xref: /openbsd-src/sys/kern/kern_tc.c (revision 5e3c7963eb248119b7dfd4b0defad58a7d9cd306)
1 /*	$OpenBSD: kern_tc.c,v 1.36 2019/01/20 01:13:03 cheloha Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/timeout.h>
29 #include <sys/sysctl.h>
30 #include <sys/syslog.h>
31 #include <sys/systm.h>
32 #include <sys/timetc.h>
33 #include <sys/malloc.h>
34 #include <dev/rndvar.h>
35 
36 /*
37  * A large step happens on boot.  This constant detects such steps.
38  * It is relatively small so that ntp_update_second gets called enough
39  * in the typical 'missed a couple of seconds' case, but doesn't loop
40  * forever when the time step is large.
41  */
42 #define LARGE_STEP	200
43 
44 u_int dummy_get_timecount(struct timecounter *);
45 
46 void ntp_update_second(int64_t *);
47 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
48 int sysctl_tc_choice(void *, size_t *, void *, size_t);
49 
50 /*
51  * Implement a dummy timecounter which we can use until we get a real one
52  * in the air.  This allows the console and other early stuff to use
53  * time services.
54  */
55 
56 u_int
57 dummy_get_timecount(struct timecounter *tc)
58 {
59 	static u_int now;
60 
61 	return (++now);
62 }
63 
64 static struct timecounter dummy_timecounter = {
65 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
66 };
67 
68 struct timehands {
69 	/* These fields must be initialized by the driver. */
70 	struct timecounter	*th_counter;
71 	int64_t			th_adjustment;
72 	u_int64_t		th_scale;
73 	u_int	 		th_offset_count;
74 	struct bintime		th_boottime;
75 	struct bintime		th_offset;
76 	struct timeval		th_microtime;
77 	struct timespec		th_nanotime;
78 	/* Fields not to be copied in tc_windup start with th_generation. */
79 	volatile u_int		th_generation;
80 	struct timehands	*th_next;
81 };
82 
83 static struct timehands th0;
84 static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
85 static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
86 static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
87 static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
88 static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
89 static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
90 static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
91 static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
92 static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
93 static struct timehands th0 = {
94 	&dummy_timecounter,
95 	0,
96 	(uint64_t)-1 / 1000000,
97 	0,
98 	{0, 0},
99 	{1, 0},
100 	{0, 0},
101 	{0, 0},
102 	1,
103 	&th1
104 };
105 
106 /*
107  * Protects writes to anything accessed during tc_windup().
108  * tc_windup() must be called before leaving this mutex.
109  */
110 struct mutex timecounter_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
111 
112 static struct timehands *volatile timehands = &th0;
113 struct timecounter *timecounter = &dummy_timecounter;
114 static struct timecounter *timecounters = &dummy_timecounter;
115 
116 volatile time_t time_second = 1;
117 volatile time_t time_uptime = 0;
118 
119 struct bintime naptime;
120 static int timestepwarnings;
121 
122 void tc_windup(void);
123 
124 /*
125  * Return the difference between the timehands' counter value now and what
126  * was when we copied it to the timehands' offset_count.
127  */
128 static __inline u_int
129 tc_delta(struct timehands *th)
130 {
131 	struct timecounter *tc;
132 
133 	tc = th->th_counter;
134 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
135 	    tc->tc_counter_mask);
136 }
137 
138 /*
139  * Functions for reading the time.  We have to loop until we are sure that
140  * the timehands that we operated on was not updated under our feet.  See
141  * the comment in <sys/time.h> for a description of these functions.
