xref: /openbsd-src/sys/kern/kern_tc.c (revision 7350f337b9e3eb4461d99580e625c7ef148d107c)
1 /*	$OpenBSD: kern_tc.c,v 1.48 2019/06/03 01:27:30 cheloha Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/rwlock.h>
29 #include <sys/stdint.h>
30 #include <sys/timeout.h>
31 #include <sys/sysctl.h>
32 #include <sys/syslog.h>
33 #include <sys/systm.h>
34 #include <sys/timetc.h>
35 #include <sys/queue.h>
36 #include <sys/malloc.h>
37 #include <dev/rndvar.h>
38 
39 /*
40  * A large step happens on boot.  This constant detects such steps.
41  * It is relatively small so that ntp_update_second gets called enough
42  * in the typical 'missed a couple of seconds' case, but doesn't loop
43  * forever when the time step is large.
44  */
45 #define LARGE_STEP	200
46 
47 u_int dummy_get_timecount(struct timecounter *);
48 
49 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
50 int sysctl_tc_choice(void *, size_t *, void *, size_t);
51 
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57 
58 u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61 	static u_int now;
62 
63 	return (++now);
64 }
65 
66 static struct timecounter dummy_timecounter = {
67 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69 
70 /*
71  * Locks used to protect struct members, global variables in this file:
72  *	I	immutable after initialization
73  *	t	tc_lock
74  *	w	windup_mtx
75  */
76 
77 struct timehands {
78 	/* These fields must be initialized by the driver. */
79 	struct timecounter	*th_counter;		/* [w] */
80 	int64_t			th_adjtimedelta;	/* [tw] */
81 	int64_t			th_adjustment;		/* [w] */
82 	u_int64_t		th_scale;		/* [w] */
83 	u_int	 		th_offset_count;	/* [w] */
84 	struct bintime		th_boottime;		/* [tw] */
85 	struct bintime		th_offset;		/* [w] */
86 	struct timeval		th_microtime;		/* [w] */
87 	struct timespec		th_nanotime;		/* [w] */
88 	/* Fields not to be copied in tc_windup start with th_generation. */
89 	volatile u_int		th_generation;		/* [w] */
90 	struct timehands	*th_next;		/* [I] */
91 };
92 
93 static struct timehands th0;
94 static struct timehands th1 = {
95 	.th_next = &th0
96 };
97 static struct timehands th0 = {
98 	.th_counter = &dummy_timecounter,
99 	.th_scale = UINT64_MAX / 1000000,
100 	.th_offset = { .sec = 1, .frac = 0 },
101 	.th_generation = 1,
102 	.th_next = &th1
103 };
104 
105 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock");
106 
107 /*
108  * tc_windup() must be called before leaving this mutex.
109  */
110 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
111 
112 static struct timehands *volatile timehands = &th0;		/* [w] */
113 struct timecounter *timecounter = &dummy_timecounter;		/* [t] */
114 static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list);
115 
116 volatile time_t time_second = 1;
117 volatile time_t time_uptime = 0;
118 
119 struct bintime naptime;
120 static int timestepwarnings;
121 
122 void ntp_update_second(struct timehands *);
123 void tc_windup(struct bintime *, struct bintime *, int64_t *);
124 
125 /*
126  * Return the difference between the timehands' counter value now and what
127  * was when we copied it to the timehands' offset_count.
128  */
129 static __inline u_int
130 tc_delta(struct timehands *th)
131 {
132 	struct timecounter *tc;
133 
134 	tc = th->th_counter;
135 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
136 	    tc->tc_counter_mask);
137 }
138 
139 /*
140  * Functions for reading the time.  We have to loop until we are sure that
141  * the timehands that we operated on was not updated under our feet.  See
142  * the comment in <sys/time.h> for a description of these functions.
