xref: /openbsd-src/sys/kern/kern_tc.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*-
2  * ----------------------------------------------------------------------------
3  * "THE BEER-WARE LICENSE" (Revision 42):
4  * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
5  * can do whatever you want with this stuff. If we meet some day, and you think
6  * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
7  * ----------------------------------------------------------------------------
8  *
9  * $OpenBSD: kern_tc.c,v 1.12 2008/11/24 16:38:05 deraadt Exp $
10  * $FreeBSD: src/sys/kern/kern_tc.c,v 1.148 2003/03/18 08:45:23 phk Exp $
11  */
12 
13 #include <sys/param.h>
14 #include <sys/kernel.h>
15 #include <sys/sysctl.h>
16 #include <sys/syslog.h>
17 #include <sys/systm.h>
18 #include <sys/timetc.h>
19 #include <sys/malloc.h>
20 #include <dev/rndvar.h>
21 
22 #ifdef __HAVE_TIMECOUNTER
23 /*
24  * A large step happens on boot.  This constant detects such steps.
25  * It is relatively small so that ntp_update_second gets called enough
26  * in the typical 'missed a couple of seconds' case, but doesn't loop
27  * forever when the time step is large.
28  */
29 #define LARGE_STEP	200
30 
31 u_int dummy_get_timecount(struct timecounter *);
32 
33 void ntp_update_second(int64_t *, time_t *);
34 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
35 int sysctl_tc_choice(void *, size_t *, void *, size_t);
36 
37 /*
38  * Implement a dummy timecounter which we can use until we get a real one
39  * in the air.  This allows the console and other early stuff to use
40  * time services.
41  */
42 
43 u_int
44 dummy_get_timecount(struct timecounter *tc)
45 {
46 	static u_int now;
47 
48 	return (++now);
49 }
50 
51 static struct timecounter dummy_timecounter = {
52 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
53 };
54 
55 struct timehands {
56 	/* These fields must be initialized by the driver. */
57 	struct timecounter	*th_counter;
58 	int64_t			th_adjustment;
59 	u_int64_t		th_scale;
60 	u_int	 		th_offset_count;
61 	struct bintime		th_offset;
62 	struct timeval		th_microtime;
63 	struct timespec		th_nanotime;
64 	/* Fields not to be copied in tc_windup start with th_generation. */
65 	volatile u_int		th_generation;
66 	struct timehands	*th_next;
67 };
68 
69 static struct timehands th0;
70 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
71 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
72 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
73 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
74 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
75 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
76 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
77 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
78 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
79 static struct timehands th0 = {
80 	&dummy_timecounter,
81 	0,
82 	(uint64_t)-1 / 1000000,
83 	0,
84 	{1, 0},
85 	{0, 0},
86 	{0, 0},
87 	1,
88 	&th1
89 };
90 
91 static struct timehands *volatile timehands = &th0;
92 struct timecounter *timecounter = &dummy_timecounter;
93 static struct timecounter *timecounters = &dummy_timecounter;
94 
95 volatile time_t time_second = 1;
96 volatile time_t time_uptime = 0;
97 
98 extern struct timeval adjtimedelta;
99 static struct bintime boottimebin;
100 static int timestepwarnings;
101 
102 void tc_windup(void);
103 
104 /*
105  * Return the difference between the timehands' counter value now and what
106  * was when we copied it to the timehands' offset_count.
107  */
108 static __inline u_int
109 tc_delta(struct timehands *th)
110 {
111 	struct timecounter *tc;
112 
113 	tc = th->th_counter;
114 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
115 	    tc->tc_counter_mask);
116 }
117 
118 /*
119  * Functions for reading the time.  We have to loop until we are sure that
120  * the timehands that we operated on was not updated under our feet.  See
121  * the comment in <sys/time.h> for a description of these 12 functions.