142  */
143 
144 void
145 binboottime(struct bintime *bt)
146 {
147 	struct timehands *th;
148 	u_int gen;
149 
150 	do {
151 		th = timehands;
152 		gen = th->th_generation;
153 		membar_consumer();
154 		*bt = th->th_boottime;
155 		membar_consumer();
156 	} while (gen == 0 || gen != th->th_generation);
157 }
158 
159 void
160 microboottime(struct timeval *tvp)
161 {
162 	struct bintime bt;
163 
164 	binboottime(&bt);
165 	bintime2timeval(&bt, tvp);
166 }
167 
168 void
169 binuptime(struct bintime *bt)
170 {
171 	struct timehands *th;
172 	u_int gen;
173 
174 	do {
175 		th = timehands;
176 		gen = th->th_generation;
177 		membar_consumer();
178 		*bt = th->th_offset;
179 		bintime_addx(bt, th->th_scale * tc_delta(th));
180 		membar_consumer();
181 	} while (gen == 0 || gen != th->th_generation);
182 }
183 
184 void
185 nanouptime(struct timespec *tsp)
186 {
187 	struct bintime bt;
188 
189 	binuptime(&bt);
190 	bintime2timespec(&bt, tsp);
191 }
192 
193 void
194 microuptime(struct timeval *tvp)
195 {
196 	struct bintime bt;
197 
198 	binuptime(&bt);
199 	bintime2timeval(&bt, tvp);
200 }
201 
202 void
203 bintime(struct bintime *bt)
204 {
205 	struct timehands *th;
206 	u_int gen;
207 
208 	do {
209 		th = timehands;
210 		gen = th->th_generation;
211 		membar_consumer();
212 		*bt = th->th_offset;
213 		bintime_addx(bt, th->th_scale * tc_delta(th));
214 		bintime_add(bt, &th->th_boottime);
215 		membar_consumer();
216 	} while (gen == 0 || gen != th->th_generation);
217 }
218 
219 void
220 nanotime(struct timespec *tsp)
221 {
222 	struct bintime bt;
223 
224 	bintime(&bt);
225 	bintime2timespec(&bt, tsp);
226 }
227 
228 void
229 microtime(struct timeval *tvp)
230 {
231 	struct bintime bt;
232 
233 	bintime(&bt);
234 	bintime2timeval(&bt, tvp);
235 }
236 
237 void
238 getnanouptime(struct timespec *tsp)
239 {
240 	struct timehands *th;
241 	u_int gen;
242 
243 	do {
244 		th = timehands;
245 		gen = th->th_generation;
246 		membar_consumer();
247 		bintime2timespec(&th->th_offset, tsp);
248 		membar_consumer();
249 	} while (gen == 0 || gen != th->th_generation);
250 }
251 
252 void
253 getmicrouptime(struct timeval *tvp)
254 {
255 	struct timehands *th;
256 	u_int gen;
257 
258 	do {
259 		th = timehands;
260 		gen = th->th_generation;
261 		membar_consumer();
262 		bintime2timeval(&th->th_offset, tvp);
263 		membar_consumer();
264 	} while (gen == 0 || gen != th->th_generation);
265 }
266 
267 void
268 getnanotime(struct timespec *tsp)
269 {
270 	struct timehands *th;
271 	u_int gen;
272 
273 	do {
274 		th = timehands;
275 		gen = th->th_generation;
276 		membar_consumer();
277 		*tsp = th->th_nanotime;
278 		membar_consumer();
279 	} while (gen == 0 || gen != th->th_generation);
280 }
281 
282 void
283 getmicrotime(struct timeval *tvp)
284 {
285 	struct timehands *th;
286 	u_int gen;
287 
288 	do {
289 		th = timehands;
290 		gen = th->th_generation;
291 		membar_consumer();
292 		*tvp = th->th_microtime;
293 		membar_consumer();
294 	} while (gen == 0 || gen != th->th_generation);
295 }
296 
297 /*
298  * Initialize a new timecounter and possibly use it.
299  */
300 void
301 tc_init(struct timecounter *tc)
302 {
303 	u_int u;
304 
305 	u = tc->tc_frequency / tc->tc_counter_mask;
306 	/* XXX: We need some margin here, 10% is a guess */
307 	u *= 11;
308 	u /= 10;
309 	if (tc->tc_quality >= 0) {
310 		if (u > hz) {
311 			tc->tc_quality = -2000;
312 			printf("Timecounter \"%s\" frequency %lu Hz",
313 			    tc->tc_name, (unsigned long)tc->tc_frequency);
314 			printf(" -- Insufficient hz, needs at least %u\n", u);
315 		}
316 	}
317 
318 	tc->tc_next = timecounters;
319 	timecounters = tc;
320 	/*
321 	 * Never automatically use a timecounter with negative quality.
322 	 * Even though we run on the dummy counter, switching here may be
323 	 * worse since this timecounter may not be monotonic.
