1 /* $OpenBSD: kern_tc.c,v 1.73 2021/06/15 05:24:46 dlg Exp $ */ 2 3 /* 4 * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 /* 20 * If we meet some day, and you think this stuff is worth it, you 21 * can buy me a beer in return. Poul-Henning Kamp 22 */ 23 24 #include <sys/param.h> 25 #include <sys/atomic.h> 26 #include <sys/kernel.h> 27 #include <sys/mutex.h> 28 #include <sys/rwlock.h> 29 #include <sys/stdint.h> 30 #include <sys/timeout.h> 31 #include <sys/sysctl.h> 32 #include <sys/syslog.h> 33 #include <sys/systm.h> 34 #include <sys/timetc.h> 35 #include <sys/queue.h> 36 #include <sys/malloc.h> 37 38 u_int dummy_get_timecount(struct timecounter *); 39 40 int sysctl_tc_hardware(void *, size_t *, void *, size_t); 41 int sysctl_tc_choice(void *, size_t *, void *, size_t); 42 43 /* 44 * Implement a dummy timecounter which we can use until we get a real one 45 * in the air. This allows the console and other early stuff to use 46 * time services. 47 */ 48 49 u_int 50 dummy_get_timecount(struct timecounter *tc) 51 { 52 static u_int now; 53 54 return atomic_inc_int_nv(&now); 55 } 56 57 static struct timecounter dummy_timecounter = { 58 .tc_get_timecount = dummy_get_timecount, 59 .tc_poll_pps = 0, 60 .tc_counter_mask = ~0u, 61 .tc_frequency = 1000000, 62 .tc_name = "dummy", 63 .tc_quality = -1000000, 64 .tc_priv = NULL, 65 .tc_user = 0, 66 }; 67 68 /* 69 * Locks used to protect struct members, global variables in this file: 70 * I immutable after initialization 71 * T tc_lock 72 * W windup_mtx 73 */ 74 75 struct timehands { 76 /* These fields must be initialized by the driver. */ 77 struct timecounter *th_counter; /* [W] */ 78 int64_t th_adjtimedelta; /* [T,W] */ 79 struct bintime th_next_ntp_update; /* [T,W] */ 80 int64_t th_adjustment; /* [W] */ 81 u_int64_t th_scale; /* [W] */ 82 u_int th_offset_count; /* [W] */ 83 struct bintime th_boottime; /* [T,W] */ 84 struct bintime th_offset; /* [W] */ 85 struct bintime th_naptime; /* [W] */ 86 struct timeval th_microtime; /* [W] */ 87 struct timespec th_nanotime; /* [W] */ 88 /* Fields not to be copied in tc_windup start with th_generation. */ 89 volatile u_int th_generation; /* [W] */ 90 struct timehands *th_next; /* [I] */ 91 }; 92 93 static struct timehands th0; 94 static struct timehands th1 = { 95 .th_next = &th0 96 }; 97 static struct timehands th0 = { 98 .th_counter = &dummy_timecounter, 99 .th_scale = UINT64_MAX / 1000000, 100 .th_offset = { .sec = 1, .frac = 0 }, 101 .th_generation = 1, 102 .th_next = &th1 103 }; 104 105 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock"); 106 107 /* 108 * tc_windup() must be called before leaving this mutex. 109 */ 110 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK); 111 112 static struct timehands *volatile timehands = &th0; /* [W] */ 113 struct timecounter *timecounter = &dummy_timecounter; /* [T] */ 114 static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list); 115 116 /* 117 * These are updated from tc_windup(). They are useful when 118 * examining kernel core dumps. 119 */ 120 volatile time_t naptime = 0; 121 volatile time_t time_second = 1; 122 volatile time_t time_uptime = 0; 123 124 static int timestepwarnings; 125 126 void ntp_update_second(struct timehands *); 127 void tc_windup(struct bintime *, struct bintime *, int64_t *); 128 129 /* 130 * Return the difference between the timehands' counter value now and what 131 * was when we copied it to the timehands' offset_count. 