xref: /openbsd-src/sys/kern/kern_tc.c (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 /*	$OpenBSD: kern_tc.c,v 1.81 2022/12/13 17:30:36 cheloha Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/rwlock.h>
29 #include <sys/stdint.h>
30 #include <sys/timeout.h>
31 #include <sys/sysctl.h>
32 #include <sys/syslog.h>
33 #include <sys/systm.h>
34 #include <sys/timetc.h>
35 #include <sys/queue.h>
36 #include <sys/malloc.h>
37 
38 u_int dummy_get_timecount(struct timecounter *);
39 
40 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
41 int sysctl_tc_choice(void *, size_t *, void *, size_t);
42 
43 /*
44  * Implement a dummy timecounter which we can use until we get a real one
45  * in the air.  This allows the console and other early stuff to use
46  * time services.
47  */
48 
49 u_int
50 dummy_get_timecount(struct timecounter *tc)
51 {
52 	static u_int now;
53 
54 	return atomic_inc_int_nv(&now);
55 }
56 
57 static struct timecounter dummy_timecounter = {
58 	.tc_get_timecount = dummy_get_timecount,
59 	.tc_poll_pps = NULL,
60 	.tc_counter_mask = ~0u,
61 	.tc_frequency = 1000000,
62 	.tc_name = "dummy",
63 	.tc_quality = -1000000,
64 	.tc_priv = NULL,
65 	.tc_user = 0,
66 };
67 
68 /*
69  * Locks used to protect struct members, global variables in this file:
70  *	I	immutable after initialization
71  *	T	tc_lock
72  *	W	windup_mtx
73  */
74 
75 struct timehands {
76 	/* These fields must be initialized by the driver. */
77 	struct timecounter	*th_counter;		/* [W] */
78 	int64_t			th_adjtimedelta;	/* [T,W] */
79 	struct bintime		th_next_ntp_update;	/* [T,W] */
80 	int64_t			th_adjustment;		/* [W] */
81 	u_int64_t		th_scale;		/* [W] */
82 	u_int	 		th_offset_count;	/* [W] */
83 	struct bintime		th_boottime;		/* [T,W] */
84 	struct bintime		th_offset;		/* [W] */
85 	struct bintime		th_naptime;		/* [W] */
86 	struct timeval		th_microtime;		/* [W] */
87 	struct timespec		th_nanotime;		/* [W] */
88 	/* Fields not to be copied in tc_windup start with th_generation. */
89 	volatile u_int		th_generation;		/* [W] */
90 	struct timehands	*th_next;		/* [I] */
91 };
92 
93 static struct timehands th0;
94 static struct timehands th1 = {
95 	.th_next = &th0
96 };
97 static struct timehands th0 = {
98 	.th_counter = &dummy_timecounter,
99 	.th_scale = UINT64_MAX / 1000000,
100 	.th_offset = { .sec = 1, .frac = 0 },
101 	.th_generation = 1,
102 	.th_next = &th1
103 };
104 
105 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock");
106 
107 /*
108  * tc_windup() must be called before leaving this mutex.
109  */
110 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
111 
112 static struct timehands *volatile timehands = &th0;		/* [W] */
113 struct timecounter *timecounter = &dummy_timecounter;		/* [T] */
114 static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list);
115 
116 /*
117  * These are updated from tc_windup().  They are useful when
118  * examining kernel core dumps.
119  */
120 volatile time_t naptime = 0;
121 volatile time_t time_second = 1;
122 volatile time_t time_uptime = 0;
123 
124 static int timestepwarnings;
125 
126 void ntp_update_second(struct timehands *);
127 void tc_windup(struct bintime *, struct bintime *, int64_t *);
128 
129 /*
130  * Return the difference between the timehands' counter value now and what
131  * was when we copied it to the timehands' offset_count.
132  */
133 static __inline u_int
134 tc_delta(struct timehands *th)
135 {
136 	struct timecounter *tc;
137 
138 	tc = th->th_counter;
139 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
140 	    tc->tc_counter_mask);
141 }
142 
143 /*
144  * Functions for reading the time.  We have to loop until we are sure that
145  * the timehands that we operated on was not updated under our feet.  See
146  * the comment in <sys/time.h> for a description of these functions.
