63 	struct timeval		th_microtime;
64 	struct timespec		th_nanotime;
65 	/* Fields not to be copied in tc_windup start with th_generation. */
66 	volatile u_int		th_generation;
67 	struct timehands	*th_next;
68 };
69 
70 static struct timehands th0;
71 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
72 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
73 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
74 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
75 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
76 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
77 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
78 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
79 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
80 static struct timehands th0 = {
81 	&dummy_timecounter,
82 	0,
83 	(uint64_t)-1 / 1000000,
84 	0,
85 	{1, 0},
86 	{0, 0},
87 	{0, 0},
88 	1,
89 	&th1
90 };
91 
92 static struct timehands *volatile timehands = &th0;
93 struct timecounter *timecounter = &dummy_timecounter;
94 static struct timecounter *timecounters = &dummy_timecounter;
95 
96 volatile time_t time_second = 1;
97 volatile time_t time_uptime = 0;
98 
99 extern struct timeval adjtimedelta;
100 static struct bintime boottimebin;
101 static int timestepwarnings;
102 
103 void tc_windup(void);
104 
105 /*
106  * Return the difference between the timehands' counter value now and what
107  * was when we copied it to the timehands' offset_count.
108  */
109 static __inline u_int
110 tc_delta(struct timehands *th)
111 {
112 	struct timecounter *tc;
113 
114 	tc = th->th_counter;
115 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
116 	    tc->tc_counter_mask);
117 }
118 
119 /*
120  * Functions for reading the time.  We have to loop until we are sure that
121  * the timehands that we operated on was not updated under our feet.  See
122  * the comment in <sys/time.h> for a description of these 12 functions.
123  */
124 
125 void
126 binuptime(struct bintime *bt)
127 {
128 	struct timehands *th;
129 	u_int gen;
130 
131 	do {
132 		th = timehands;
133 		gen = th->th_generation;
134 		*bt = th->th_offset;
135 		bintime_addx(bt, th->th_scale * tc_delta(th));
136 	} while (gen == 0 || gen != th->th_generation);
137 }
138 
139 void
140 nanouptime(struct timespec *tsp)
141 {
142 	struct bintime bt;
143 
144 	binuptime(&bt);
145 	bintime2timespec(&bt, tsp);
146 }
147 
148 void
149 microuptime(struct timeval *tvp)
150 {
151 	struct bintime bt;
152 
153 	binuptime(&bt);
154 	bintime2timeval(&bt, tvp);
155 }
156 
157 void
158 bintime(struct bintime *bt)
159 {
160 
161 	binuptime(bt);
162 	bintime_add(bt, &boottimebin);
163 }
164 
165 void
166 nanotime(struct timespec *tsp)
167 {
168 	struct bintime bt;
169 
170 	bintime(&bt);
171 	bintime2timespec(&bt, tsp);
172 }
173 
174 void
175 microtime(struct timeval *tvp)
176 {
177 	struct bintime bt;
178 
179 	bintime(&bt);
180 	bintime2timeval(&bt, tvp);
181 }
182 
183 void
184 getnanouptime(struct timespec *tsp)
185 {
186 	struct timehands *th;
187 	u_int gen;
188 
189 	do {
190 		th = timehands;
191 		gen = th->th_generation;
192 		bintime2timespec(&th->th_offset, tsp);
193 	} while (gen == 0 || gen != th->th_generation);
194 }
195 
196 void
197 getmicrouptime(struct timeval *tvp)
198 {
199 	struct timehands *th;
200 	u_int gen;
201 
202 	do {
203 		th = timehands;
204 		gen = th->th_generation;
205 		bintime2timeval(&th->th_offset, tvp);
206 	} while (gen == 0 || gen != th->th_generation);
207 }
208 
209 void
210 getnanotime(struct timespec *tsp)
211 {
212 	struct timehands *th;
213 	u_int gen;
214 
215 	do {
216 		th = timehands;
217 		gen = th->th_generation;
218 		*tsp = th->th_nanotime;
219 	} while (gen == 0 || gen != th->th_generation);
220 }
221 
222 void
223 getmicrotime(struct timeval *tvp)
224 {
225 	struct timehands *th;
226 	u_int gen;
227 
228 	do {
229 		th = timehands;
230 		gen = th->th_generation;
231 		*tvp = th->th_microtime;
232 	} while (gen == 0 || gen != th->th_generation);
233 }
234 
235 /*
236  * Initialize a new timecounter and possibly use it.
