1 /* $OpenBSD: kern_tc.c,v 1.44 2019/04/30 15:51:53 cheloha Exp $ */ 2 3 /* 4 * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 /* 20 * If we meet some day, and you think this stuff is worth it, you 21 * can buy me a beer in return. Poul-Henning Kamp 22 */ 23 24 #include <sys/param.h> 25 #include <sys/atomic.h> 26 #include <sys/kernel.h> 27 #include <sys/mutex.h> 28 #include <sys/rwlock.h> 29 #include <sys/timeout.h> 30 #include <sys/sysctl.h> 31 #include <sys/syslog.h> 32 #include <sys/systm.h> 33 #include <sys/timetc.h> 34 #include <sys/malloc.h> 35 #include <dev/rndvar.h> 36 37 /* 38 * A large step happens on boot. This constant detects such steps. 39 * It is relatively small so that ntp_update_second gets called enough 40 * in the typical 'missed a couple of seconds' case, but doesn't loop 41 * forever when the time step is large. 42 */ 43 #define LARGE_STEP 200 44 45 u_int dummy_get_timecount(struct timecounter *); 46 47 int sysctl_tc_hardware(void *, size_t *, void *, size_t); 48 int sysctl_tc_choice(void *, size_t *, void *, size_t); 49 50 /* 51 * Implement a dummy timecounter which we can use until we get a real one 52 * in the air. This allows the console and other early stuff to use 53 * time services. 54 */ 55 56 u_int 57 dummy_get_timecount(struct timecounter *tc) 58 { 59 static u_int now; 60 61 return (++now); 62 } 63 64 static struct timecounter dummy_timecounter = { 65 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000 66 }; 67 68 /* 69 * Locks used to protect struct members, global variables in this file: 70 * I immutable after initialization 71 * t tc_lock 72 * w windup_mtx 73 */ 74 75 struct timehands { 76 /* These fields must be initialized by the driver. */ 77 struct timecounter *th_counter; /* [w] */ 78 int64_t th_adjtimedelta; /* [tw] */ 79 int64_t th_adjustment; /* [w] */ 80 u_int64_t th_scale; /* [w] */ 81 u_int th_offset_count; /* [w] */ 82 struct bintime th_boottime; /* [tw] */ 83 struct bintime th_offset; /* [w] */ 84 struct timeval th_microtime; /* [w] */ 85 struct timespec th_nanotime; /* [w] */ 86 /* Fields not to be copied in tc_windup start with th_generation. */ 87 volatile u_int th_generation; /* [w] */ 88 struct timehands *th_next; /* [I] */ 89 }; 90 91 static struct timehands th0; 92 static struct timehands th9 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th0}; 93 static struct timehands th8 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th9}; 94 static struct timehands th7 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th8}; 95 static struct timehands th6 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th7}; 96 static struct timehands th5 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th6}; 97 static struct timehands th4 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th5}; 98 static struct timehands th3 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th4}; 99 static struct timehands th2 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th3}; 100 static struct timehands th1 = { NULL, 0, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, {0, 0}, 0, &th2}; 101 static struct timehands th0 = { 102 &dummy_timecounter, 103 0, 104 0, 105 (uint64_t)-1 / 1000000, 106 0, 107 {0, 0}, 108 {1, 0}, 109 {0, 0}, 110 {0, 0}, 111 1, 112 &th1 113 }; 114 115 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock"); 116 117 /* 118 * tc_windup() must be called before leaving this mutex. 