324 	 */
325 	if (tc->tc_quality < 0)
326 		return;
327 	if (tc->tc_quality < timecounter->tc_quality)
328 		return;
329 	if (tc->tc_quality == timecounter->tc_quality &&
330 	    tc->tc_frequency < timecounter->tc_frequency)
331 		return;
332 	(void)tc->tc_get_timecount(tc);
333 	enqueue_randomness(tc->tc_get_timecount(tc));
334 
335 	timecounter = tc;
336 }
337 
338 /* Report the frequency of the current timecounter. */
339 u_int64_t
340 tc_getfrequency(void)
341 {
342 
343 	return (timehands->th_counter->tc_frequency);
344 }
345 
346 /*
347  * Step our concept of UTC, aka the realtime clock.
348  * This is done by modifying our estimate of when we booted.
349  */
350 void
351 tc_setrealtimeclock(const struct timespec *ts)
352 {
353 	struct timespec ts2;
354 	struct bintime bt, bt2;
355 
356 	mtx_enter(&timecounter_mtx);
357 	binuptime(&bt2);
358 	timespec2bintime(ts, &bt);
359 	bintime_sub(&bt, &bt2);
360 	bintime_add(&bt2, &timehands->th_boottime);
361 	timehands->th_boottime = bt;
362 
363 	/* XXX fiddle all the little crinkly bits around the fiords... */
364 	tc_windup();
365 	mtx_leave(&timecounter_mtx);
366 
367 	enqueue_randomness(ts->tv_sec);
368 
369 	if (timestepwarnings) {
370 		bintime2timespec(&bt2, &ts2);
371 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
372 		    (long long)ts2.tv_sec, ts2.tv_nsec,
373 		    (long long)ts->tv_sec, ts->tv_nsec);
374 	}
375 }
376 
377 /*
378  * Step the monotonic and realtime clocks, triggering any timeouts that
379  * should have occurred across the interval.
380  */
381 void
382 tc_setclock(const struct timespec *ts)
383 {
384 	struct bintime bt, bt2;
385 	static int first = 1;
386 #ifndef SMALL_KERNEL
387 	long long adj_ticks;
388 #endif
389 
390 	/*
391 	 * When we're called for the first time, during boot when
392 	 * the root partition is mounted, we need to set boottime.
393 	 */
394 	if (first) {
395 		tc_setrealtimeclock(ts);
396 		first = 0;
397 		return;
398 	}
399 
400 	enqueue_randomness(ts->tv_sec);
401 
402 	mtx_enter(&timecounter_mtx);
403 	timespec2bintime(ts, &bt);
404 	bintime_sub(&bt, &timehands->th_boottime);
405 	bt2 = timehands->th_offset;
406 	timehands->th_offset = bt;
407 
408 	/* XXX fiddle all the little crinkly bits around the fiords... */
409 	tc_windup();
410 	mtx_leave(&timecounter_mtx);
411 
412 #ifndef SMALL_KERNEL
413 	/* convert the bintime to ticks */
414 	bintime_sub(&bt, &bt2);
415 	bintime_add(&naptime, &bt);
416 	adj_ticks = (uint64_t)hz * bt.sec +
417 	    (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
418 	if (adj_ticks > 0) {
419 		if (adj_ticks > INT_MAX)
420 			adj_ticks = INT_MAX;
421 		timeout_adjust_ticks(adj_ticks);
422 	}
423 #endif
424 }
425 
426 /*
427  * Initialize the next struct timehands in the ring and make
428  * it the active timehands.  Along the way we might switch to a different
429  * timecounter and/or do seconds processing in NTP.  Slightly magic.
430  */
431 void
432 tc_windup(void)
433 {
434 	struct bintime bt;
435 	struct timehands *th, *tho;
436 	u_int64_t scale;
437 	u_int delta, ncount, ogen;
438 	int i;
439 
440 	MUTEX_ASSERT_LOCKED(&timecounter_mtx);
441 
442 	/*
443 	 * Make the next timehands a copy of the current one, but do not
444 	 * overwrite the generation or next pointer.  While we update
445 	 * the contents, the generation must be zero.