122  */
123 
124 void
125 binuptime(struct bintime *bt)
126 {
127 	struct timehands *th;
128 	u_int gen;
129 
130 	do {
131 		th = timehands;
132 		gen = th->th_generation;
133 		*bt = th->th_offset;
134 		bintime_addx(bt, th->th_scale * tc_delta(th));
135 	} while (gen == 0 || gen != th->th_generation);
136 }
137 
138 void
139 nanouptime(struct timespec *tsp)
140 {
141 	struct bintime bt;
142 
143 	binuptime(&bt);
144 	bintime2timespec(&bt, tsp);
145 }
146 
147 void
148 microuptime(struct timeval *tvp)
149 {
150 	struct bintime bt;
151 
152 	binuptime(&bt);
153 	bintime2timeval(&bt, tvp);
154 }
155 
156 void
157 bintime(struct bintime *bt)
158 {
159 
160 	binuptime(bt);
161 	bintime_add(bt, &boottimebin);
162 }
163 
164 void
165 nanotime(struct timespec *tsp)
166 {
167 	struct bintime bt;
168 
169 	bintime(&bt);
170 	bintime2timespec(&bt, tsp);
171 }
172 
173 void
174 microtime(struct timeval *tvp)
175 {
176 	struct bintime bt;
177 
178 	bintime(&bt);
179 	bintime2timeval(&bt, tvp);
180 }
181 
182 void
183 getnanouptime(struct timespec *tsp)
184 {
185 	struct timehands *th;
186 	u_int gen;
187 
188 	do {
189 		th = timehands;
190 		gen = th->th_generation;
191 		bintime2timespec(&th->th_offset, tsp);
192 	} while (gen == 0 || gen != th->th_generation);
193 }
194 
195 void
196 getmicrouptime(struct timeval *tvp)
197 {
198 	struct timehands *th;
199 	u_int gen;
200 
201 	do {
202 		th = timehands;
203 		gen = th->th_generation;
204 		bintime2timeval(&th->th_offset, tvp);
205 	} while (gen == 0 || gen != th->th_generation);
206 }
207 
208 void
209 getnanotime(struct timespec *tsp)
210 {
211 	struct timehands *th;
212 	u_int gen;
213 
214 	do {
215 		th = timehands;
216 		gen = th->th_generation;
217 		*tsp = th->th_nanotime;
218 	} while (gen == 0 || gen != th->th_generation);
219 }
220 
221 void
222 getmicrotime(struct timeval *tvp)
223 {
224 	struct timehands *th;
225 	u_int gen;
226 
227 	do {
228 		th = timehands;
229 		gen = th->th_generation;
230 		*tvp = th->th_microtime;
231 	} while (gen == 0 || gen != th->th_generation);
232 }
233 
234 /*
235  * Initialize a new timecounter and possibly use it.
236  */
237 void
238 tc_init(struct timecounter *tc)
239 {
240 	u_int u;
241 
242 	u = tc->tc_frequency / tc->tc_counter_mask;
243 	/* XXX: We need some margin here, 10% is a guess */
244 	u *= 11;
245 	u /= 10;
246 	if (tc->tc_quality >= 0) {
247 		if (u > hz) {
248 			tc->tc_quality = -2000;
249 			printf("Timecounter \"%s\" frequency %lu Hz",
250 			    tc->tc_name, (unsigned long)tc->tc_frequency);
251 			printf(" -- Insufficient hz, needs at least %u\n", u);
252 		}
253 	}
254 
255 	tc->tc_next = timecounters;
256 	timecounters = tc;
257 	/*
258 	 * Never automatically use a timecounter with negative quality.
259 	 * Even though we run on the dummy counter, switching here may be
260 	 * worse since this timecounter may not be monotonous.
261 	 */
262 	if (tc->tc_quality < 0)
263 		return;
264 	if (tc->tc_quality < timecounter->tc_quality)
265 		return;
266 	if (tc->tc_quality == timecounter->tc_quality &&
267 	    tc->tc_frequency < timecounter->tc_frequency)
268 		return;
269 	(void)tc->tc_get_timecount(tc);
270 	add_timer_randomness(tc->tc_get_timecount(tc));
271 
272 	timecounter = tc;
273 }
274 
275 /* Report the frequency of the current timecounter. */
276 u_int64_t
277 tc_getfrequency(void)
278 {
279 
280 	return (timehands->th_counter->tc_frequency);
281 }
282 
283 /*
284  * Step our concept of UTC.  This is done by modifying our estimate of
285  * when we booted.
286  * XXX: not locked.
287  */
288 void
289 tc_setclock(struct timespec *ts)
290 {
291 	struct timespec ts2;
292 	struct bintime bt, bt2;
293 
294 	binuptime(&bt2);
295 	timespec2bintime(ts, &bt);
296 	bintime_sub(&bt, &bt2);
297 	bintime_add(&bt2, &boottimebin);
298 	boottimebin = bt;
299 	bintime2timeval(&bt, &boottime);
300 	add_timer_randomness(ts->tv_sec);
301 
302 	/* XXX fiddle all the little crinkly bits around the fiords... */
303 	tc_windup();
304 	if (timestepwarnings) {
305 		bintime2timespec(&bt2, &ts2);
306 		log(LOG_INFO, "Time stepped from %ld.%09ld to %ld.%09ld\n",
307 		    (long)ts2.tv_sec, ts2.tv_nsec,
308 		    (long)ts->tv_sec, ts->tv_nsec);
309 	}
310 }
311 
312 /*
313  * Initialize the next struct timehands in the ring and make
314  * it the active timehands.  Along the way we might switch to a different
315  * timecounter and/or do seconds processing in NTP.  Slightly magic.