132 */ 133 static __inline u_int 134 tc_delta(struct timehands *th) 135 { 136 struct timecounter *tc; 137 138 tc = th->th_counter; 139 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 140 tc->tc_counter_mask); 141 } 142 143 /* 144 * Functions for reading the time. We have to loop until we are sure that 145 * the timehands that we operated on was not updated under our feet. See 146 * the comment in <sys/time.h> for a description of these functions. 147 */ 148 149 void 150 binboottime(struct bintime *bt) 151 { 152 struct timehands *th; 153 u_int gen; 154 155 do { 156 th = timehands; 157 gen = th->th_generation; 158 membar_consumer(); 159 *bt = th->th_boottime; 160 membar_consumer(); 161 } while (gen == 0 || gen != th->th_generation); 162 } 163 164 void 165 microboottime(struct timeval *tvp) 166 { 167 struct bintime bt; 168 169 binboottime(&bt); 170 BINTIME_TO_TIMEVAL(&bt, tvp); 171 } 172 173 void 174 nanoboottime(struct timespec *tsp) 175 { 176 struct bintime bt; 177 178 binboottime(&bt); 179 BINTIME_TO_TIMESPEC(&bt, tsp); 180 } 181 182 void 183 binuptime(struct bintime *bt) 184 { 185 struct timehands *th; 186 u_int gen; 187 188 do { 189 th = timehands; 190 gen = th->th_generation; 191 membar_consumer(); 192 *bt = th->th_offset; 193 bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt); 194 membar_consumer(); 195 } while (gen == 0 || gen != th->th_generation); 196 } 197 198 void 199 getbinuptime(struct bintime *bt) 200 { 201 struct timehands *th; 202 u_int gen; 203 204 do { 205 th = timehands; 206 gen = th->th_generation; 207 membar_consumer(); 208 *bt = th->th_offset; 209 membar_consumer(); 210 } while (gen == 0 || gen != th->th_generation); 211 } 212 213 void 214 nanouptime(struct timespec *tsp) 215 { 216 struct bintime bt; 217 218 binuptime(&bt); 219 BINTIME_TO_TIMESPEC(&bt, tsp); 220 } 221 222 void 223 microuptime(struct timeval *tvp) 224 { 225 struct bintime bt; 226 227 binuptime(&bt); 228 BINTIME_TO_TIMEVAL(&bt, tvp); 229 } 230 231 time_t 232 getuptime(void) 233 { 234 #if defined(__LP64__) 235 return time_uptime; /* atomic */ 236 #else 237 time_t now; 238 struct timehands *th; 239 u_int gen; 240 241 do { 242 th = timehands; 243 gen = th->th_generation; 244 membar_consumer(); 245 now = th->th_offset.sec; 246 membar_consumer(); 247 } while (gen == 0 || gen != th->th_generation); 248 249 return now; 250 #endif 251 } 252 253 uint64_t 254 nsecuptime(void) 255 { 256 struct bintime bt; 257 uint64_t nsec; 258 259 binuptime(&bt); 260 261 nsec = (1000000000ULL * (bt.frac >> 32)) >> 32; 262 nsec += bt.sec * 1000000000ULL; 263 264 return (nsec); 265 } 266 267 uint64_t 268 getnsecuptime(void) 269 { 270 struct bintime bt; 271 uint64_t nsec; 272 273 getbinuptime(&bt); 274 275 nsec = (1000000000ULL * (bt.frac >> 32)) >> 32; 276 nsec += bt.sec * 1000000000ULL; 277 278 return (nsec); 279 } 280 281 void 282 binruntime(struct bintime *bt) 283 { 284 struct timehands *th; 285 u_int gen; 286 287 do { 288 th = timehands; 289 gen = th->th_generation; 290 membar_consumer(); 291 bintimeaddfrac(&th->th_offset, th->th_scale * tc_delta(th), bt); 292 bintimesub(bt, &th->th_naptime, bt); 293 membar_consumer(); 294 } while (gen == 0 || gen != th->th_generation); 295 } 296 297 void 298 nanoruntime(struct timespec *ts) 299 { 300 struct bintime bt; 301 302 binruntime(&bt); 303 BINTIME_TO_TIMESPEC(&bt, ts); 304 } 305 306 void 307 bintime(struct bintime *bt) 308 { 309 struct timehands *th; 310 u_int gen; 311 312 do { 313 th = timehands; 314 gen = th->th_generation; 315 