143  */
144 
145 void
146 binboottime(struct bintime *bt)
147 {
148 	struct timehands *th;
149 	u_int gen;
150 
151 	do {
152 		th = timehands;
153 		gen = th->th_generation;
154 		membar_consumer();
155 		*bt = th->th_boottime;
156 		membar_consumer();
157 	} while (gen == 0 || gen != th->th_generation);
158 }
159 
160 void
161 microboottime(struct timeval *tvp)
162 {
163 	struct bintime bt;
164 
165 	binboottime(&bt);
166 	BINTIME_TO_TIMEVAL(&bt, tvp);
167 }
168 
169 void
170 binuptime(struct bintime *bt)
171 {
172 	struct timehands *th;
173 	u_int gen;
174 
175 	do {
176 		th = timehands;
177 		gen = th->th_generation;
178 		membar_consumer();
179 		*bt = th->th_offset;
180 		bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt);
181 		membar_consumer();
182 	} while (gen == 0 || gen != th->th_generation);
183 }
184 
185 void
186 nanouptime(struct timespec *tsp)
187 {
188 	struct bintime bt;
189 
190 	binuptime(&bt);
191 	BINTIME_TO_TIMESPEC(&bt, tsp);
192 }
193 
194 void
195 microuptime(struct timeval *tvp)
196 {
197 	struct bintime bt;
198 
199 	binuptime(&bt);
200 	BINTIME_TO_TIMEVAL(&bt, tvp);
201 }
202 
203 void
204 bintime(struct bintime *bt)
205 {
206 	struct timehands *th;
207 	u_int gen;
208 
209 	do {
210 		th = timehands;
211 		gen = th->th_generation;
212 		membar_consumer();
213 		*bt = th->th_offset;
214 		bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt);
215 		bintimeadd(bt, &th->th_boottime, bt);
216 		membar_consumer();
217 	} while (gen == 0 || gen != th->th_generation);
218 }
219 
220 void
221 nanotime(struct timespec *tsp)
222 {
223 	struct bintime bt;
224 
225 	bintime(&bt);
226 	BINTIME_TO_TIMESPEC(&bt, tsp);
227 }
228 
229 void
230 microtime(struct timeval *tvp)
231 {
232 	struct bintime bt;
233 
234 	bintime(&bt);
235 	BINTIME_TO_TIMEVAL(&bt, tvp);
236 }
237 
238 void
239 getnanouptime(struct timespec *tsp)
240 {
241 	struct timehands *th;
242 	u_int gen;
243 
244 	do {
245 		th = timehands;
246 		gen = th->th_generation;
247 		membar_consumer();
248 		BINTIME_TO_TIMESPEC(&th->th_offset, tsp);
249 		membar_consumer();
250 	} while (gen == 0 || gen != th->th_generation);
251 }
252 
253 void
254 getmicrouptime(struct timeval *tvp)
255 {
256 	struct timehands *th;
257 	u_int gen;
258 
259 	do {
260 		th = timehands;
261 		gen = th->th_generation;
262 		membar_consumer();
263 		BINTIME_TO_TIMEVAL(&th->th_offset, tvp);
264 		membar_consumer();
265 	} while (gen == 0 || gen != th->th_generation);
266 }
267 
268 void
269 getnanotime(struct timespec *tsp)
270 {
271 	struct timehands *th;
272 	u_int gen;
273 
274 	do {
275 		th = timehands;
276 		gen = th->th_generation;
277 		membar_consumer();
278 		*tsp = th->th_nanotime;
279 		membar_consumer();
280 	} while (gen == 0 || gen != th->th_generation);
281 }
282 
283 void
284 getmicrotime(struct timeval *tvp)
285 {
286 	struct timehands *th;
287 	u_int gen;
288 
289 	do {
290 		th = timehands;
291 		gen = th->th_generation;
292 		membar_consumer();
293 		*tvp = th->th_microtime;
294 		membar_consumer();
295 	} while (gen == 0 || gen != th->th_generation);
296 }
297 
298 /*
299  * Initialize a new timecounter and possibly use it.