147  */
148 
149 void
150 binboottime(struct bintime *bt)
151 {
152 	struct timehands *th;
153 	u_int gen;
154 
155 	do {
156 		th = timehands;
157 		gen = th->th_generation;
158 		membar_consumer();
159 		*bt = th->th_boottime;
160 		membar_consumer();
161 	} while (gen == 0 || gen != th->th_generation);
162 }
163 
164 void
165 microboottime(struct timeval *tvp)
166 {
167 	struct bintime bt;
168 
169 	binboottime(&bt);
170 	BINTIME_TO_TIMEVAL(&bt, tvp);
171 }
172 
173 void
174 nanoboottime(struct timespec *tsp)
175 {
176 	struct bintime bt;
177 
178 	binboottime(&bt);
179 	BINTIME_TO_TIMESPEC(&bt, tsp);
180 }
181 
182 void
183 binuptime(struct bintime *bt)
184 {
185 	struct timehands *th;
186 	u_int gen;
187 
188 	do {
189 		th = timehands;
190 		gen = th->th_generation;
191 		membar_consumer();
192 		TIMECOUNT_TO_BINTIME(tc_delta(th), th->th_scale, bt);
193 		bintimeadd(bt, &th->th_offset, bt);
194 		membar_consumer();
195 	} while (gen == 0 || gen != th->th_generation);
196 }
197 
198 void
199 getbinuptime(struct bintime *bt)
200 {
201 	struct timehands *th;
202 	u_int gen;
203 
204 	do {
205 		th = timehands;
206 		gen = th->th_generation;
207 		membar_consumer();
208 		*bt = th->th_offset;
209 		membar_consumer();
210 	} while (gen == 0 || gen != th->th_generation);
211 }
212 
213 void
214 nanouptime(struct timespec *tsp)
215 {
216 	struct bintime bt;
217 
218 	binuptime(&bt);
219 	BINTIME_TO_TIMESPEC(&bt, tsp);
220 }
221 
222 void
223 microuptime(struct timeval *tvp)
224 {
225 	struct bintime bt;
226 
227 	binuptime(&bt);
228 	BINTIME_TO_TIMEVAL(&bt, tvp);
229 }
230 
231 time_t
232 getuptime(void)
233 {
234 #if defined(__LP64__)
235 	return time_uptime;	/* atomic */
236 #else
237 	time_t now;
238 	struct timehands *th;
239 	u_int gen;
240 
241 	do {
242 		th = timehands;
243 		gen = th->th_generation;
244 		membar_consumer();
245 		now = th->th_offset.sec;
246 		membar_consumer();
247 	} while (gen == 0 || gen != th->th_generation);
248 
249 	return now;
250 #endif
251 }
252 
253 uint64_t
254 nsecuptime(void)
255 {
256 	struct bintime bt;
257 
258 	binuptime(&bt);
259 	return BINTIME_TO_NSEC(&bt);
260 }
261 
262 uint64_t
263 getnsecuptime(void)
264 {
265 	struct bintime bt;
266 
267 	getbinuptime(&bt);
268 	return BINTIME_TO_NSEC(&bt);
269 }
270 
271 void
272 binruntime(struct bintime *bt)
273 {
274 	struct timehands *th;
275 	u_int gen;
276 
277 	do {
278 		th = timehands;
279 		gen = th->th_generation;
280 		membar_consumer();
281 		TIMECOUNT_TO_BINTIME(tc_delta(th), th->th_scale, bt);
282 		bintimeadd(bt, &th->th_offset, bt);
283 		bintimesub(bt, &th->th_naptime, bt);
284 		membar_consumer();
285 	} while (gen == 0 || gen != th->th_generation);
286 }
287 
288 void
289 nanoruntime(struct timespec *ts)
290 {
291 	struct bintime bt;
292 
293 	binruntime(&bt);
294 	BINTIME_TO_TIMESPEC(&bt, ts);
295 }
296 
297 void
298 getbinruntime(struct bintime *bt)
299 {
300 	struct timehands *th;
301 	u_int gen;
302 
303 	do {
304 		th = timehands;
305 		gen = th->th_generation;
306 		membar_consumer();
307 		bintimesub(&th->th_offset, &th->th_naptime, bt);
308 		membar_consumer();
309 	} while (gen == 0 || gen != th->th_generation);
310 }
311 
312 uint64_t
313 getnsecruntime(void)
314 {
315 	struct bintime bt;
316 
317 	getbinruntime(&bt);
318 	return BINTIME_TO_NSEC(&bt);
319 }
320 
321 void
322 bintime(struct bintime *bt)
323 {
324 	struct timehands *th;
325 	u_int gen;
326 
327 	do {
328 		th = timehands;
329 		gen = th->th_generation;
330 		membar_consumer();
331 		TIMECOUNT_TO_BINTIME(tc_delta(th), th->th_scale, bt);
332 		bintimeadd(bt, &th->th_offset, bt);