membar_consumer(); 316 *bt = th->th_offset; 317 bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt); 318 bintimeadd(bt, &th->th_boottime, bt); 319 membar_consumer(); 320 } while (gen == 0 || gen != th->th_generation); 321 } 322 323 void 324 nanotime(struct timespec *tsp) 325 { 326 struct bintime bt; 327 328 bintime(&bt); 329 BINTIME_TO_TIMESPEC(&bt, tsp); 330 } 331 332 void 333 microtime(struct timeval *tvp) 334 { 335 struct bintime bt; 336 337 bintime(&bt); 338 BINTIME_TO_TIMEVAL(&bt, tvp); 339 } 340 341 time_t 342 gettime(void) 343 { 344 #if defined(__LP64__) 345 return time_second; /* atomic */ 346 #else 347 time_t now; 348 struct timehands *th; 349 u_int gen; 350 351 do { 352 th = timehands; 353 gen = th->th_generation; 354 membar_consumer(); 355 now = th->th_microtime.tv_sec; 356 membar_consumer(); 357 } while (gen == 0 || gen != th->th_generation); 358 359 return now; 360 #endif 361 } 362 363 void 364 getnanouptime(struct timespec *tsp) 365 { 366 struct timehands *th; 367 u_int gen; 368 369 do { 370 th = timehands; 371 gen = th->th_generation; 372 membar_consumer(); 373 BINTIME_TO_TIMESPEC(&th->th_offset, tsp); 374 membar_consumer(); 375 } while (gen == 0 || gen != th->th_generation); 376 } 377 378 void 379 getmicrouptime(struct timeval *tvp) 380 { 381 struct timehands *th; 382 u_int gen; 383 384 do { 385 th = timehands; 386 gen = th->th_generation; 387 membar_consumer(); 388 BINTIME_TO_TIMEVAL(&th->th_offset, tvp); 389 membar_consumer(); 390 } while (gen == 0 || gen != th->th_generation); 391 } 392 393 void 394 getnanotime(struct timespec *tsp) 395 { 396 struct timehands *th; 397 u_int gen; 398 399 do { 400 th = timehands; 401 gen = th->th_generation; 402 membar_consumer(); 403 *tsp = th->th_nanotime; 404 membar_consumer(); 405 } while (gen == 0 || gen != th->th_generation); 406 } 407 408 void 409 getmicrotime(struct timeval *tvp) 410 { 411 struct timehands *th; 412 u_int gen; 413 414 do { 415 th = timehands; 416 gen = th->th_generation; 417 membar_consumer(); 418 *tvp = th->th_microtime; 419 membar_consumer(); 420 } while (gen == 0 || gen != th->th_generation); 421 } 422 423 /* 424 * Initialize a new timecounter and possibly use it. 425 */ 426 void 427 tc_init(struct timecounter *tc) 428 { 429 u_int64_t tmp; 430 u_int u; 431 432 u = tc->tc_frequency / tc->tc_counter_mask; 433 /* XXX: We need some margin here, 10% is a guess */ 434 u *= 11; 435 u /= 10; 436 if (tc->tc_quality >= 0) { 437 if (u > hz) { 438 tc->tc_quality = -2000; 439 printf("Timecounter \"%s\" frequency %lu Hz", 440 tc->tc_name, (unsigned long)tc->tc_frequency); 441 printf(" -- Insufficient hz, needs at least %u\n", u); 442 } 443 } 444 445 /* Determine the counter's precision. */ 446 for (tmp = 1; (tmp & tc->tc_counter_mask) == 0; tmp <<= 1) 447 continue; 448 tc->tc_precision = tmp; 449 450 SLIST_INSERT_HEAD(&tc_list, tc, tc_next); 451 452 /* 453 * Never automatically use a timecounter with negative quality. 454 * Even though we run on the dummy counter, switching here may be 455 * worse since this timecounter may not be monotonic. 456 */ 457 if (tc->tc_quality < 0) 458 return; 459 if (tc->tc_quality < timecounter->tc_quality) 460 return; 461 if (tc->tc_quality == timecounter->tc_quality && 462 tc->tc_frequency < timecounter->tc_frequency) 463 return; 464 (void)tc->tc_get_timecount(tc); 465 enqueue_randomness(tc->tc_get_timecount(tc)); 466 467 timecounter = tc; 468 } 469 470 /* Report the frequency of the current timecounter. */ 471 u_int64_t 472 tc_getfrequency(void) 473 { 474 return (timehands->th_counter->tc_frequency); 475 } 476 477 /* Report the precision of the current timecounter. */ 478 u_int64_t 479 tc_getprecision(void) 480 { 481 return (timehands->th_counter->tc_precision); 482 } 483 484 /* 485 * Step our concept of UTC, aka the realtime clock. 