300  */
301 void
302 tc_init(struct timecounter *tc)
303 {
304 	u_int u;
305 
306 	u = tc->tc_frequency / tc->tc_counter_mask;
307 	/* XXX: We need some margin here, 10% is a guess */
308 	u *= 11;
309 	u /= 10;
310 	if (tc->tc_quality >= 0) {
311 		if (u > hz) {
312 			tc->tc_quality = -2000;
313 			printf("Timecounter \"%s\" frequency %lu Hz",
314 			    tc->tc_name, (unsigned long)tc->tc_frequency);
315 			printf(" -- Insufficient hz, needs at least %u\n", u);
316 		}
317 	}
318 
319 	SLIST_INSERT_HEAD(&tc_list, tc, tc_next);
320 
321 	/*
322 	 * Never automatically use a timecounter with negative quality.
323 	 * Even though we run on the dummy counter, switching here may be
324 	 * worse since this timecounter may not be monotonic.
325 	 */
326 	if (tc->tc_quality < 0)
327 		return;
328 	if (tc->tc_quality < timecounter->tc_quality)
329 		return;
330 	if (tc->tc_quality == timecounter->tc_quality &&
331 	    tc->tc_frequency < timecounter->tc_frequency)
332 		return;
333 	(void)tc->tc_get_timecount(tc);
334 	enqueue_randomness(tc->tc_get_timecount(tc));
335 
336 	timecounter = tc;
337 }
338 
339 /* Report the frequency of the current timecounter. */
340 u_int64_t
341 tc_getfrequency(void)
342 {
343 
344 	return (timehands->th_counter->tc_frequency);
345 }
346 
347 /*
348  * Step our concept of UTC, aka the realtime clock.
349  * This is done by modifying our estimate of when we booted.
350  *
351  * Any ongoing adjustment is meaningless after a clock jump,
352  * so we zero adjtimedelta here as well.
353  */
354 void
355 tc_setrealtimeclock(const struct timespec *ts)
356 {
357 	struct timespec ts2;
358 	struct bintime bt, bt2;
359 	int64_t zero = 0;
360 
361 	rw_enter_write(&tc_lock);
362 	mtx_enter(&windup_mtx);
363 	binuptime(&bt2);
364 	TIMESPEC_TO_BINTIME(ts, &bt);
365 	bintimesub(&bt, &bt2, &bt);
366 	bintimeadd(&bt2, &timehands->th_boottime, &bt2);
367 
368 	/* XXX fiddle all the little crinkly bits around the fiords... */
369 	tc_windup(&bt, NULL, &zero);
370 	mtx_leave(&windup_mtx);
371 	rw_exit_write(&tc_lock);
372 
373 	enqueue_randomness(ts->tv_sec);
374 
375 	if (timestepwarnings) {
376 		BINTIME_TO_TIMESPEC(&bt2, &ts2);
377 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
378 		    (long long)ts2.tv_sec, ts2.tv_nsec,
379 		    (long long)ts->tv_sec, ts->tv_nsec);
380 	}
381 }
382 
383 /*
384  * Step the monotonic and realtime clocks, triggering any timeouts that
385  * should have occurred across the interval.
386  */
387 void
388 tc_setclock(const struct timespec *ts)
389 {
390 	struct bintime bt, bt2;
391 	struct timespec earlier;
392 	static int first = 1;
393 	int rewind = 0;
394 #ifndef SMALL_KERNEL
395 	long long adj_ticks;
396 #endif
397 
398 	/*
399 	 * When we're called for the first time, during boot when
400 	 * the root partition is mounted, we need to set boottime.
401 	 */
402 	if (first) {
403 		tc_setrealtimeclock(ts);
404 		first = 0;
405 		return;
406 	}
407 
408 	enqueue_randomness(ts->tv_sec);
409 
410 	mtx_enter(&windup_mtx);
411 	TIMESPEC_TO_BINTIME(ts, &bt);
412 	bintimesub(&bt, &timehands->th_boottime, &bt);
413 
414 	/*
415 	 * Don't rewind the offset.