237  */
238 void
239 tc_init(struct timecounter *tc)
240 {
241 	u_int u;
242 
243 	u = tc->tc_frequency / tc->tc_counter_mask;
244 	/* XXX: We need some margin here, 10% is a guess */
245 	u *= 11;
246 	u /= 10;
247 	if (tc->tc_quality >= 0) {
248 		if (u > hz) {
249 			tc->tc_quality = -2000;
250 			printf("Timecounter \"%s\" frequency %lu Hz",
251 			    tc->tc_name, (unsigned long)tc->tc_frequency);
252 			printf(" -- Insufficient hz, needs at least %u\n", u);
253 		}
254 	}
255 
256 	tc->tc_next = timecounters;
257 	timecounters = tc;
258 	/*
259 	 * Never automatically use a timecounter with negative quality.
260 	 * Even though we run on the dummy counter, switching here may be
261 	 * worse since this timecounter may not be monotonic.
262 	 */
263 	if (tc->tc_quality < 0)
264 		return;
265 	if (tc->tc_quality < timecounter->tc_quality)
266 		return;
267 	if (tc->tc_quality == timecounter->tc_quality &&
268 	    tc->tc_frequency < timecounter->tc_frequency)
269 		return;
270 	(void)tc->tc_get_timecount(tc);
271 	add_timer_randomness(tc->tc_get_timecount(tc));
272 
273 	timecounter = tc;
274 }
275 
276 /* Report the frequency of the current timecounter. */
277 u_int64_t
278 tc_getfrequency(void)
279 {
280 
281 	return (timehands->th_counter->tc_frequency);
282 }
283 
284 /*
285  * Step our concept of UTC, aka the realtime clock.
286  * This is done by modifying our estimate of when we booted.
287  * XXX: not locked.
288  */
289 void
290 tc_setrealtimeclock(struct timespec *ts)
291 {
292 	struct timespec ts2;
293 	struct bintime bt, bt2;
294 
295 	binuptime(&bt2);
296 	timespec2bintime(ts, &bt);
297 	bintime_sub(&bt, &bt2);
298 	bintime_add(&bt2, &boottimebin);
299 	boottimebin = bt;
300 	bintime2timeval(&bt, &boottime);
301 	add_timer_randomness(ts->tv_sec);
302 
303 	/* XXX fiddle all the little crinkly bits around the fiords... */
304 	tc_windup();
305 	if (timestepwarnings) {
306 		bintime2timespec(&bt2, &ts2);
307 		log(LOG_INFO, "Time stepped from %ld.%09ld to %ld.%09ld\n",
308 		    (long)ts2.tv_sec, ts2.tv_nsec,
309 		    (long)ts->tv_sec, ts->tv_nsec);
310 	}
311 }
312 
313 /*
314  * Step the monotonic and realtime clocks, triggering any timeouts that
315  * should have occurred across the interval.
316  * XXX: not locked.
317  */
318 void
319 tc_setclock(struct timespec *ts)
320 {
321 	struct bintime bt, bt2;
322 #ifndef SMALL_KERNEL
323 	long long adj_ticks;
324 #endif
325 
326 	/*
327 	 * When we're called for the first time, during boot when
328 	 * the root partition is mounted, boottime is still zero:
329 	 * we just need to set it.
330 	 */
331 	if (boottimebin.sec == 0) {
332 		tc_setrealtimeclock(ts);
333 		return;
334 	}
335 
336 	add_timer_randomness(ts->tv_sec);
337 
338 	timespec2bintime(ts, &bt);
339 	bintime_sub(&bt, &boottimebin);
340 	bt2 = timehands->th_offset;
341 	timehands->th_offset = bt;
342 
343 #ifndef SMALL_KERNEL
344 	/* convert the bintime to ticks */
345 	bintime_sub(&bt, &bt2);
346 	adj_ticks = (long long)hz * bt.sec +
347 	    (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
348 	if (adj_ticks > 0) {
349 		if (adj_ticks > INT_MAX)
350 			adj_ticks = INT_MAX;
351 		timeout_adjust_ticks(adj_ticks);
352 	}
353 #endif
354 
355 	/* XXX fiddle all the little crinkly bits around the fiords... */
356 	tc_windup();
357 }
358 
359 /*
360  * Initialize the next struct timehands in the ring and make
361  * it the active timehands.  Along the way we might switch to a different
362  * timecounter and/or do seconds processing in NTP.  Slightly magic.