486 * This is done by modifying our estimate of when we booted. 487 * 488 * Any ongoing adjustment is meaningless after a clock jump, 489 * so we zero adjtimedelta here as well. 490 */ 491 void 492 tc_setrealtimeclock(const struct timespec *ts) 493 { 494 struct bintime boottime, old_utc, uptime, utc; 495 struct timespec tmp; 496 int64_t zero = 0; 497 498 TIMESPEC_TO_BINTIME(ts, &utc); 499 500 rw_enter_write(&tc_lock); 501 mtx_enter(&windup_mtx); 502 503 binuptime(&uptime); 504 bintimesub(&utc, &uptime, &boottime); 505 bintimeadd(&timehands->th_boottime, &uptime, &old_utc); 506 /* XXX fiddle all the little crinkly bits around the fiords... */ 507 tc_windup(&boottime, NULL, &zero); 508 509 mtx_leave(&windup_mtx); 510 rw_exit_write(&tc_lock); 511 512 enqueue_randomness(ts->tv_sec); 513 514 if (timestepwarnings) { 515 BINTIME_TO_TIMESPEC(&old_utc, &tmp); 516 log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n", 517 (long long)tmp.tv_sec, tmp.tv_nsec, 518 (long long)ts->tv_sec, ts->tv_nsec); 519 } 520 } 521 522 /* 523 * Step the monotonic and realtime clocks, triggering any timeouts that 524 * should have occurred across the interval. 525 */ 526 void 527 tc_setclock(const struct timespec *ts) 528 { 529 struct bintime new_naptime, old_naptime, uptime, utc; 530 struct timespec tmp; 531 static int first = 1; 532 #ifndef SMALL_KERNEL 533 struct bintime elapsed; 534 long long adj_ticks; 535 #endif 536 537 /* 538 * When we're called for the first time, during boot when 539 * the root partition is mounted, we need to set boottime. 540 */ 541 if (first) { 542 tc_setrealtimeclock(ts); 543 first = 0; 544 return; 545 } 546 547 enqueue_randomness(ts->tv_sec); 548 549 TIMESPEC_TO_BINTIME(ts, &utc); 550 551 mtx_enter(&windup_mtx); 552 553 bintimesub(&utc, &timehands->th_boottime, &uptime); 554 old_naptime = timehands->th_naptime; 555 /* XXX fiddle all the little crinkly bits around the fiords... */ 556 tc_windup(NULL, &uptime, NULL); 557 new_naptime = timehands->th_naptime; 558 559 mtx_leave(&windup_mtx); 560 561 if (bintimecmp(&old_naptime, &new_naptime, ==)) { 562 BINTIME_TO_TIMESPEC(&uptime, &tmp); 563 printf("%s: cannot rewind uptime to %lld.%09ld\n", 564 __func__, (long long)tmp.tv_sec, tmp.tv_nsec); 565 } 566 567 #ifndef SMALL_KERNEL 568 /* convert the bintime to ticks */ 569 bintimesub(&new_naptime, &old_naptime, &elapsed); 570 adj_ticks = (uint64_t)hz * elapsed.sec + 571 (((uint64_t)1000000 * (uint32_t)(elapsed.frac >> 32)) >> 32) / tick; 572 if (adj_ticks > 0) { 573 if (adj_ticks > INT_MAX) 574 adj_ticks = INT_MAX; 575 timeout_adjust_ticks(adj_ticks); 576 } 577 #endif 578 } 579 580 void 581 tc_update_timekeep(void) 582 { 583 static struct timecounter *last_tc = NULL; 584 struct timehands *th; 585 586 MUTEX_ASSERT_LOCKED(&windup_mtx); 587 588 if (timekeep == NULL) 589 return; 590 591 th = timehands; 592 timekeep->tk_generation = 0; 593 membar_producer(); 594 timekeep->tk_scale = th->th_scale; 595 timekeep->tk_offset_count = th->th_offset_count; 596 timekeep->tk_offset = th->th_offset; 597 timekeep->tk_naptime = th->th_naptime; 598 timekeep->tk_boottime = th->th_boottime; 599 if (last_tc != th->th_counter) { 600 timekeep->tk_counter_mask = th->th_counter->tc_counter_mask; 601 timekeep->tk_user = th->th_counter->tc_user; 602 last_tc = th->th_counter; 603 } 604 membar_producer(); 605 timekeep->tk_generation = th->th_generation; 606 607 return; 608 } 609 610 /* 611 * Initialize the next struct timehands in the ring and make 612 * it the active timehands. Along the way we might switch to a different 613 * timecounter and/or do seconds processing in NTP. Slightly magic. 