119 */ 120 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK); 121 122 static struct timehands *volatile timehands = &th0; /* [w] */ 123 struct timecounter *timecounter = &dummy_timecounter; /* [t] */ 124 static struct timecounter *timecounters = &dummy_timecounter; 125 126 volatile time_t time_second = 1; 127 volatile time_t time_uptime = 0; 128 129 struct bintime naptime; 130 static int timestepwarnings; 131 132 void ntp_update_second(struct timehands *); 133 void tc_windup(struct bintime *, struct bintime *, int64_t *); 134 135 /* 136 * Return the difference between the timehands' counter value now and what 137 * was when we copied it to the timehands' offset_count. 138 */ 139 static __inline u_int 140 tc_delta(struct timehands *th) 141 { 142 struct timecounter *tc; 143 144 tc = th->th_counter; 145 return ((tc->tc_get_timecount(tc) - th->th_offset_count) & 146 tc->tc_counter_mask); 147 } 148 149 /* 150 * Functions for reading the time. We have to loop until we are sure that 151 * the timehands that we operated on was not updated under our feet. See 152 * the comment in <sys/time.h> for a description of these functions. 153 */ 154 155 void 156 binboottime(struct bintime *bt) 157 { 158 struct timehands *th; 159 u_int gen; 160 161 do { 162 th = timehands; 163 gen = th->th_generation; 164 membar_consumer(); 165 *bt = th->th_boottime; 166 membar_consumer(); 167 } while (gen == 0 || gen != th->th_generation); 168 } 169 170 void 171 microboottime(struct timeval *tvp) 172 { 173 struct bintime bt; 174 175 binboottime(&bt); 176 bintime2timeval(&bt, tvp); 177 } 178 179 void 180 binuptime(struct bintime *bt) 181 { 182 struct timehands *th; 183 u_int gen; 184 185 do { 186 th = timehands; 187 gen = th->th_generation; 188 membar_consumer(); 189 *bt = th->th_offset; 190 bintime_addx(bt, th->th_scale * tc_delta(th)); 191 membar_consumer(); 192 } while (gen == 0 || gen != th->th_generation); 193 } 194 195 void 196 nanouptime(struct timespec *tsp) 197 { 198 struct bintime bt; 199 200 binuptime(&bt); 201 bintime2timespec(&bt, tsp); 202 } 203 204 void 205 microuptime(struct timeval *tvp) 206 { 207 struct bintime bt; 208 209 binuptime(&bt); 210 bintime2timeval(&bt, tvp); 211 } 212 213 void 214 bintime(struct bintime *bt) 215 { 216 struct timehands *th; 217 u_int gen; 218 219 do { 220 th = timehands; 221 gen = th->th_generation; 222 membar_consumer(); 223 *bt = th->th_offset; 224 bintime_addx(bt, th->th_scale * tc_delta(th)); 225 bintime_add(bt, &th->th_boottime); 226 membar_consumer(); 227 } while (gen == 0 || gen != th->th_generation); 228 } 229 230 void 231 nanotime(struct timespec *tsp) 232 { 233 struct bintime bt; 234 235 bintime(&bt); 236 bintime2timespec(&bt, tsp); 237 } 238 239 void 240 microtime(struct timeval *tvp) 241 { 242 struct bintime bt; 243 244 bintime(&bt); 245 bintime2timeval(&bt, tvp); 246 } 247 248 void 249 getnanouptime(struct timespec *tsp) 250 { 251 struct timehands *th; 252 u_int gen; 253 254 do { 255 th = timehands; 256 gen = th->th_generation; 257 membar_consumer(); 258 bintime2timespec(&th->th_offset, tsp); 259 membar_consumer(); 260 } while (gen == 0 || gen != th->th_generation); 261 } 262 263 void 264 getmicrouptime(struct timeval *tvp) 265 { 266 struct timehands *th; 267 u_int gen; 268 269 do { 270 th = timehands; 271 gen = th->th_generation; 272 membar_consumer(); 273 bintime2timeval(&th->th_offset, tvp); 274 membar_consumer(); 275 } while (gen == 0 || gen != th->th_generation); 276 } 277 278 void 279 getnanotime(struct timespec *tsp) 280 { 281 struct timehands *th; 282 u_int gen; 283 284 do { 285 th = timehands; 286 gen = th->th_generation; 287 membar_consumer(); 288 *tsp = th->th_nanotime; 289 membar_consumer(); 290 } while (gen == 