xref: /openbsd-src/sys/kern/kern_tc.c (revision 74106511ec570f1b07fbdeb67a8f3c7f86627cee)
1 /*	$OpenBSD: kern_tc.c,v 1.45 2019/05/10 18:53:13 cheloha Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/rwlock.h>
29 #include <sys/stdint.h>
30 #include <sys/timeout.h>
31 #include <sys/sysctl.h>
32 #include <sys/syslog.h>
33 #include <sys/systm.h>
34 #include <sys/timetc.h>
35 #include <sys/malloc.h>
36 #include <dev/rndvar.h>
37 
38 /*
39  * A large step happens on boot.  This constant detects such steps.
40  * It is relatively small so that ntp_update_second gets called enough
41  * in the typical 'missed a couple of seconds' case, but doesn't loop
42  * forever when the time step is large.
43  */
44 #define LARGE_STEP	200
45 
46 u_int dummy_get_timecount(struct timecounter *);
47 
48 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
49 int sysctl_tc_choice(void *, size_t *, void *, size_t);
50 
51 /*
52  * Implement a dummy timecounter which we can use until we get a real one
53  * in the air.  This allows the console and other early stuff to use
54  * time services.
55  */
56 
57 u_int
58 dummy_get_timecount(struct timecounter *tc)
59 {
60 	static u_int now;
61 
62 	return (++now);
63 }
64 
65 static struct timecounter dummy_timecounter = {
66 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
67 };
68 
69 /*
70  * Locks used to protect struct members, global variables in this file:
71  *	I	immutable after initialization
72  *	t	tc_lock
73  *	w	windup_mtx
74  */
75 
76 struct timehands {
77 	/* These fields must be initialized by the driver. */
78 	struct timecounter	*th_counter;		/* [w] */
79 	int64_t			th_adjtimedelta;	/* [tw] */
80 	int64_t			th_adjustment;		/* [w] */
81 	u_int64_t		th_scale;		/* [w] */
82 	u_int	 		th_offset_count;	/* [w] */
83 	struct bintime		th_boottime;		/* [tw] */
84 	struct bintime		th_offset;		/* [w] */
85 	struct timeval		th_microtime;		/* [w] */
86 	struct timespec		th_nanotime;		/* [w] */
87 	/* Fields not to be copied in tc_windup start with th_generation. */
88 	volatile u_int		th_generation;		/* [w] */
89 	struct timehands	*th_next;		/* [I] */
90 };
91 
92 static struct timehands th0;
93 static struct timehands th1 = {
94 	.th_next = &th0
95 };
96 static struct timehands th0 = {
97 	.th_counter = &dummy_timecounter,
98 	.th_scale = UINT64_MAX / 1000000,
99 	.th_offset = { .sec = 1, .frac = 0 },
100 	.th_generation = 1,
101 	.th_next = &th1
102 };
103 
104 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock");
105 
106 /*
107  * tc_windup() must be called before leaving this mutex.
108  */
109 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
110 
111 static struct timehands *volatile timehands = &th0;		/* [w] */
112 struct timecounter *timecounter = &dummy_timecounter;		/* [t] */
113 static struct timecounter *timecounters = &dummy_timecounter;
114 
115 volatile time_t time_second = 1;
116 volatile time_t time_uptime = 0;
117 
118 struct bintime naptime;
119 static int timestepwarnings;
120 
121 void ntp_update_second(struct timehands *);
122 void tc_windup(struct bintime *, struct bintime *, int64_t *);
123 
124 /*
125  * Return the difference between the timehands' counter value now and what
126  * was when we copied it to the timehands' offset_count.
127  */
128 static __inline u_int
129 tc_delta(struct timehands *th)
130 {
131 	struct timecounter *tc;
132 
133 	tc = th->th_counter;
134 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
135 	    tc->tc_counter_mask);
136 }
137 
138 /*
139  * Functions for reading the time.  We have to loop until we are sure that
140  * the timehands that we operated on was not updated under our feet.  See
141  * the comment in <sys/time.h> for a description of these functions.