614 */ 615 void 616 tc_windup(struct bintime *new_boottime, struct bintime *new_offset, 617 int64_t *new_adjtimedelta) 618 { 619 struct bintime bt; 620 struct timecounter *active_tc; 621 struct timehands *th, *tho; 622 u_int64_t scale; 623 u_int delta, ncount, ogen; 624 625 if (new_boottime != NULL || new_adjtimedelta != NULL) 626 rw_assert_wrlock(&tc_lock); 627 MUTEX_ASSERT_LOCKED(&windup_mtx); 628 629 active_tc = timecounter; 630 631 /* 632 * Make the next timehands a copy of the current one, but do not 633 * overwrite the generation or next pointer. While we update 634 * the contents, the generation must be zero. 635 */ 636 tho = timehands; 637 ogen = tho->th_generation; 638 th = tho->th_next; 639 th->th_generation = 0; 640 membar_producer(); 641 memcpy(th, tho, offsetof(struct timehands, th_generation)); 642 643 /* 644 * Capture a timecounter delta on the current timecounter and if 645 * changing timecounters, a counter value from the new timecounter. 646 * Update the offset fields accordingly. 647 */ 648 delta = tc_delta(th); 649 if (th->th_counter != active_tc) 650 ncount = active_tc->tc_get_timecount(active_tc); 651 else 652 ncount = 0; 653 th->th_offset_count += delta; 654 th->th_offset_count &= th->th_counter->tc_counter_mask; 655 bintimeaddfrac(&th->th_offset, th->th_scale * delta, &th->th_offset); 656 657 /* 658 * Ignore new offsets that predate the current offset. 659 * If changing the offset, first increase the naptime 660 * accordingly. 661 */ 662 if (new_offset != NULL && bintimecmp(&th->th_offset, new_offset, <)) { 663 bintimesub(new_offset, &th->th_offset, &bt); 664 bintimeadd(&th->th_naptime, &bt, &th->th_naptime); 665 naptime = th->th_naptime.sec; 666 th->th_offset = *new_offset; 667 } 668 669 #ifdef notyet 670 /* 671 * Hardware latching timecounters may not generate interrupts on 672 * PPS events, so instead we poll them. There is a finite risk that 673 * the hardware might capture a count which is later than the one we 674 * got above, and therefore possibly in the next NTP second which might 675 * have a different rate than the current NTP second. It doesn't 676 * matter in practice. 677 */ 678 if (tho->th_counter->tc_poll_pps) 679 tho->th_counter->tc_poll_pps(tho->th_counter); 680 #endif 681 682 /* 683 * If changing the boot time or clock adjustment, do so before 684 * NTP processing. 685 */ 686 if (new_boottime != NULL) 687 th->th_boottime = *new_boottime; 688 if (new_adjtimedelta != NULL) { 689 th->th_adjtimedelta = *new_adjtimedelta; 690 /* Reset the NTP update period. */ 691 bintimesub(&th->th_offset, &th->th_naptime, 692 &th->th_next_ntp_update); 693 } 694 695 /* 696 * Deal with NTP second processing. The while-loop normally 697 * iterates at most once, but in extreme situations it might 698 * keep NTP sane if tc_windup() is not run for several seconds. 