0 || gen != th->th_generation); 291 } 292 293 void 294 getmicrotime(struct timeval *tvp) 295 { 296 struct timehands *th; 297 u_int gen; 298 299 do { 300 th = timehands; 301 gen = th->th_generation; 302 membar_consumer(); 303 *tvp = th->th_microtime; 304 membar_consumer(); 305 } while (gen == 0 || gen != th->th_generation); 306 } 307 308 /* 309 * Initialize a new timecounter and possibly use it. 310 */ 311 void 312 tc_init(struct timecounter *tc) 313 { 314 u_int u; 315 316 u = tc->tc_frequency / tc->tc_counter_mask; 317 /* XXX: We need some margin here, 10% is a guess */ 318 u *= 11; 319 u /= 10; 320 if (tc->tc_quality >= 0) { 321 if (u > hz) { 322 tc->tc_quality = -2000; 323 printf("Timecounter \"%s\" frequency %lu Hz", 324 tc->tc_name, (unsigned long)tc->tc_frequency); 325 printf(" -- Insufficient hz, needs at least %u\n", u); 326 } 327 } 328 329 tc->tc_next = timecounters; 330 timecounters = tc; 331 /* 332 * Never automatically use a timecounter with negative quality. 333 * Even though we run on the dummy counter, switching here may be 334 * worse since this timecounter may not be monotonic. 335 */ 336 if (tc->tc_quality < 0) 337 return; 338 if (tc->tc_quality < timecounter->tc_quality) 339 return; 340 if (tc->tc_quality == timecounter->tc_quality && 341 tc->tc_frequency < timecounter->tc_frequency) 342 return; 343 (void)tc->tc_get_timecount(tc); 344 enqueue_randomness(tc->tc_get_timecount(tc)); 345 346 timecounter = tc; 347 } 348 349 /* Report the frequency of the current timecounter. */ 350 u_int64_t 351 tc_getfrequency(void) 352 { 353 354 return (timehands->th_counter->tc_frequency); 355 } 356 357 /* 358 * Step our concept of UTC, aka the realtime clock. 359 * This is done by modifying our estimate of when we booted. 360 * 361 * Any ongoing adjustment is meaningless after a clock jump, 362 * so we zero adjtimedelta here as well. 363 */ 364 void 365 tc_setrealtimeclock(const struct timespec *ts) 366 { 367 struct timespec ts2; 368 struct bintime bt, bt2; 369 int64_t zero = 0; 370 371 rw_enter_write(&tc_lock); 372 mtx_enter(&windup_mtx); 373 binuptime(&bt2); 374 timespec2bintime(ts, &bt); 375 bintime_sub(&bt, &bt2); 376 bintime_add(&bt2, &timehands->th_boottime); 377 378 /* XXX fiddle all the little crinkly bits around the fiords... */ 379 tc_windup(&bt, NULL, &zero); 380 mtx_leave(&windup_mtx); 381 rw_exit_write(&tc_lock); 382 383 enqueue_randomness(ts->tv_sec); 384 385 if (timestepwarnings) { 386 bintime2timespec(&bt2, &ts2); 387 log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n", 388 (long long)ts2.tv_sec, ts2.tv_nsec, 389 (long long)ts->tv_sec, ts->tv_nsec); 390 } 391 } 392 393 /* 394 * Step the monotonic and realtime clocks, triggering any timeouts that 395 * should have occurred across the interval. 396 */ 397 void 398 tc_setclock(const struct timespec *ts) 399 { 400 struct bintime bt, bt2; 401 struct timespec earlier; 402 static int first = 1; 403 int rewind = 0; 404 #ifndef SMALL_KERNEL 405 long long adj_ticks; 406 #endif 407 408 /* 409 * When we're called for the first time, during boot when 410 * the root partition is mounted, we need to set boottime. 411 */ 412 if (first) { 413 tc_setrealtimeclock(ts); 414 first = 0; 415 return; 416 } 417 418 enqueue_randomness(ts->tv_sec); 419 420 mtx_enter(&windup_mtx); 421 timespec2bintime(ts, &bt); 422 bintime_sub(&bt, &timehands->th_boottime); 423 424 /* 425 * Don't rewind the offset. 