142  */
143 
144 void
145 binboottime(struct bintime *bt)
146 {
147 	struct timehands *th;
148 	u_int gen;
149 
150 	do {
151 		th = timehands;
152 		gen = th->th_generation;
153 		membar_consumer();
154 		*bt = th->th_boottime;
155 		membar_consumer();
156 	} while (gen == 0 || gen != th->th_generation);
157 }
158 
159 void
160 microboottime(struct timeval *tvp)
161 {
162 	struct bintime bt;
163 
164 	binboottime(&bt);
165 	bintime2timeval(&bt, tvp);
166 }
167 
168 void
169 binuptime(struct bintime *bt)
170 {
171 	struct timehands *th;
172 	u_int gen;
173 
174 	do {
175 		th = timehands;
176 		gen = th->th_generation;
177 		membar_consumer();
178 		*bt = th->th_offset;
179 		bintime_addx(bt, th->th_scale * tc_delta(th));
180 		membar_consumer();
181 	} while (gen == 0 || gen != th->th_generation);
182 }
183 
184 void
185 nanouptime(struct timespec *tsp)
186 {
187 	struct bintime bt;
188 
189 	binuptime(&bt);
190 	bintime2timespec(&bt, tsp);
191 }
192 
193 void
194 microuptime(struct timeval *tvp)
195 {
196 	struct bintime bt;
197 
198 	binuptime(&bt);
199 	bintime2timeval(&bt, tvp);
200 }
201 
202 void
203 bintime(struct bintime *bt)
204 {
205 	struct timehands *th;
206 	u_int gen;
207 
208 	do {
209 		th = timehands;
210 		gen = th->th_generation;
211 		membar_consumer();
212 		*bt = th->th_offset;
213 		bintime_addx(bt, th->th_scale * tc_delta(th));
214 		bintime_add(bt, &th->th_boottime);
215 		membar_consumer();
216 	} while (gen == 0 || gen != th->th_generation);
217 }
218 
219 void
220 nanotime(struct timespec *tsp)
221 {
222 	struct bintime bt;
223 
224 	bintime(&bt);
225 	bintime2timespec(&bt, tsp);
226 }
227 
228 void
229 microtime(struct timeval *tvp)
230 {
231 	struct bintime bt;
232 
233 	bintime(&bt);
234 	bintime2timeval(&bt, tvp);
235 }
236 
237 void
238 getnanouptime(struct timespec *tsp)
239 {
240 	struct timehands *th;
241 	u_int gen;
242 
243 	do {
244 		th = timehands;
245 		gen = th->th_generation;
246 		membar_consumer();
247 		bintime2timespec(&th->th_offset, tsp);
248 		membar_consumer();
249 	} while (gen == 0 || gen != th->th_generation);
250 }
251 
252 void
253 getmicrouptime(struct timeval *tvp)
254 {
255 	struct timehands *th;
256 	u_int gen;
257 
258 	do {
259 		th = timehands;
260 		gen = th->th_generation;
261 		membar_consumer();
262 		bintime2timeval(&th->th_offset, tvp);
263 		membar_consumer();
264 	} while (gen == 0 || gen != th->th_generation);
265 }
266 
267 void
268 getnanotime(struct timespec *tsp)
269 {
270 	struct timehands *th;
271 	u_int gen;
272 
273 	do {
274 		th = timehands;
275 		gen = th->th_generation;
276 		membar_consumer();
277 		*tsp = th->th_nanotime;
278 		membar_consumer();
279 	} while (gen == 0 || gen != th->th_generation);
280 }
281 
282 void
283 getmicrotime(struct timeval *tvp)
284 {
285 	struct timehands *th;
286 	u_int gen;
287 
288 	do {
289 		th = timehands;
290 		gen = th->th_generation;
291 		membar_consumer();
292 		*tvp = th->th_microtime;
293 		membar_consumer();
294 	} while (gen == 0 || gen != th->th_generation);
295 }
296 
297 /*
298  * Initialize a new timecounter and possibly use it.