316  */
317 void
318 tc_windup(void)
319 {
320 	struct bintime bt;
321 	struct timehands *th, *tho;
322 	u_int64_t scale;
323 	u_int delta, ncount, ogen;
324 	int i;
325 #ifdef leapsecs
326 	time_t t;
327 #endif
328 
329 	/*
330 	 * Make the next timehands a copy of the current one, but do not
331 	 * overwrite the generation or next pointer.  While we update
332 	 * the contents, the generation must be zero.
333 	 */
334 	tho = timehands;
335 	th = tho->th_next;
336 	ogen = th->th_generation;
337 	th->th_generation = 0;
338 	bcopy(tho, th, offsetof(struct timehands, th_generation));
339 
340 	/*
341 	 * Capture a timecounter delta on the current timecounter and if
342 	 * changing timecounters, a counter value from the new timecounter.
343 	 * Update the offset fields accordingly.
344 	 */
345 	delta = tc_delta(th);
346 	if (th->th_counter != timecounter)
347 		ncount = timecounter->tc_get_timecount(timecounter);
348 	else
349 		ncount = 0;
350 	th->th_offset_count += delta;
351 	th->th_offset_count &= th->th_counter->tc_counter_mask;
352 	bintime_addx(&th->th_offset, th->th_scale * delta);
353 
354 #ifdef notyet
355 	/*
356 	 * Hardware latching timecounters may not generate interrupts on
357 	 * PPS events, so instead we poll them.  There is a finite risk that
358 	 * the hardware might capture a count which is later than the one we
359 	 * got above, and therefore possibly in the next NTP second which might
360 	 * have a different rate than the current NTP second.  It doesn't
361 	 * matter in practice.
362 	 */
363 	if (tho->th_counter->tc_poll_pps)
364 		tho->th_counter->tc_poll_pps(tho->th_counter);
365 #endif
366 
367 	/*
368 	 * Deal with NTP second processing.  The for loop normally
369 	 * iterates at most once, but in extreme situations it might
370 	 * keep NTP sane if timeouts are not run for several seconds.
371 	 * At boot, the time step can be large when the TOD hardware
372 	 * has been read, so on really large steps, we call
373 	 * ntp_update_second only twice.  We need to call it twice in
374 	 * case we missed a leap second.
375 	 */
376 	bt = th->th_offset;
377 	bintime_add(&bt, &boottimebin);
378 	i = bt.sec - tho->th_microtime.tv_sec;
379 	if (i > LARGE_STEP)
380 		i = 2;
381 	for (; i > 0; i--)
382 		ntp_update_second(&th->th_adjustment, &bt.sec);
383 
384 	/* Update the UTC timestamps used by the get*() functions. */
385 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
386 	bintime2timeval(&bt, &th->th_microtime);
387 	bintime2timespec(&bt, &th->th_nanotime);
388 
389 	/* Now is a good time to change timecounters. */
390 	if (th->th_counter != timecounter) {
391 		th->th_counter = timecounter;
392 		th->th_offset_count = ncount;
393 	}
394 
395 	/*-
396 	 * Recalculate the scaling factor.  We want the number of 1/2^64
397 	 * fractions of a second per period of the hardware counter, taking
398 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
399 	 * processing provides us with.
400 	 *
401 	 * The th_adjustment is nanoseconds per second with 32 bit binary
402 	 * fraction and we want 64 bit binary fraction of second:
403 	 *
404 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
405 	 *
406 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
407 	 * we can only multiply by about 850 without overflowing, but that
408 	 * leaves suitably precise fractions for multiply before divide.
409 	 *
410 	 * Divide before multiply with a fraction of 2199/512 results in a
411 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
412 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
413  	 *
414 	 * We happily sacrifice the lowest of the 64 bits of our result
415 	 * to the goddess of code clarity.
416 	 *
417 	 */
418 	scale = (u_int64_t)1 << 63;
419 	scale += (th->th_adjustment / 1024) * 2199;
420 	scale /= th->th_counter->tc_frequency;
421 	th->th_scale = scale * 2;
422 
423 	/*
424 	 * Now that the struct timehands is again consistent, set the new
425 	 * generation number, making sure to not make it zero.