333 		bintimeadd(bt, &th->th_boottime, bt);
334 		membar_consumer();
335 	} while (gen == 0 || gen != th->th_generation);
336 }
337 
338 void
339 nanotime(struct timespec *tsp)
340 {
341 	struct bintime bt;
342 
343 	bintime(&bt);
344 	BINTIME_TO_TIMESPEC(&bt, tsp);
345 }
346 
347 void
348 microtime(struct timeval *tvp)
349 {
350 	struct bintime bt;
351 
352 	bintime(&bt);
353 	BINTIME_TO_TIMEVAL(&bt, tvp);
354 }
355 
356 time_t
357 gettime(void)
358 {
359 #if defined(__LP64__)
360 	return time_second;	/* atomic */
361 #else
362 	time_t now;
363 	struct timehands *th;
364 	u_int gen;
365 
366 	do {
367 		th = timehands;
368 		gen = th->th_generation;
369 		membar_consumer();
370 		now = th->th_microtime.tv_sec;
371 		membar_consumer();
372 	} while (gen == 0 || gen != th->th_generation);
373 
374 	return now;
375 #endif
376 }
377 
378 void
379 getnanouptime(struct timespec *tsp)
380 {
381 	struct timehands *th;
382 	u_int gen;
383 
384 	do {
385 		th = timehands;
386 		gen = th->th_generation;
387 		membar_consumer();
388 		BINTIME_TO_TIMESPEC(&th->th_offset, tsp);
389 		membar_consumer();
390 	} while (gen == 0 || gen != th->th_generation);
391 }
392 
393 void
394 getmicrouptime(struct timeval *tvp)
395 {
396 	struct timehands *th;
397 	u_int gen;
398 
399 	do {
400 		th = timehands;
401 		gen = th->th_generation;
402 		membar_consumer();
403 		BINTIME_TO_TIMEVAL(&th->th_offset, tvp);
404 		membar_consumer();
405 	} while (gen == 0 || gen != th->th_generation);
406 }
407 
408 void
409 getnanotime(struct timespec *tsp)
410 {
411 	struct timehands *th;
412 	u_int gen;
413 
414 	do {
415 		th = timehands;
416 		gen = th->th_generation;
417 		membar_consumer();
418 		*tsp = th->th_nanotime;
419 		membar_consumer();
420 	} while (gen == 0 || gen != th->th_generation);
421 }
422 
423 void
424 getmicrotime(struct timeval *tvp)
425 {
426 	struct timehands *th;
427 	u_int gen;
428 
429 	do {
430 		th = timehands;
431 		gen = th->th_generation;
432 		membar_consumer();
433 		*tvp = th->th_microtime;
434 		membar_consumer();
435 	} while (gen == 0 || gen != th->th_generation);
436 }
437 
438 /*
439  * Initialize a new timecounter and possibly use it.
440  */
441 void
442 tc_init(struct timecounter *tc)
443 {
444 	u_int64_t tmp;
445 	u_int u;
446 
447 	u = tc->tc_frequency / tc->tc_counter_mask;
448 	/* XXX: We need some margin here, 10% is a guess */
449 	u *= 11;
450 	u /= 10;
451 	if (tc->tc_quality >= 0) {
452 		if (u > hz) {
453 			tc->tc_quality = -2000;
454 			printf("Timecounter \"%s\" frequency %lu Hz",
455 			    tc->tc_name, (unsigned long)tc->tc_frequency);
456 			printf(" -- Insufficient hz, needs at least %u\n", u);
457 		}
458 	}
459 
460 	/* Determine the counter's precision. */
461 	for (tmp = 1; (tmp & tc->tc_counter_mask) == 0; tmp <<= 1)
462 		continue;
463 	tc->tc_precision = tmp;
464 
465 	SLIST_INSERT_HEAD(&tc_list, tc, tc_next);
466 
467 	/*
468 	 * Never automatically use a timecounter with negative quality.
469 	 * Even though we run on the dummy counter, switching here may be
470 	 * worse since this timecounter may not be monotonic.
471 	 */
472 	if (tc->tc_quality < 0)
473 		return;
474 	if (tc->tc_quality < timecounter->tc_quality)
475 		return;
476 	if (tc->tc_quality == timecounter->tc_quality &&
477 	    tc->tc_frequency < timecounter->tc_frequency)
478 		return;
479 	(void)tc->tc_get_timecount(tc);
480 	enqueue_randomness(tc->tc_get_timecount(tc));
481 
482 	timecounter = tc;
483 }
484 
485 /*
486  * Change the given timecounter's quality.  If it is the active
487  * counter and it is no longer the best counter, activate the
488  * best counter.