299  */
300 void
301 tc_init(struct timecounter *tc)
302 {
303 	u_int u;
304 
305 	u = tc->tc_frequency / tc->tc_counter_mask;
306 	/* XXX: We need some margin here, 10% is a guess */
307 	u *= 11;
308 	u /= 10;
309 	if (tc->tc_quality >= 0) {
310 		if (u > hz) {
311 			tc->tc_quality = -2000;
312 			printf("Timecounter \"%s\" frequency %lu Hz",
313 			    tc->tc_name, (unsigned long)tc->tc_frequency);
314 			printf(" -- Insufficient hz, needs at least %u\n", u);
315 		}
316 	}
317 
318 	tc->tc_next = timecounters;
319 	timecounters = tc;
320 	/*
321 	 * Never automatically use a timecounter with negative quality.
322 	 * Even though we run on the dummy counter, switching here may be
323 	 * worse since this timecounter may not be monotonic.
324 	 */
325 	if (tc->tc_quality < 0)
326 		return;
327 	if (tc->tc_quality < timecounter->tc_quality)
328 		return;
329 	if (tc->tc_quality == timecounter->tc_quality &&
330 	    tc->tc_frequency < timecounter->tc_frequency)
331 		return;
332 	(void)tc->tc_get_timecount(tc);
333 	enqueue_randomness(tc->tc_get_timecount(tc));
334 
335 	timecounter = tc;
336 }
337 
338 /* Report the frequency of the current timecounter. */
339 u_int64_t
340 tc_getfrequency(void)
341 {
342 
343 	return (timehands->th_counter->tc_frequency);
344 }
345 
346 /*
347  * Step our concept of UTC, aka the realtime clock.
348  * This is done by modifying our estimate of when we booted.
349  *
350  * Any ongoing adjustment is meaningless after a clock jump,
351  * so we zero adjtimedelta here as well.
352  */
353 void
354 tc_setrealtimeclock(const struct timespec *ts)
355 {
356 	struct timespec ts2;
357 	struct bintime bt, bt2;
358 	int64_t zero = 0;
359 
360 	rw_enter_write(&tc_lock);
361 	mtx_enter(&windup_mtx);
362 	binuptime(&bt2);
363 	timespec2bintime(ts, &bt);
364 	bintime_sub(&bt, &bt2);
365 	bintime_add(&bt2, &timehands->th_boottime);
366 
367 	/* XXX fiddle all the little crinkly bits around the fiords... */
368 	tc_windup(&bt, NULL, &zero);
369 	mtx_leave(&windup_mtx);
370 	rw_exit_write(&tc_lock);
371 
372 	enqueue_randomness(ts->tv_sec);
373 
374 	if (timestepwarnings) {
375 		bintime2timespec(&bt2, &ts2);
376 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
377 		    (long long)ts2.tv_sec, ts2.tv_nsec,
378 		    (long long)ts->tv_sec, ts->tv_nsec);
379 	}
380 }
381 
382 /*
383  * Step the monotonic and realtime clocks, triggering any timeouts that
384  * should have occurred across the interval.
385  */
386 void
387 tc_setclock(const struct timespec *ts)
388 {
389 	struct bintime bt, bt2;
390 	struct timespec earlier;
391 	static int first = 1;
392 	int rewind = 0;
393 #ifndef SMALL_KERNEL
394 	long long adj_ticks;
395 #endif
396 
397 	/*
398 	 * When we're called for the first time, during boot when
399 	 * the root partition is mounted, we need to set boottime.
400 	 */
401 	if (first) {
402 		tc_setrealtimeclock(ts);
403 		first = 0;
404 		return;
405 	}
406 
407 	enqueue_randomness(ts->tv_sec);
408 
409 	mtx_enter(&windup_mtx);
410 	timespec2bintime(ts, &bt);
411 	bintime_sub(&bt, &timehands->th_boottime);
412 
413 	/*
414 	 * Don't rewind the offset.