426 */ 427 if (bt.sec < timehands->th_offset.sec || 428 (bt.sec == timehands->th_offset.sec && 429 bt.frac < timehands->th_offset.frac)) 430 rewind = 1; 431 432 bt2 = timehands->th_offset; 433 434 /* XXX fiddle all the little crinkly bits around the fiords... */ 435 tc_windup(NULL, rewind ? NULL : &bt, NULL); 436 mtx_leave(&windup_mtx); 437 438 if (rewind) { 439 bintime2timespec(&bt, &earlier); 440 printf("%s: cannot rewind uptime to %lld.%09ld\n", 441 __func__, (long long)earlier.tv_sec, earlier.tv_nsec); 442 return; 443 } 444 445 #ifndef SMALL_KERNEL 446 /* convert the bintime to ticks */ 447 bintime_sub(&bt, &bt2); 448 bintime_add(&naptime, &bt); 449 adj_ticks = (uint64_t)hz * bt.sec + 450 (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick; 451 if (adj_ticks > 0) { 452 if (adj_ticks > INT_MAX) 453 adj_ticks = INT_MAX; 454 timeout_adjust_ticks(adj_ticks); 455 } 456 #endif 457 } 458 459 /* 460 * Initialize the next struct timehands in the ring and make 461 * it the active timehands. Along the way we might switch to a different 462 * timecounter and/or do seconds processing in NTP. Slightly magic. 463 */ 464 void 465 tc_windup(struct bintime *new_boottime, struct bintime *new_offset, 466 int64_t *new_adjtimedelta) 467 { 468 struct bintime bt; 469 struct timecounter *active_tc; 470 struct timehands *th, *tho; 471 u_int64_t scale; 472 u_int delta, ncount, ogen; 473 int i; 474 475 if (new_boottime != NULL || new_adjtimedelta != NULL) 476 rw_assert_wrlock(&tc_lock); 477 MUTEX_ASSERT_LOCKED(&windup_mtx); 478 479 active_tc = timecounter; 480 481 /* 482 * Make the next timehands a copy of the current one, but do not 483 * overwrite the generation or next pointer. While we update 484 * the contents, the generation must be zero. 485 */ 486 tho = timehands; 487 th = tho->th_next; 488 ogen = th->th_generation; 489 th->th_generation = 0; 490 membar_producer(); 491 memcpy(th, tho, offsetof(struct timehands, th_generation)); 492 493 /* 494 * If changing the boot offset, do so before updating the 495 * offset fields. 496 */ 497 if (new_offset != NULL) 498 th->th_offset = *new_offset; 499 500 /* 501 * Capture a timecounter delta on the current timecounter and if 502 * changing timecounters, a counter value from the new timecounter. 503 * Update the offset fields accordingly. 504 */ 505 delta = tc_delta(th); 506 if (th->th_counter != active_tc) 507 ncount = active_tc->tc_get_timecount(active_tc); 508 else 509 ncount = 0; 510 th->th_offset_count += delta; 511 th->th_offset_count &= th->th_counter->tc_counter_mask; 512 bintime_addx(&th->th_offset, th->th_scale * delta); 513 514 #ifdef notyet 515 /* 516 * Hardware latching timecounters may not generate interrupts on 517 * PPS events, so instead we poll them. There is a finite risk that 518 * the hardware might capture a count which is later than the one we 519 * got above, and therefore possibly in the next NTP second which might 520 * have a different rate than the current NTP second. It doesn't 521 * matter in practice. 522 */ 523 if (tho->th_counter->tc_poll_pps) 524 tho->th_counter->tc_poll_pps(tho->th_counter); 525 #endif 526 527 /* 528 * If changing the boot time or clock adjustment, do so before 529 * NTP processing. 530 */ 531 if (new_boottime != NULL) 532 th->th_boottime = *new_boottime; 533 if (new_adjtimedelta != NULL) 534 th->th_adjtimedelta = *new_adjtimedelta; 535 536 /* 537 * Deal with NTP second processing. The for loop normally 538 * iterates at most once, but in extreme situations it might 539 * keep NTP sane if timeouts are not run for several seconds. 540 * At boot, the time step can be large when the TOD hardware 541 * has been read, so on really large steps, we call 542 * ntp_update_second only twice. We need to call it twice in 543 * case we missed a leap second. 