363  */
364 void
365 tc_windup(void)
366 {
367 	struct bintime bt;
368 	struct timehands *th, *tho;
369 	u_int64_t scale;
370 	u_int delta, ncount, ogen;
371 	int i;
372 #ifdef leapsecs
373 	time_t t;
374 #endif
375 
376 	/*
377 	 * Make the next timehands a copy of the current one, but do not
378 	 * overwrite the generation or next pointer.  While we update
379 	 * the contents, the generation must be zero.
380 	 */
381 	tho = timehands;
382 	th = tho->th_next;
383 	ogen = th->th_generation;
384 	th->th_generation = 0;
385 	bcopy(tho, th, offsetof(struct timehands, th_generation));
386 
387 	/*
388 	 * Capture a timecounter delta on the current timecounter and if
389 	 * changing timecounters, a counter value from the new timecounter.
390 	 * Update the offset fields accordingly.
391 	 */
392 	delta = tc_delta(th);
393 	if (th->th_counter != timecounter)
394 		ncount = timecounter->tc_get_timecount(timecounter);
395 	else
396 		ncount = 0;
397 	th->th_offset_count += delta;
398 	th->th_offset_count &= th->th_counter->tc_counter_mask;
399 	bintime_addx(&th->th_offset, th->th_scale * delta);
400 
401 #ifdef notyet
402 	/*
403 	 * Hardware latching timecounters may not generate interrupts on
404 	 * PPS events, so instead we poll them.  There is a finite risk that
405 	 * the hardware might capture a count which is later than the one we
406 	 * got above, and therefore possibly in the next NTP second which might
407 	 * have a different rate than the current NTP second.  It doesn't
408 	 * matter in practice.
409 	 */
410 	if (tho->th_counter->tc_poll_pps)
411 		tho->th_counter->tc_poll_pps(tho->th_counter);
412 #endif
413 
414 	/*
415 	 * Deal with NTP second processing.  The for loop normally
416 	 * iterates at most once, but in extreme situations it might
417 	 * keep NTP sane if timeouts are not run for several seconds.
418 	 * At boot, the time step can be large when the TOD hardware
419 	 * has been read, so on really large steps, we call
420 	 * ntp_update_second only twice.  We need to call it twice in
421 	 * case we missed a leap second.
422 	 */
423 	bt = th->th_offset;
424 	bintime_add(&bt, &boottimebin);
425 	i = bt.sec - tho->th_microtime.tv_sec;
426 	if (i > LARGE_STEP)
427 		i = 2;
428 	for (; i > 0; i--)
429 		ntp_update_second(&th->th_adjustment, &bt.sec);
430 
431 	/* Update the UTC timestamps used by the get*() functions. */
432 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
433 	bintime2timeval(&bt, &th->th_microtime);
434 	bintime2timespec(&bt, &th->th_nanotime);
435 
436 	/* Now is a good time to change timecounters. */
437 	if (th->th_counter != timecounter) {
438 		th->th_counter = timecounter;
439 		th->th_offset_count = ncount;
440 	}
441 
442 	/*-
443 	 * Recalculate the scaling factor.  We want the number of 1/2^64
444 	 * fractions of a second per period of the hardware counter, taking
445 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
446 	 * processing provides us with.
447 	 *
448 	 * The th_adjustment is nanoseconds per second with 32 bit binary
449 	 * fraction and we want 64 bit binary fraction of second:
450 	 *
451 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
452 	 *
453 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
454 	 * we can only multiply by about 850 without overflowing, but that
455 	 * leaves suitably precise fractions for multiply before divide.
456 	 *
457 	 * Divide before multiply with a fraction of 2199/512 results in a
458 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
459 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
460  	 *
461 	 * We happily sacrifice the lowest of the 64 bits of our result
462 	 * to the goddess of code clarity.
463 	 *
464 	 */
465 	scale = (u_int64_t)1 << 63;
466 	scale += (th->th_adjustment / 1024) * 2199;
467 	scale /= th->th_counter->tc_frequency;
468 	th->th_scale = scale * 2;
469 
470 	/*
471 	 * Now that the struct timehands is again consistent, set the new
472 	 * generation number, making sure to not make it zero.