415 	 */
416 	if (bt.sec < timehands->th_offset.sec ||
417 	    (bt.sec == timehands->th_offset.sec &&
418 	    bt.frac < timehands->th_offset.frac))
419 		rewind = 1;
420 
421 	bt2 = timehands->th_offset;
422 
423 	/* XXX fiddle all the little crinkly bits around the fiords... */
424 	tc_windup(NULL, rewind ? NULL : &bt, NULL);
425 	mtx_leave(&windup_mtx);
426 
427 	if (rewind) {
428 		bintime2timespec(&bt, &earlier);
429 		printf("%s: cannot rewind uptime to %lld.%09ld\n",
430 		    __func__, (long long)earlier.tv_sec, earlier.tv_nsec);
431 		return;
432 	}
433 
434 #ifndef SMALL_KERNEL
435 	/* convert the bintime to ticks */
436 	bintime_sub(&bt, &bt2);
437 	bintime_add(&naptime, &bt);
438 	adj_ticks = (uint64_t)hz * bt.sec +
439 	    (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
440 	if (adj_ticks > 0) {
441 		if (adj_ticks > INT_MAX)
442 			adj_ticks = INT_MAX;
443 		timeout_adjust_ticks(adj_ticks);
444 	}
445 #endif
446 }
447 
448 /*
449  * Initialize the next struct timehands in the ring and make
450  * it the active timehands.  Along the way we might switch to a different
451  * timecounter and/or do seconds processing in NTP.  Slightly magic.
452  */
453 void
454 tc_windup(struct bintime *new_boottime, struct bintime *new_offset,
455     int64_t *new_adjtimedelta)
456 {
457 	struct bintime bt;
458 	struct timecounter *active_tc;
459 	struct timehands *th, *tho;
460 	u_int64_t scale;
461 	u_int delta, ncount, ogen;
462 	int i;
463 
464 	if (new_boottime != NULL || new_adjtimedelta != NULL)
465 		rw_assert_wrlock(&tc_lock);
466 	MUTEX_ASSERT_LOCKED(&windup_mtx);
467 
468 	active_tc = timecounter;
469 
470 	/*
471 	 * Make the next timehands a copy of the current one, but do not
472 	 * overwrite the generation or next pointer.  While we update
473 	 * the contents, the generation must be zero.
474 	 */
475 	tho = timehands;
476 	th = tho->th_next;
477 	ogen = th->th_generation;
478 	th->th_generation = 0;
479 	membar_producer();
480 	memcpy(th, tho, offsetof(struct timehands, th_generation));
481 
482 	/*
483 	 * If changing the boot offset, do so before updating the
484 	 * offset fields.
485 	 */
486 	if (new_offset != NULL)
487 		th->th_offset = *new_offset;
488 
489 	/*
490 	 * Capture a timecounter delta on the current timecounter and if
491 	 * changing timecounters, a counter value from the new timecounter.
492 	 * Update the offset fields accordingly.
493 	 */
494 	delta = tc_delta(th);
495 	if (th->th_counter != active_tc)
496 		ncount = active_tc->tc_get_timecount(active_tc);
497 	else
498 		ncount = 0;
499 	th->th_offset_count += delta;
500 	th->th_offset_count &= th->th_counter->tc_counter_mask;
501 	bintime_addx(&th->th_offset, th->th_scale * delta);
502 
503 #ifdef notyet
504 	/*
505 	 * Hardware latching timecounters may not generate interrupts on
506 	 * PPS events, so instead we poll them.  There is a finite risk that
507 	 * the hardware might capture a count which is later than the one we
508 	 * got above, and therefore possibly in the next NTP second which might
509 	 * have a different rate than the current NTP second.  It doesn't
510 	 * matter in practice.
511 	 */
512 	if (tho->th_counter->tc_poll_pps)
513 		tho->th_counter->tc_poll_pps(tho->th_counter);
514 #endif
515 
516 	/*
517 	 * If changing the boot time or clock adjustment, do so before
518 	 * NTP processing.
519 	 */
520 	if (new_boottime != NULL)
521 		th->th_boottime = *new_boottime;
522 	if (new_adjtimedelta != NULL)
523 		th->th_adjtimedelta = *new_adjtimedelta;
524 
525 	/*
526 	 * Deal with NTP second processing.  The for loop normally
527 	 * iterates at most once, but in extreme situations it might
528 	 * keep NTP sane if timeouts are not run for several seconds.