416 	 */
417 	if (bintimecmp(&bt, &timehands->th_offset, <))
418 		rewind = 1;
419 
420 	bt2 = timehands->th_offset;
421 
422 	/* XXX fiddle all the little crinkly bits around the fiords... */
423 	tc_windup(NULL, rewind ? NULL : &bt, NULL);
424 	mtx_leave(&windup_mtx);
425 
426 	if (rewind) {
427 		BINTIME_TO_TIMESPEC(&bt, &earlier);
428 		printf("%s: cannot rewind uptime to %lld.%09ld\n",
429 		    __func__, (long long)earlier.tv_sec, earlier.tv_nsec);
430 		return;
431 	}
432 
433 #ifndef SMALL_KERNEL
434 	/* convert the bintime to ticks */
435 	bintimesub(&bt, &bt2, &bt);
436 	bintimeadd(&naptime, &bt, &naptime);
437 	adj_ticks = (uint64_t)hz * bt.sec +
438 	    (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
439 	if (adj_ticks > 0) {
440 		if (adj_ticks > INT_MAX)
441 			adj_ticks = INT_MAX;
442 		timeout_adjust_ticks(adj_ticks);
443 	}
444 #endif
445 }
446 
447 /*
448  * Initialize the next struct timehands in the ring and make
449  * it the active timehands.  Along the way we might switch to a different
450  * timecounter and/or do seconds processing in NTP.  Slightly magic.
451  */
452 void
453 tc_windup(struct bintime *new_boottime, struct bintime *new_offset,
454     int64_t *new_adjtimedelta)
455 {
456 	struct bintime bt;
457 	struct timecounter *active_tc;
458 	struct timehands *th, *tho;
459 	u_int64_t scale;
460 	u_int delta, ncount, ogen;
461 	int i;
462 
463 	if (new_boottime != NULL || new_adjtimedelta != NULL)
464 		rw_assert_wrlock(&tc_lock);
465 	MUTEX_ASSERT_LOCKED(&windup_mtx);
466 
467 	active_tc = timecounter;
468 
469 	/*
470 	 * Make the next timehands a copy of the current one, but do not
471 	 * overwrite the generation or next pointer.  While we update
472 	 * the contents, the generation must be zero.
473 	 */
474 	tho = timehands;
475 	th = tho->th_next;
476 	ogen = th->th_generation;
477 	th->th_generation = 0;
478 	membar_producer();
479 	memcpy(th, tho, offsetof(struct timehands, th_generation));
480 
481 	/*
482 	 * If changing the boot offset, do so before updating the
483 	 * offset fields.
484 	 */
485 	if (new_offset != NULL)
486 		th->th_offset = *new_offset;
487 
488 	/*
489 	 * Capture a timecounter delta on the current timecounter and if
490 	 * changing timecounters, a counter value from the new timecounter.
491 	 * Update the offset fields accordingly.
492 	 */
493 	delta = tc_delta(th);
494 	if (th->th_counter != active_tc)
495 		ncount = active_tc->tc_get_timecount(active_tc);
496 	else
497 		ncount = 0;
498 	th->th_offset_count += delta;
499 	th->th_offset_count &= th->th_counter->tc_counter_mask;
500 	bintimeaddfrac(&th->th_offset, th->th_scale * delta, &th->th_offset);
501 
502 #ifdef notyet
503 	/*
504 	 * Hardware latching timecounters may not generate interrupts on
505 	 * PPS events, so instead we poll them.  There is a finite risk that
506 	 * the hardware might capture a count which is later than the one we
507 	 * got above, and therefore possibly in the next NTP second which might
508 	 * have a different rate than the current NTP second.  It doesn't
509 	 * matter in practice.
510 	 */
511 	if (tho->th_counter->tc_poll_pps)
512 		tho->th_counter->tc_poll_pps(tho->th_counter);
513 #endif
514 
515 	/*
516 	 * If changing the boot time or clock adjustment, do so before
517 	 * NTP processing.
518 	 */
519 	if (new_boottime != NULL)
520 		th->th_boottime = *new_boottime;
521 	if (new_adjtimedelta != NULL)
522 		th->th_adjtimedelta = *new_adjtimedelta;
523 
524 	/*
525 	 * Deal with NTP second processing.  The for loop normally
526 	 * iterates at most once, but in extreme situations it might
527 	 * keep NTP sane if timeouts are not run for several seconds.
528 	 * At boot, the time step can be large when the TOD hardware
529 	 * has been read, so on really large steps, we call
530 	 * ntp_update_second only twice.  We need to call it twice in
531 	 * case we missed a leap second.