446 	 */
447 	tho = timehands;
448 	th = tho->th_next;
449 	ogen = th->th_generation;
450 	th->th_generation = 0;
451 	membar_producer();
452 	memcpy(th, tho, offsetof(struct timehands, th_generation));
453 
454 	/*
455 	 * Capture a timecounter delta on the current timecounter and if
456 	 * changing timecounters, a counter value from the new timecounter.
457 	 * Update the offset fields accordingly.
458 	 */
459 	delta = tc_delta(th);
460 	if (th->th_counter != timecounter)
461 		ncount = timecounter->tc_get_timecount(timecounter);
462 	else
463 		ncount = 0;
464 	th->th_offset_count += delta;
465 	th->th_offset_count &= th->th_counter->tc_counter_mask;
466 	bintime_addx(&th->th_offset, th->th_scale * delta);
467 
468 #ifdef notyet
469 	/*
470 	 * Hardware latching timecounters may not generate interrupts on
471 	 * PPS events, so instead we poll them.  There is a finite risk that
472 	 * the hardware might capture a count which is later than the one we
473 	 * got above, and therefore possibly in the next NTP second which might
474 	 * have a different rate than the current NTP second.  It doesn't
475 	 * matter in practice.
476 	 */
477 	if (tho->th_counter->tc_poll_pps)
478 		tho->th_counter->tc_poll_pps(tho->th_counter);
479 #endif
480 
481 	/*
482 	 * Deal with NTP second processing.  The for loop normally
483 	 * iterates at most once, but in extreme situations it might
484 	 * keep NTP sane if timeouts are not run for several seconds.
485 	 * At boot, the time step can be large when the TOD hardware
486 	 * has been read, so on really large steps, we call
487 	 * ntp_update_second only twice.  We need to call it twice in
488 	 * case we missed a leap second.
489 	 */
490 	bt = th->th_offset;
491 	bintime_add(&bt, &th->th_boottime);
492 	i = bt.sec - tho->th_microtime.tv_sec;
493 	if (i > LARGE_STEP)
494 		i = 2;
495 	for (; i > 0; i--)
496 		ntp_update_second(&th->th_adjustment);
497 
498 	/* Update the UTC timestamps used by the get*() functions. */
499 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
500 	bintime2timeval(&bt, &th->th_microtime);
501 	bintime2timespec(&bt, &th->th_nanotime);
502 
503 	/* Now is a good time to change timecounters. */
504 	if (th->th_counter != timecounter) {
505 		th->th_counter = timecounter;
506 		th->th_offset_count = ncount;
507 	}
508 
509 	/*-
510 	 * Recalculate the scaling factor.  We want the number of 1/2^64
511 	 * fractions of a second per period of the hardware counter, taking
512 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
513 	 * processing provides us with.
514 	 *
515 	 * The th_adjustment is nanoseconds per second with 32 bit binary
516 	 * fraction and we want 64 bit binary fraction of second:
517 	 *
518 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
519 	 *
520 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
521 	 * we can only multiply by about 850 without overflowing, but that
522 	 * leaves suitably precise fractions for multiply before divide.
523 	 *
524 	 * Divide before multiply with a fraction of 2199/512 results in a
525 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
526 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
527  	 *
528 	 * We happily sacrifice the lowest of the 64 bits of our result
529 	 * to the goddess of code clarity.
530 	 *
531 	 */
532 	scale = (u_int64_t)1 << 63;
533 	scale += (th->th_adjustment / 1024) * 2199;
534 	scale /= th->th_counter->tc_frequency;
535 	th->th_scale = scale * 2;
536 
537 	/*
538 	 * Now that the struct timehands is again consistent, set the new
539 	 * generation number, making sure to not make it zero.