529 	 * At boot, the time step can be large when the TOD hardware
530 	 * has been read, so on really large steps, we call
531 	 * ntp_update_second only twice.  We need to call it twice in
532 	 * case we missed a leap second.
533 	 */
534 	bt = th->th_offset;
535 	bintime_add(&bt, &th->th_boottime);
536 	i = bt.sec - tho->th_microtime.tv_sec;
537 	if (i > LARGE_STEP)
538 		i = 2;
539 	for (; i > 0; i--)
540 		ntp_update_second(th);
541 
542 	/* Update the UTC timestamps used by the get*() functions. */
543 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
544 	bintime2timeval(&bt, &th->th_microtime);
545 	bintime2timespec(&bt, &th->th_nanotime);
546 
547 	/* Now is a good time to change timecounters. */
548 	if (th->th_counter != active_tc) {
549 		th->th_counter = active_tc;
550 		th->th_offset_count = ncount;
551 	}
552 
553 	/*-
554 	 * Recalculate the scaling factor.  We want the number of 1/2^64
555 	 * fractions of a second per period of the hardware counter, taking
556 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
557 	 * processing provides us with.
558 	 *
559 	 * The th_adjustment is nanoseconds per second with 32 bit binary
560 	 * fraction and we want 64 bit binary fraction of second:
561 	 *
562 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
563 	 *
564 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
565 	 * we can only multiply by about 850 without overflowing, but that
566 	 * leaves suitably precise fractions for multiply before divide.
567 	 *
568 	 * Divide before multiply with a fraction of 2199/512 results in a
569 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
570 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
571  	 *
572 	 * We happily sacrifice the lowest of the 64 bits of our result
573 	 * to the goddess of code clarity.
574 	 *
575 	 */
576 	scale = (u_int64_t)1 << 63;
577 	scale += (th->th_adjustment / 1024) * 2199;
578 	scale /= th->th_counter->tc_frequency;
579 	th->th_scale = scale * 2;
580 
581 	/*
582 	 * Now that the struct timehands is again consistent, set the new
583 	 * generation number, making sure to not make it zero.
584 	 */
585 	if (++ogen == 0)
586 		ogen = 1;
587 	membar_producer();
588 	th->th_generation = ogen;
589 
590 	/* Go live with the new struct timehands. */
591 	time_second = th->th_microtime.tv_sec;
592 	time_uptime = th->th_offset.sec;
593 	membar_producer();
594 	timehands = th;
595 }
596 
597 /* Report or change the active timecounter hardware. */
598 int
599 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
600 {
601 	char newname[32];
602 	struct timecounter *newtc, *tc;
603 	int error;
604 
605 	tc = timecounter;
606 	strlcpy(newname, tc->tc_name, sizeof(newname));
607 
608 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
609 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
610 		return (error);
611 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
612 		if (strcmp(newname, newtc->tc_name) != 0)
613 			continue;
614 
615 		/* Warm up new timecounter. */
616 		(void)newtc->tc_get_timecount(newtc);
617 		(void)newtc->tc_get_timecount(newtc);
618 
619 		rw_enter_write(&tc_lock);
620 		timecounter = newtc;
621 		rw_exit_write(&tc_lock);
622 
623 		return (0);
624 	}
625 	return (EINVAL);
626 }
627 
628 /* Report or change the active timecounter hardware. */
629 int
630 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
631 {
632 	char buf[32], *spc, *choices;
633 	struct timecounter *tc;
634 	int error, maxlen;
635 
636 	spc = "";
637 	maxlen = 0;
638 	for (tc = timecounters; tc != NULL; tc = tc->tc_next)
639 		maxlen += sizeof(buf);
640 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
641 	*choices = '\0';
642 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
643 		snprintf(buf, sizeof(buf), "%s%s(%d)",
644 		    spc, tc->tc_name, tc->tc_quality);
645 		spc = " ";
646 		strlcat(choices, buf, maxlen);
647 	}
648 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
649 	free(choices, M_TEMP, maxlen);
650 	return (error);
651 }
652 
653 /*
654  * Timecounters need to be updated every so often to prevent the hardware
655  * counter from overflowing.  Updating also recalculates the cached values
656  * used by the get*() family of functions, so their precision depends on
657  * the update frequency.