473 	 */
474 	if (++ogen == 0)
475 		ogen = 1;
476 	th->th_generation = ogen;
477 
478 	/* Go live with the new struct timehands. */
479 	time_second = th->th_microtime.tv_sec;
480 	time_uptime = th->th_offset.sec;
481 	timehands = th;
482 }
483 
484 /* Report or change the active timecounter hardware. */
485 int
486 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
487 {
488 	char newname[32];
489 	struct timecounter *newtc, *tc;
490 	int error;
491 
492 	tc = timecounter;
493 	strlcpy(newname, tc->tc_name, sizeof(newname));
494 
495 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
496 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
497 		return (error);
498 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
499 		if (strcmp(newname, newtc->tc_name) != 0)
500 			continue;
501 
502 		/* Warm up new timecounter. */
503 		(void)newtc->tc_get_timecount(newtc);
504 		(void)newtc->tc_get_timecount(newtc);
505 
506 		timecounter = newtc;
507 		return (0);
508 	}
509 	return (EINVAL);
510 }
511 
512 /* Report or change the active timecounter hardware. */
513 int
514 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
515 {
516 	char buf[32], *spc, *choices;
517 	struct timecounter *tc;
518 	int error, maxlen;
519 
520 	spc = "";
521 	maxlen = 0;
522 	for (tc = timecounters; tc != NULL; tc = tc->tc_next)
523 		maxlen += sizeof(buf);
524 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
525 	*choices = '\0';
526 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
527 		snprintf(buf, sizeof(buf), "%s%s(%d)",
528 		    spc, tc->tc_name, tc->tc_quality);
529 		spc = " ";
530 		strlcat(choices, buf, maxlen);
531 	}
532 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
533 	free(choices, M_TEMP);
534 	return (error);
535 }
536 
537 /*
538  * Timecounters need to be updated every so often to prevent the hardware
539  * counter from overflowing.  Updating also recalculates the cached values
540  * used by the get*() family of functions, so their precision depends on
541  * the update frequency.
542  */
543 static int tc_tick;
544 
545 void
546 tc_ticktock(void)
547 {
548 	static int count;
549 
550 	if (++count < tc_tick)
551 		return;
552 	count = 0;
553 	tc_windup();
554 }
555 
556 void
557 inittimecounter(void)
558 {
559 #ifdef DEBUG
560 	u_int p;
561 #endif
562 
563 	/*
564 	 * Set the initial timeout to
565 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
566 	 * People should probably not use the sysctl to set the timeout
567 	 * to smaller than its initial value, since that value is the
568 	 * smallest reasonable one.  If they want better timestamps they
569 	 * should use the non-"get"* functions.
570 	 */
571 	if (hz > 1000)
572 		tc_tick = (hz + 500) / 1000;
573 	else
574 		tc_tick = 1;
575 #ifdef DEBUG
576 	p = (tc_tick * 1000000) / hz;
577 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
578 #endif
579 
580 	/* warm up new timecounter (again) and get rolling. */
581 	(void)timecounter->tc_get_timecount(timecounter);
582 	(void)timecounter->tc_get_timecount(timecounter);
583 }
584 
585 /*
586  * Return timecounter-related information.
587  */
588 int
589 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
590     void *newp, size_t newlen)
591 {
592 	if (namelen != 1)
593 		return (ENOTDIR);
594 
595 	switch (name[0]) {
596 	case KERN_TIMECOUNTER_TICK:
597 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
598 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
599 		return (sysctl_int(oldp, oldlenp, newp, newlen,
600 		    &timestepwarnings));
601 	case KERN_TIMECOUNTER_HARDWARE:
602 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
603 	case KERN_TIMECOUNTER_CHOICE:
604 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
605 	default:
606 		return (EOPNOTSUPP);
607 	}
608 	/* NOTREACHED */
609 }
610 
611 void
612 ntp_update_second(int64_t *adjust, time_t *sec)
613 {
614 	struct timeval adj;
615 
616 	/* Skew time according to any adjtime(2) adjustments. */
617 	timerclear(&adj);
618 	if (adjtimedelta.tv_sec > 0)
619 		adj.tv_usec = 5000;
620 	else if (adjtimedelta.tv_sec == 0)
621 		adj.tv_usec = MIN(5000, adjtimedelta.tv_usec);
622 	else if (adjtimedelta.tv_sec < -1)
623 		adj.tv_usec = -5000;
624 	else if (adjtimedelta.tv_sec == -1)
625 		adj.tv_usec = MAX(-5000, adjtimedelta.tv_usec - 1000000);
626 	timersub(&adjtimedelta, &adj, &adjtimedelta);
627 	*adjust = ((int64_t)adj.tv_usec * 1000) << 32;
628 	*adjust += timecounter->tc_freq_adj;
629 }
630 
631 int
632 tc_adjfreq(int64_t *old, int64_t *new)
633 {
634 	if (old != NULL) {
635 		*old = timecounter->tc_freq_adj;
636 	}
637 	if (new != NULL) {
638 		timecounter->tc_freq_adj = *new;
639 	}
640 	return 0;
641 }
642 #endif /* __HAVE_TIMECOUNTER */
643