540 	 */
541 	if (++ogen == 0)
542 		ogen = 1;
543 	membar_producer();
544 	th->th_generation = ogen;
545 
546 	/* Go live with the new struct timehands. */
547 	time_second = th->th_microtime.tv_sec;
548 	time_uptime = th->th_offset.sec;
549 	membar_producer();
550 	timehands = th;
551 }
552 
553 /* Report or change the active timecounter hardware. */
554 int
555 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
556 {
557 	char newname[32];
558 	struct timecounter *newtc, *tc;
559 	int error;
560 
561 	tc = timecounter;
562 	strlcpy(newname, tc->tc_name, sizeof(newname));
563 
564 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
565 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
566 		return (error);
567 	for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
568 		if (strcmp(newname, newtc->tc_name) != 0)
569 			continue;
570 
571 		/* Warm up new timecounter. */
572 		(void)newtc->tc_get_timecount(newtc);
573 		(void)newtc->tc_get_timecount(newtc);
574 
575 		timecounter = newtc;
576 		return (0);
577 	}
578 	return (EINVAL);
579 }
580 
581 /* Report or change the active timecounter hardware. */
582 int
583 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
584 {
585 	char buf[32], *spc, *choices;
586 	struct timecounter *tc;
587 	int error, maxlen;
588 
589 	spc = "";
590 	maxlen = 0;
591 	for (tc = timecounters; tc != NULL; tc = tc->tc_next)
592 		maxlen += sizeof(buf);
593 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
594 	*choices = '\0';
595 	for (tc = timecounters; tc != NULL; tc = tc->tc_next) {
596 		snprintf(buf, sizeof(buf), "%s%s(%d)",
597 		    spc, tc->tc_name, tc->tc_quality);
598 		spc = " ";
599 		strlcat(choices, buf, maxlen);
600 	}
601 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
602 	free(choices, M_TEMP, maxlen);
603 	return (error);
604 }
605 
606 /*
607  * Timecounters need to be updated every so often to prevent the hardware
608  * counter from overflowing.  Updating also recalculates the cached values
609  * used by the get*() family of functions, so their precision depends on
610  * the update frequency.
611  */
612 static int tc_tick;
613 
614 void
615 tc_ticktock(void)
616 {
617 	static int count;
618 
619 	if (++count < tc_tick)
620 		return;
621 	if (!mtx_enter_try(&timecounter_mtx))
622 		return;
623 	count = 0;
624 	tc_windup();
625 	mtx_leave(&timecounter_mtx);
626 }
627 
628 void
629 inittimecounter(void)
630 {
631 #ifdef DEBUG
632 	u_int p;
633 #endif
634 
635 	/*
636 	 * Set the initial timeout to
637 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
638 	 * People should probably not use the sysctl to set the timeout
639 	 * to smaller than its initial value, since that value is the
640 	 * smallest reasonable one.  If they want better timestamps they
641 	 * should use the non-"get"* functions.
642 	 */
643 	if (hz > 1000)
644 		tc_tick = (hz + 500) / 1000;
645 	else
646 		tc_tick = 1;
647 #ifdef DEBUG
648 	p = (tc_tick * 1000000) / hz;
649 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
650 #endif
651 
652 	/* warm up new timecounter (again) and get rolling. */
653 	(void)timecounter->tc_get_timecount(timecounter);
654 	(void)timecounter->tc_get_timecount(timecounter);
655 }
656 
657 /*
658  * Return timecounter-related information.
659  */
660 int
661 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
662     void *newp, size_t newlen)
663 {
664 	if (namelen != 1)
665 		return (ENOTDIR);
666 
667 	switch (name[0]) {
668 	case KERN_TIMECOUNTER_TICK:
669 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
670 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
671 		return (sysctl_int(oldp, oldlenp, newp, newlen,
672 		    &timestepwarnings));
673 	case KERN_TIMECOUNTER_HARDWARE:
674 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
675 	case KERN_TIMECOUNTER_CHOICE:
676 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
677 	default:
678 		return (EOPNOTSUPP);
679 	}
680 	/* NOTREACHED */
681 }
682 
683 void
684 ntp_update_second(int64_t *adjust)
685 {
686 	int64_t adj;
687 
688 	/* Skew time according to any adjtime(2) adjustments. */
689 	if (adjtimedelta > 0)
690 		adj = MIN(5000, adjtimedelta);
691 	else
692 		adj = MAX(-5000, adjtimedelta);
693 	adjtimedelta -= adj;
694 	*adjust = (adj * 1000) << 32;
695 	*adjust += timecounter->tc_freq_adj;
696 }
697 
698 int
699 tc_adjfreq(int64_t *old, int64_t *new)
700 {
701 	if (old != NULL) {
702 		*old = timecounter->tc_freq_adj;
703 	}
704 	if (new != NULL) {
705 		timecounter->tc_freq_adj = *new;
706 	}
707 	return 0;
708 }
709