544 */ 545 bt = th->th_offset; 546 bintime_add(&bt, &th->th_boottime); 547 i = bt.sec - tho->th_microtime.tv_sec; 548 if (i > LARGE_STEP) 549 i = 2; 550 for (; i > 0; i--) 551 ntp_update_second(th); 552 553 /* Update the UTC timestamps used by the get*() functions. */ 554 /* XXX shouldn't do this here. Should force non-`get' versions. */ 555 bintime2timeval(&bt, &th->th_microtime); 556 bintime2timespec(&bt, &th->th_nanotime); 557 558 /* Now is a good time to change timecounters. */ 559 if (th->th_counter != active_tc) { 560 th->th_counter = active_tc; 561 th->th_offset_count = ncount; 562 } 563 564 /*- 565 * Recalculate the scaling factor. We want the number of 1/2^64 566 * fractions of a second per period of the hardware counter, taking 567 * into account the th_adjustment factor which the NTP PLL/adjtime(2) 568 * processing provides us with. 569 * 570 * The th_adjustment is nanoseconds per second with 32 bit binary 571 * fraction and we want 64 bit binary fraction of second: 572 * 573 * x = a * 2^32 / 10^9 = a * 4.294967296 574 * 575 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int 576 * we can only multiply by about 850 without overflowing, but that 577 * leaves suitably precise fractions for multiply before divide. 578 * 579 * Divide before multiply with a fraction of 2199/512 results in a 580 * systematic undercompensation of 10PPM of th_adjustment. On a 581 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. 582 * 583 * We happily sacrifice the lowest of the 64 bits of our result 584 * to the goddess of code clarity. 585 * 586 */ 587 scale = (u_int64_t)1 << 63; 588 scale += (th->th_adjustment / 1024) * 2199; 589 scale /= th->th_counter->tc_frequency; 590 th->th_scale = scale * 2; 591 592 /* 593 * Now that the struct timehands is again consistent, set the new 594 * generation number, making sure to not make it zero. 595 */ 596 if (++ogen == 0) 597 ogen = 1; 598 membar_producer(); 599 th->th_generation = ogen; 600 601 /* Go live with the new struct timehands. */ 602 time_second = th->th_microtime.tv_sec; 603 time_uptime = th->th_offset.sec; 604 membar_producer(); 605 timehands = th; 606 } 607 608 /* Report or change the active timecounter hardware. */ 609 int 610 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 611 { 612 char newname[32]; 613 struct timecounter *newtc, *tc; 614 int error; 615 616 tc = timecounter; 617 strlcpy(newname, tc->tc_name, sizeof(newname)); 618 619 error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname)); 620 if (error != 0 || strcmp(newname, tc->tc_name) == 0) 621 return (error); 622 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) { 623 if (strcmp(newname, newtc->tc_name) != 0) 624 continue; 625 626 /* Warm up new timecounter. */ 627 (void)newtc->tc_get_timecount(newtc); 628 (void)newtc->tc_get_timecount(newtc); 629 630 rw_enter_write(&tc_lock); 631 timecounter = newtc; 632 rw_exit_write(&tc_lock); 633 634 return (0); 635 } 636 return (EINVAL); 637 } 638 639 /* Report or change the active timecounter hardware. */ 640 int 641 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 642 { 643 char buf[32], *spc, *choices; 644 struct timecounter *tc; 645 int error, maxlen; 646 647 spc = ""; 648 maxlen = 0; 649 for (tc = timecounters; tc != NULL; tc = tc->tc_next) 650 maxlen += sizeof(buf); 651 choices = malloc(maxlen, M_TEMP, M_WAITOK); 652 *choices = '\0'; 653 for (tc = timecounters; tc != NULL; tc = tc->tc_next) { 654 snprintf(buf, sizeof(buf), "%s%s(%d)", 655 spc, tc->tc_name, tc->tc_quality); 656 spc = " "; 657 strlcat(choices, buf, maxlen); 658 } 659 error = sysctl_rdstring(oldp, oldlenp, newp, choices); 660 free(choices, M_TEMP, maxlen); 661 return (error); 662 } 663 664 /* 665 * Timecounters need to be updated every so often to prevent the hardware 666 * counter from overflowing. Updating also recalculates the cached values 667 * used by the get*() family of functions, so their precision depends on 668 * the update frequency. 