532 	 */
533 	bt = th->th_offset;
534 	bintimeadd(&bt, &th->th_boottime, &bt);
535 	i = bt.sec - tho->th_microtime.tv_sec;
536 	if (i > LARGE_STEP)
537 		i = 2;
538 	for (; i > 0; i--)
539 		ntp_update_second(th);
540 
541 	/* Update the UTC timestamps used by the get*() functions. */
542 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
543 	BINTIME_TO_TIMEVAL(&bt, &th->th_microtime);
544 	BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime);
545 
546 	/* Now is a good time to change timecounters. */
547 	if (th->th_counter != active_tc) {
548 		th->th_counter = active_tc;
549 		th->th_offset_count = ncount;
550 	}
551 
552 	/*-
553 	 * Recalculate the scaling factor.  We want the number of 1/2^64
554 	 * fractions of a second per period of the hardware counter, taking
555 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
556 	 * processing provides us with.
557 	 *
558 	 * The th_adjustment is nanoseconds per second with 32 bit binary
559 	 * fraction and we want 64 bit binary fraction of second:
560 	 *
561 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
562 	 *
563 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
564 	 * we can only multiply by about 850 without overflowing, but that
565 	 * leaves suitably precise fractions for multiply before divide.
566 	 *
567 	 * Divide before multiply with a fraction of 2199/512 results in a
568 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
569 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
570  	 *
571 	 * We happily sacrifice the lowest of the 64 bits of our result
572 	 * to the goddess of code clarity.
573 	 *
574 	 */
575 	scale = (u_int64_t)1 << 63;
576 	scale += (th->th_adjustment / 1024) * 2199;
577 	scale /= th->th_counter->tc_frequency;
578 	th->th_scale = scale * 2;
579 
580 	/*
581 	 * Now that the struct timehands is again consistent, set the new
582 	 * generation number, making sure to not make it zero.
583 	 */
584 	if (++ogen == 0)
585 		ogen = 1;
586 	membar_producer();
587 	th->th_generation = ogen;
588 
589 	/* Go live with the new struct timehands. */
590 	time_second = th->th_microtime.tv_sec;
591 	time_uptime = th->th_offset.sec;
592 	membar_producer();
593 	timehands = th;
594 }
595 
596 /* Report or change the active timecounter hardware. */
597 int
598 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
599 {
600 	char newname[32];
601 	struct timecounter *newtc, *tc;
602 	int error;
603 
604 	tc = timecounter;
605 	strlcpy(newname, tc->tc_name, sizeof(newname));
606 
607 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
608 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
609 		return (error);
610 	SLIST_FOREACH(newtc, &tc_list, tc_next) {
611 		if (strcmp(newname, newtc->tc_name) != 0)
612 			continue;
613 
614 		/* Warm up new timecounter. */
615 		(void)newtc->tc_get_timecount(newtc);
616 		(void)newtc->tc_get_timecount(newtc);
617 
618 		rw_enter_write(&tc_lock);
619 		timecounter = newtc;
620 		rw_exit_write(&tc_lock);
621 
622 		return (0);
623 	}
624 	return (EINVAL);
625 }
626 
627 /* Report or change the active timecounter hardware. */
628 int
629 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
630 {
631 	char buf[32], *spc, *choices;
632 	struct timecounter *tc;
633 	int error, maxlen;
634 
635 	if (SLIST_EMPTY(&tc_list))
636 		return (sysctl_rdstring(oldp, oldlenp, newp, ""));
637 
638 	spc = "";
639 	maxlen = 0;
640 	SLIST_FOREACH(tc, &tc_list, tc_next)
641 		maxlen += sizeof(buf);
642 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
643 	*choices = '\0';
644 	SLIST_FOREACH(tc, &tc_list, tc_next) {
645 		snprintf(buf, sizeof(buf), "%s%s(%d)",
646 		    spc, tc->tc_name, tc->tc_quality);
647 		spc = " ";
648 		strlcat(choices, buf, maxlen);
649 	}
650 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
651 	free(choices, M_TEMP, maxlen);
652 	return (error);
653 }
654 
655 /*
656  * Timecounters need to be updated every so often to prevent the hardware
657  * counter from overflowing.  Updating also recalculates the cached values
658  * used by the get*() family of functions, so their precision depends on
659  * the update frequency.