658  */
659 static int tc_tick;
660 
661 void
662 tc_ticktock(void)
663 {
664 	static int count;
665 
666 	if (++count < tc_tick)
667 		return;
668 	if (!mtx_enter_try(&windup_mtx))
669 		return;
670 	count = 0;
671 	tc_windup(NULL, NULL, NULL);
672 	mtx_leave(&windup_mtx);
673 }
674 
675 void
676 inittimecounter(void)
677 {
678 #ifdef DEBUG
679 	u_int p;
680 #endif
681 
682 	/*
683 	 * Set the initial timeout to
684 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
685 	 * People should probably not use the sysctl to set the timeout
686 	 * to smaller than its initial value, since that value is the
687 	 * smallest reasonable one.  If they want better timestamps they
688 	 * should use the non-"get"* functions.
689 	 */
690 	if (hz > 1000)
691 		tc_tick = (hz + 500) / 1000;
692 	else
693 		tc_tick = 1;
694 #ifdef DEBUG
695 	p = (tc_tick * 1000000) / hz;
696 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
697 #endif
698 
699 	/* warm up new timecounter (again) and get rolling. */
700 	(void)timecounter->tc_get_timecount(timecounter);
701 	(void)timecounter->tc_get_timecount(timecounter);
702 }
703 
704 /*
705  * Return timecounter-related information.
706  */
707 int
708 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
709     void *newp, size_t newlen)
710 {
711 	if (namelen != 1)
712 		return (ENOTDIR);
713 
714 	switch (name[0]) {
715 	case KERN_TIMECOUNTER_TICK:
716 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
717 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
718 		return (sysctl_int(oldp, oldlenp, newp, newlen,
719 		    &timestepwarnings));
720 	case KERN_TIMECOUNTER_HARDWARE:
721 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
722 	case KERN_TIMECOUNTER_CHOICE:
723 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
724 	default:
725 		return (EOPNOTSUPP);
726 	}
727 	/* NOTREACHED */
728 }
729 
730 /*
731  * Skew the timehands according to any adjfreq(2)/adjtime(2) adjustments.
732  */
733 void
734 ntp_update_second(struct timehands *th)
735 {
736 	int64_t adj;
737 
738 	MUTEX_ASSERT_LOCKED(&windup_mtx);
739 
740 	if (th->th_adjtimedelta > 0)
741 		adj = MIN(5000, th->th_adjtimedelta);
742 	else
743 		adj = MAX(-5000, th->th_adjtimedelta);
744 	th->th_adjtimedelta -= adj;
745 	th->th_adjustment = (adj * 1000) << 32;
746 	th->th_adjustment += th->th_counter->tc_freq_adj;
747 }
748 
749 void
750 tc_adjfreq(int64_t *old, int64_t *new)
751 {
752 	if (old != NULL) {
753 		rw_assert_anylock(&tc_lock);
754 		*old = timecounter->tc_freq_adj;
755 	}
756 	if (new != NULL) {
757 		rw_assert_wrlock(&tc_lock);
758 		mtx_enter(&windup_mtx);
759 		timecounter->tc_freq_adj = *new;
760 		tc_windup(NULL, NULL, NULL);
761 		mtx_leave(&windup_mtx);
762 	}
763 }
764 
765 void
766 tc_adjtime(int64_t *old, int64_t *new)
767 {
768 	struct timehands *th;
769 	u_int gen;
770 
771 	if (old != NULL) {
772 		do {
773 			th = timehands;
774 			gen = th->th_generation;
775 			membar_consumer();
776 			*old = th->th_adjtimedelta;
777 			membar_consumer();
778 		} while (gen == 0 || gen != th->th_generation);
779 	}
780 	if (new != NULL) {
781 		rw_assert_wrlock(&tc_lock);
782 		mtx_enter(&windup_mtx);
783 		tc_windup(NULL, NULL, new);
784 		mtx_leave(&windup_mtx);
785 	}
786 }
787