426 	 */
427 	if (++ogen == 0)
428 		ogen = 1;
429 	th->th_generation = ogen;
430 
431 	/* Go live with the new struct timehands. */
432 	time_second = th->th_microtime.tv_sec;
433 	time_uptime = th->th_offset.sec;
434 	timehands = th;
435 }
436 
437 /* Report or change the active timecounter hardware. */
438 int
439 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
440 {
441 	char newname[32];
442 	struct timecounter *newtc, *tc;
443 	int error;
444 
445 	tc = timecounter;
446 	strlcpy(newname, tc->tc_name, sizeof(newname));
447 
448 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
449 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
450 		return (error);
451 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
452 		if (strcmp(newname, newtc->tc_name) != 0)
453 			continue;
454 
455 		/* Warm up new timecounter. */
456 		(void)newtc->tc_get_timecount(newtc);
457 		(void)newtc->tc_get_timecount(newtc);
458 
459 		timecounter = newtc;
460 		return (0);
461 	}
462 	return (EINVAL);
463 }
464 
465 /* Report or change the active timecounter hardware. */
466 int
467 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
468 {
469 	char buf[32], *spc, *choices;
470 	struct timecounter *tc;
471 	int error, maxlen;
472 
473 	spc = "";
474 	error = 0;
475 	maxlen = 0;
476 	for (tc = timecounters; tc != NULL; tc = tc->tc_next)
477 		maxlen += sizeof(buf);
478 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
479 	*choices = '\0';
480 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
481 		snprintf(buf, sizeof(buf), "%s%s(%d)",
482 		    spc, tc->tc_name, tc->tc_quality);
483 		spc = " ";
484 		strlcat(choices, buf, maxlen);
485 	}
486 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
487 	free(choices, M_TEMP);
488 	return (error);
489 }
490 
491 /*
492  * Timecounters need to be updated every so often to prevent the hardware
493  * counter from overflowing.  Updating also recalculates the cached values
494  * used by the get*() family of functions, so their precision depends on
495  * the update frequency.
496  */
497 static int tc_tick;
498 
499 void
500 tc_ticktock(void)
501 {
502 	static int count;
503 
504 	if (++count < tc_tick)
505 		return;
506 	count = 0;
507 	tc_windup();
508 }
509 
510 void
511 inittimecounter(void)
512 {
513 	u_int p;
514 
515 	/*
516 	 * Set the initial timeout to
517 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
518 	 * People should probably not use the sysctl to set the timeout
519 	 * to smaller than its inital value, since that value is the
520 	 * smallest reasonable one.  If they want better timestamps they
521 	 * should use the non-"get"* functions.
522 	 */
523 	if (hz > 1000)
524 		tc_tick = (hz + 500) / 1000;
525 	else
526 		tc_tick = 1;
527 	p = (tc_tick * 1000000) / hz;
528 #ifdef DEBUG
529 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
530 #endif
531 
532 	/* warm up new timecounter (again) and get rolling. */
533 	(void)timecounter->tc_get_timecount(timecounter);
534 	(void)timecounter->tc_get_timecount(timecounter);
535 }
536 
537 /*
538  * Return timecounter-related information.
539  */
540 int
541 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
542     void *newp, size_t newlen)
543 {
544 	if (namelen != 1)
545 		return (ENOTDIR);
546 
547 	switch (name[0]) {
548 	case KERN_TIMECOUNTER_TICK:
549 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
550 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
551 		return (sysctl_int(oldp, oldlenp, newp, newlen,
552 		    &timestepwarnings));
553 	case KERN_TIMECOUNTER_HARDWARE:
554 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
555 	case KERN_TIMECOUNTER_CHOICE:
556 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
557 	default:
558 		return (EOPNOTSUPP);
559 	}
560 	/* NOTREACHED */
561 }
562 
563 void
564 ntp_update_second(int64_t *adjust, time_t *sec)
565 {
566 	struct timeval adj;
567 
568 	/* Skew time according to any adjtime(2) adjustments. */
569 	timerclear(&adj);
570 	if (adjtimedelta.tv_sec > 0)
571 		adj.tv_usec = 5000;
572 	else if (adjtimedelta.tv_sec == 0)
573 		adj.tv_usec = MIN(5000, adjtimedelta.tv_usec);
574 	else if (adjtimedelta.tv_sec < -1)
575 		adj.tv_usec = -5000;
576 	else if (adjtimedelta.tv_sec == -1)
577 		adj.tv_usec = MAX(-5000, adjtimedelta.tv_usec - 1000000);
578 	timersub(&adjtimedelta, &adj, &adjtimedelta);
579 	*adjust = ((int64_t)adj.tv_usec * 1000) << 32;
580 	*adjust += timecounter->tc_freq_adj;
581 }
582 
583 int
584 tc_adjfreq(int64_t *old, int64_t *new)
585 {
586 	if (old != NULL) {
587 		*old = timecounter->tc_freq_adj;
588 	}
589 	if (new != NULL) {
590 		timecounter->tc_freq_adj = *new;
591 	}
592 	return 0;
593 }
594 #endif /* __HAVE_TIMECOUNTER */
595