489  */
490 void
491 tc_reset_quality(struct timecounter *tc, int quality)
492 {
493 	struct timecounter *best = &dummy_timecounter, *tmp;
494 
495 	if (tc == &dummy_timecounter)
496 		panic("%s: cannot change dummy counter quality", __func__);
497 
498 	tc->tc_quality = quality;
499 	if (timecounter == tc) {
500 		SLIST_FOREACH(tmp, &tc_list, tc_next) {
501 			if (tmp->tc_quality < 0)
502 				continue;
503 			if (tmp->tc_quality < best->tc_quality)
504 				continue;
505 			if (tmp->tc_quality == best->tc_quality &&
506 			    tmp->tc_frequency < best->tc_frequency)
507 				continue;
508 			best = tmp;
509 		}
510 		if (best != tc) {
511 			enqueue_randomness(best->tc_get_timecount(best));
512 			timecounter = best;
513 			printf("timecounter: active counter changed: %s -> %s\n",
514 			    tc->tc_name, best->tc_name);
515 		}
516 	}
517 }
518 
519 /* Report the frequency of the current timecounter. */
520 u_int64_t
521 tc_getfrequency(void)
522 {
523 	return (timehands->th_counter->tc_frequency);
524 }
525 
526 /* Report the precision of the current timecounter. */
527 u_int64_t
528 tc_getprecision(void)
529 {
530 	return (timehands->th_counter->tc_precision);
531 }
532 
533 /*
534  * Step our concept of UTC, aka the realtime clock.
535  * This is done by modifying our estimate of when we booted.
536  *
537  * Any ongoing adjustment is meaningless after a clock jump,
538  * so we zero adjtimedelta here as well.
539  */
540 void
541 tc_setrealtimeclock(const struct timespec *ts)
542 {
543 	struct bintime boottime, old_utc, uptime, utc;
544 	struct timespec tmp;
545 	int64_t zero = 0;
546 
547 	TIMESPEC_TO_BINTIME(ts, &utc);
548 
549 	rw_enter_write(&tc_lock);
550 	mtx_enter(&windup_mtx);
551 
552 	binuptime(&uptime);
553 	bintimesub(&utc, &uptime, &boottime);
554 	bintimeadd(&timehands->th_boottime, &uptime, &old_utc);
555 	/* XXX fiddle all the little crinkly bits around the fiords... */
556 	tc_windup(&boottime, NULL, &zero);
557 
558 	mtx_leave(&windup_mtx);
559 	rw_exit_write(&tc_lock);
560 
561 	enqueue_randomness(ts->tv_sec);
562 
563 	if (timestepwarnings) {
564 		BINTIME_TO_TIMESPEC(&old_utc, &tmp);
565 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
566 		    (long long)tmp.tv_sec, tmp.tv_nsec,
567 		    (long long)ts->tv_sec, ts->tv_nsec);
568 	}
569 }
570 
571 /*
572  * Step the monotonic and realtime clocks, triggering any timeouts that
573  * should have occurred across the interval.
574  */
575 void
576 tc_setclock(const struct timespec *ts)
577 {
578 	struct bintime new_naptime, old_naptime, uptime, utc;
579 	static int first = 1;
580 #ifndef SMALL_KERNEL
581 	struct bintime elapsed;
582 	long long adj_ticks;
583 #endif
584 
585 	/*
586 	 * When we're called for the first time, during boot when
587 	 * the root partition is mounted, we need to set boottime.