699 */ 700 bintimesub(&th->th_offset, &th->th_naptime, &bt); 701 while (bintimecmp(&th->th_next_ntp_update, &bt, <=)) { 702 ntp_update_second(th); 703 th->th_next_ntp_update.sec++; 704 } 705 706 /* Update the UTC timestamps used by the get*() functions. */ 707 bintimeadd(&th->th_boottime, &th->th_offset, &bt); 708 BINTIME_TO_TIMEVAL(&bt, &th->th_microtime); 709 BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime); 710 711 /* Now is a good time to change timecounters. */ 712 if (th->th_counter != active_tc) { 713 th->th_counter = active_tc; 714 th->th_offset_count = ncount; 715 } 716 717 /*- 718 * Recalculate the scaling factor. We want the number of 1/2^64 719 * fractions of a second per period of the hardware counter, taking 720 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 721 * processing provides us with. 722 * 723 * The th_adjustment is nanoseconds per second with 32 bit binary 724 * fraction and we want 64 bit binary fraction of second: 725 * 726 * x = a * 2^32 / 10^9 = a * 4.294967296 727 * 728 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 729 * we can only multiply by about 850 without overflowing, but that 730 * leaves suitably precise fractions for multiply before divide. 731 * 732 * Divide before multiply with a fraction of 2199/512 results in a 733 * systematic undercompensation of 10PPM of th_adjustment. On a 734 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 735 * 736 * We happily sacrifice the lowest of the 64 bits of our result 737 * to the goddess of code clarity. 738 * 739 */ 740 scale = (u_int64_t)1 << 63; 741 scale += \ 742 ((th->th_adjustment + th->th_counter->tc_freq_adj) / 1024) * 2199; 743 scale /= th->th_counter->tc_frequency; 744 th->th_scale = scale * 2; 745 746 /* 747 * Now that the struct timehands is again consistent, set the new 748 * generation number, making sure to not make it zero. 749 */ 750 if (++ogen == 0) 751 ogen = 1; 752 membar_producer(); 753 th->th_generation = ogen; 754 755 /* Go live with the new struct timehands. */ 756 time_second = th->th_microtime.tv_sec; 757 time_uptime = th->th_offset.sec; 758 membar_producer(); 759 timehands = th; 760 761 tc_update_timekeep(); 762 } 763 764 /* Report or change the active timecounter hardware. */ 765 int 766 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 767 { 768 char newname[32]; 769 struct timecounter *newtc, *tc; 770 int error; 771 772 tc = timecounter; 773 strlcpy(newname, tc->tc_name, sizeof(newname)); 774 775 error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname)); 776 if (error != 0 || strcmp(newname, tc->tc_name) == 0) 777 return (error); 778 SLIST_FOREACH(newtc, &tc_list, tc_next) { 779 if (strcmp(newname, newtc->tc_name) != 0) 780 continue; 781 782 /* Warm up new timecounter. */ 783 (void)newtc->tc_get_timecount(newtc); 784 (void)newtc->tc_get_timecount(newtc); 785 786 rw_enter_write(&tc_lock); 787 timecounter = newtc; 788 rw_exit_write(&tc_lock); 789 790 return (0); 791 } 792 return (EINVAL); 793 } 794 795 /* Report or change the active timecounter hardware. */ 796 int 797 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 798 { 799 char buf[32], *spc, *choices; 800 struct timecounter *tc; 801 int error, maxlen; 802 803 if (SLIST_EMPTY(&tc_list)) 804 return (sysctl_rdstring(oldp, oldlenp, newp, "")); 805 806 spc = ""; 807 maxlen = 0; 808 SLIST_FOREACH(tc, &tc_list, tc_next) 809 maxlen += sizeof(buf); 810 choices = malloc(maxlen, M_TEMP, M_WAITOK); 811 *choices = '\0'; 812 SLIST_FOREACH(tc, &tc_list, tc_next) { 813 snprintf(buf, sizeof(buf), "%s%s(%d)", 814 spc, tc->tc_name, tc->tc_quality); 815 spc = " "; 816 strlcat(choices, buf, maxlen); 817 } 818 error = sysctl_rdstring(oldp, oldlenp, newp, choices); 819 free(choices, M_TEMP, maxlen); 820 return (error); 821 } 822 823 /* 824 * Timecounters need to be updated every so often to prevent the hardware 825 * counter from overflowing. Updating also recalculates the cached values 826 * used by the get*() family of functions, so their precision depends on 827 * the update frequency. 