669 */ 670 static int tc_tick; 671 672 void 673 tc_ticktock(void) 674 { 675 static int count; 676 677 if (++count < tc_tick) 678 return; 679 if (!mtx_enter_try(&windup_mtx)) 680 return; 681 count = 0; 682 tc_windup(NULL, NULL, NULL); 683 mtx_leave(&windup_mtx); 684 } 685 686 void 687 inittimecounter(void) 688 { 689 #ifdef DEBUG 690 u_int p; 691 #endif 692 693 /* 694 * Set the initial timeout to 695 * max(1, <approx. number of hardclock ticks in a millisecond>). 696 * People should probably not use the sysctl to set the timeout 697 * to smaller than its initial value, since that value is the 698 * smallest reasonable one. If they want better timestamps they 699 * should use the non-"get"* functions. 700 */ 701 if (hz > 1000) 702 tc_tick = (hz + 500) / 1000; 703 else 704 tc_tick = 1; 705 #ifdef DEBUG 706 p = (tc_tick * 1000000) / hz; 707 printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); 708 #endif 709 710 /* warm up new timecounter (again) and get rolling. */ 711 (void)timecounter->tc_get_timecount(timecounter); 712 (void)timecounter->tc_get_timecount(timecounter); 713 } 714 715 /* 716 * Return timecounter-related information. 717 */ 718 int 719 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp, 720 void *newp, size_t newlen) 721 { 722 if (namelen != 1) 723 return (ENOTDIR); 724 725 switch (name[0]) { 726 case KERN_TIMECOUNTER_TICK: 727 return (sysctl_rdint(oldp, oldlenp, newp, tc_tick)); 728 case KERN_TIMECOUNTER_TIMESTEPWARNINGS: 729 return (sysctl_int(oldp, oldlenp, newp, newlen, 730 ×tepwarnings)); 731 case KERN_TIMECOUNTER_HARDWARE: 732 return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen)); 733 case KERN_TIMECOUNTER_CHOICE: 734 return (sysctl_tc_choice(oldp, oldlenp, newp, newlen)); 735 default: 736 return (EOPNOTSUPP); 737 } 738 /* NOTREACHED */ 739 } 740 741 /* 742 * Skew the timehands according to any adjfreq(2)/adjtime(2) adjustments. 743 */ 744 void 745 ntp_update_second(struct timehands *th) 746 { 747 int64_t adj; 748 749 MUTEX_ASSERT_LOCKED(&windup_mtx); 750 751 if (th->th_adjtimedelta > 0) 752 adj = MIN(5000, th->th_adjtimedelta); 753 else 754 adj = MAX(-5000, th->th_adjtimedelta); 755 th->th_adjtimedelta -= adj; 756 th->th_adjustment = (adj * 1000) << 32; 757 th->th_adjustment += th->th_counter->tc_freq_adj; 758 } 759 760 void 761 tc_adjfreq(int64_t *old, int64_t *new) 762 { 763 if (old != NULL) { 764 rw_assert_anylock(&tc_lock); 765 *old = timecounter->tc_freq_adj; 766 } 767 if (new != NULL) { 768 rw_assert_wrlock(&tc_lock); 769 mtx_enter(&windup_mtx); 770 timecounter->tc_freq_adj = *new; 771 tc_windup(NULL, NULL, NULL); 772 mtx_leave(&windup_mtx); 773 } 774 } 775 776 void 777 tc_adjtime(int64_t *old, int64_t *new) 778 { 779 struct timehands *th; 780 u_int gen; 781 782 if (old != NULL) { 783 do { 784 th = timehands; 785 gen = th->th_generation; 786 membar_consumer(); 787 *old = th->th_adjtimedelta; 788 membar_consumer(); 789 } while (gen == 0 || gen != th->th_generation); 790 } 791 if (new != NULL) { 792 rw_assert_wrlock(&tc_lock); 793 mtx_enter(&windup_mtx); 794 tc_windup(NULL, NULL, new); 795 mtx_leave(&windup_mtx); 796 } 797 } 798