660  */
661 static int tc_tick;
662 
663 void
664 tc_ticktock(void)
665 {
666 	static int count;
667 
668 	if (++count < tc_tick)
669 		return;
670 	if (!mtx_enter_try(&windup_mtx))
671 		return;
672 	count = 0;
673 	tc_windup(NULL, NULL, NULL);
674 	mtx_leave(&windup_mtx);
675 }
676 
677 void
678 inittimecounter(void)
679 {
680 #ifdef DEBUG
681 	u_int p;
682 #endif
683 
684 	/*
685 	 * Set the initial timeout to
686 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
687 	 * People should probably not use the sysctl to set the timeout
688 	 * to smaller than its initial value, since that value is the
689 	 * smallest reasonable one.  If they want better timestamps they
690 	 * should use the non-"get"* functions.
691 	 */
692 	if (hz > 1000)
693 		tc_tick = (hz + 500) / 1000;
694 	else
695 		tc_tick = 1;
696 #ifdef DEBUG
697 	p = (tc_tick * 1000000) / hz;
698 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
699 #endif
700 
701 	/* warm up new timecounter (again) and get rolling. */
702 	(void)timecounter->tc_get_timecount(timecounter);
703 	(void)timecounter->tc_get_timecount(timecounter);
704 }
705 
706 /*
707  * Return timecounter-related information.
708  */
709 int
710 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
711     void *newp, size_t newlen)
712 {
713 	if (namelen != 1)
714 		return (ENOTDIR);
715 
716 	switch (name[0]) {
717 	case KERN_TIMECOUNTER_TICK:
718 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
719 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
720 		return (sysctl_int(oldp, oldlenp, newp, newlen,
721 		    &timestepwarnings));
722 	case KERN_TIMECOUNTER_HARDWARE:
723 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
724 	case KERN_TIMECOUNTER_CHOICE:
725 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
726 	default:
727 		return (EOPNOTSUPP);
728 	}
729 	/* NOTREACHED */
730 }
731 
732 /*
733  * Skew the timehands according to any adjfreq(2)/adjtime(2) adjustments.
734  */
735 void
736 ntp_update_second(struct timehands *th)
737 {
738 	int64_t adj;
739 
740 	MUTEX_ASSERT_LOCKED(&windup_mtx);
741 
742 	if (th->th_adjtimedelta > 0)
743 		adj = MIN(5000, th->th_adjtimedelta);
744 	else
745 		adj = MAX(-5000, th->th_adjtimedelta);
746 	th->th_adjtimedelta -= adj;
747 	th->th_adjustment = (adj * 1000) << 32;
748 	th->th_adjustment += th->th_counter->tc_freq_adj;
749 }
750 
751 void
752 tc_adjfreq(int64_t *old, int64_t *new)
753 {
754 	if (old != NULL) {
755 		rw_assert_anylock(&tc_lock);
756 		*old = timecounter->tc_freq_adj;
757 	}
758 	if (new != NULL) {
759 		rw_assert_wrlock(&tc_lock);
760 		mtx_enter(&windup_mtx);
761 		timecounter->tc_freq_adj = *new;
762 		tc_windup(NULL, NULL, NULL);
763 		mtx_leave(&windup_mtx);
764 	}
765 }
766 
767 void
768 tc_adjtime(int64_t *old, int64_t *new)
769 {
770 	struct timehands *th;
771 	u_int gen;
772 
773 	if (old != NULL) {
774 		do {
775 			th = timehands;
776 			gen = th->th_generation;
777 			membar_consumer();
778 			*old = th->th_adjtimedelta;
779 			membar_consumer();
780 		} while (gen == 0 || gen != th->th_generation);
781 	}
782 	if (new != NULL) {
783 		rw_assert_wrlock(&tc_lock);
784 		mtx_enter(&windup_mtx);
785 		tc_windup(NULL, NULL, new);
786 		mtx_leave(&windup_mtx);
787 	}
788 }
789