828 */ 829 static int tc_tick; 830 831 void 832 tc_ticktock(void) 833 { 834 static int count; 835 836 if (++count < tc_tick) 837 return; 838 if (!mtx_enter_try(&windup_mtx)) 839 return; 840 count = 0; 841 tc_windup(NULL, NULL, NULL); 842 mtx_leave(&windup_mtx); 843 } 844 845 void 846 inittimecounter(void) 847 { 848 #ifdef DEBUG 849 u_int p; 850 #endif 851 852 /* 853 * Set the initial timeout to 854 * max(1, <approx. number of hardclock ticks in a millisecond>). 855 * People should probably not use the sysctl to set the timeout 856 * to smaller than its initial value, since that value is the 857 * smallest reasonable one. If they want better timestamps they 858 * should use the non-"get"* functions. 859 */ 860 if (hz > 1000) 861 tc_tick = (hz + 500) / 1000; 862 else 863 tc_tick = 1; 864 #ifdef DEBUG 865 p = (tc_tick * 1000000) / hz; 866 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 867 #endif 868 869 /* warm up new timecounter (again) and get rolling. */ 870 (void)timecounter->tc_get_timecount(timecounter); 871 (void)timecounter->tc_get_timecount(timecounter); 872 } 873 874 const struct sysctl_bounded_args tc_vars[] = { 875 { KERN_TIMECOUNTER_TICK, &tc_tick, SYSCTL_INT_READONLY }, 876 { KERN_TIMECOUNTER_TIMESTEPWARNINGS, ×tepwarnings, 0, 1 }, 877 }; 878 879 /* 880 * Return timecounter-related information. 881 */ 882 int 883 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp, 884 void *newp, size_t newlen) 885 { 886 if (namelen != 1) 887 return (ENOTDIR); 888 889 switch (name[0]) { 890 case KERN_TIMECOUNTER_HARDWARE: 891 return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen)); 892 case KERN_TIMECOUNTER_CHOICE: 893 return (sysctl_tc_choice(oldp, oldlenp, newp, newlen)); 894 default: 895 return (sysctl_bounded_arr(tc_vars, nitems(tc_vars), name, 896 namelen, oldp, oldlenp, newp, newlen)); 897 } 898 /* NOTREACHED */ 899 } 900 901 /* 902 * Skew the timehands according to any adjtime(2) adjustment. 903 */ 904 void 905 ntp_update_second(struct timehands *th) 906 { 907 int64_t adj; 908 909 MUTEX_ASSERT_LOCKED(&windup_mtx); 910 911 if (th->th_adjtimedelta > 0) 912 adj = MIN(5000, th->th_adjtimedelta); 913 else 914 adj = MAX(-5000, th->th_adjtimedelta); 915 th->th_adjtimedelta -= adj; 916 th->th_adjustment = (adj * 1000) << 32; 917 } 918 919 void 920 tc_adjfreq(int64_t *old, int64_t *new) 921 { 922 if (old != NULL) { 923 rw_assert_anylock(&tc_lock); 924 *old = timecounter->tc_freq_adj; 925 } 926 if (new != NULL) { 927 rw_assert_wrlock(&tc_lock); 928 mtx_enter(&windup_mtx); 929 timecounter->tc_freq_adj = *new; 930 tc_windup(NULL, NULL, NULL); 931 mtx_leave(&windup_mtx); 932 } 933 } 934 935 void 936 tc_adjtime(int64_t *old, int64_t *new) 937 { 938 struct timehands *th; 939 u_int gen; 940 941 if (old != NULL) { 942 do { 943 th = timehands; 944 gen = th->th_generation; 945 membar_consumer(); 946 *old = th->th_adjtimedelta; 947 membar_consumer(); 948 } while (gen == 0 || gen != th->th_generation); 949 } 950 if (new != NULL) { 951 rw_assert_wrlock(&tc_lock); 952 mtx_enter(&windup_mtx); 953 tc_windup(NULL, NULL, new); 954 mtx_leave(&windup_mtx); 955 } 956 } 957