588 	 */
589 	if (first) {
590 		tc_setrealtimeclock(ts);
591 		first = 0;
592 		return;
593 	}
594 
595 	enqueue_randomness(ts->tv_sec);
596 
597 	TIMESPEC_TO_BINTIME(ts, &utc);
598 
599 	mtx_enter(&windup_mtx);
600 
601 	bintimesub(&utc, &timehands->th_boottime, &uptime);
602 	old_naptime = timehands->th_naptime;
603 	/* XXX fiddle all the little crinkly bits around the fiords... */
604 	tc_windup(NULL, &uptime, NULL);
605 	new_naptime = timehands->th_naptime;
606 
607 	mtx_leave(&windup_mtx);
608 
609 #ifndef SMALL_KERNEL
610 	/* convert the bintime to ticks */
611 	bintimesub(&new_naptime, &old_naptime, &elapsed);
612 	adj_ticks = BINTIME_TO_NSEC(&elapsed) / tick_nsec;
613 	if (adj_ticks > 0) {
614 		if (adj_ticks > INT_MAX)
615 			adj_ticks = INT_MAX;
616 		timeout_adjust_ticks(adj_ticks);
617 	}
618 #endif
619 }
620 
621 void
622 tc_update_timekeep(void)
623 {
624 	static struct timecounter *last_tc = NULL;
625 	struct timehands *th;
626 
627 	MUTEX_ASSERT_LOCKED(&windup_mtx);
628 
629 	if (timekeep == NULL)
630 		return;
631 
632 	th = timehands;
633 	timekeep->tk_generation = 0;
634 	membar_producer();
635 	timekeep->tk_scale = th->th_scale;
636 	timekeep->tk_offset_count = th->th_offset_count;
637 	timekeep->tk_offset = th->th_offset;
638 	timekeep->tk_naptime = th->th_naptime;
639 	timekeep->tk_boottime = th->th_boottime;
640 	if (last_tc != th->th_counter) {
641 		timekeep->tk_counter_mask = th->th_counter->tc_counter_mask;
642 		timekeep->tk_user = th->th_counter->tc_user;
643 		last_tc = th->th_counter;
644 	}
645 	membar_producer();
646 	timekeep->tk_generation = th->th_generation;
647 
648 	return;
649 }
650 
651 /*
652  * Initialize the next struct timehands in the ring and make
653  * it the active timehands.  Along the way we might switch to a different
654  * timecounter and/or do seconds processing in NTP.  Slightly magic.
655  */
656 void
657 tc_windup(struct bintime *new_boottime, struct bintime *new_offset,
658     int64_t *new_adjtimedelta)
659 {
660 	struct bintime bt;
661 	struct timecounter *active_tc;
662 	struct timehands *th, *tho;
663 	u_int64_t scale;
664 	u_int delta, ncount, ogen;
665 
666 	if (new_boottime != NULL || new_adjtimedelta != NULL)
667 		rw_assert_wrlock(&tc_lock);
668 	MUTEX_ASSERT_LOCKED(&windup_mtx);
669 
670 	active_tc = timecounter;
671 
672 	/*
673 	 * Make the next timehands a copy of the current one, but do not
674 	 * overwrite the generation or next pointer.  While we update
675 	 * the contents, the generation must be zero.
676 	 */
677 	tho = timehands;
678 	ogen = tho->th_generation;
679 	th = tho->th_next;
680 	th->th_generation = 0;
681 	membar_producer();
682 	memcpy(th, tho, offsetof(struct timehands, th_generation));
683 
684 	/*
685 	 * Capture a timecounter delta on the current timecounter and if
686 	 * changing timecounters, a counter value from the new timecounter.
687 	 * Update the offset fields accordingly.
688 	 */
689 	delta = tc_delta(th);
690 	if (th->th_counter != active_tc)
691 		ncount = active_tc->tc_get_timecount(active_tc);
692 	else
693 		ncount = 0;
694 	th->th_offset_count += delta;
695 	th->th_offset_count &= th->th_counter->tc_counter_mask;
696 	TIMECOUNT_TO_BINTIME(delta, th->th_scale, &bt);
697 	bintimeadd(&th->th_offset, &bt, &th->th_offset);
698 
699 	/*
700 	 * Ignore new offsets that predate the current offset.
701 	 * If changing the offset, first increase the naptime
702 	 * accordingly.
703 	 */
704 	if (new_offset != NULL && bintimecmp(&th->th_offset, new_offset, <)) {
705 		bintimesub(new_offset, &th->th_offset, &bt);
706 		bintimeadd(&th->th_naptime, &bt, &th->th_naptime);
707 		naptime = th->th_naptime.sec;
708 		th->th_offset = *new_offset;
709 	}
710 
711 #ifdef notyet
712 	/*
713 	 * Hardware latching timecounters may not generate interrupts on
714 	 * PPS events, so instead we poll them.  There is a finite risk that
715 	 * the hardware might capture a count which is later than the one we
716 	 * got above, and therefore possibly in the next NTP second which might
717 	 * have a different rate than the current NTP second.  It doesn't
718 	 * matter in practice.
719 	 */
720 	if (tho->th_counter->tc_poll_pps)
721 		tho->th_counter->tc_poll_pps(tho->th_counter);
722 #endif
723 
724 	/*
725 	 * If changing the boot time or clock adjustment, do so before
726 	 * NTP processing.
727 	 */
728 	if (new_boottime != NULL)
729 		th->th_boottime = *new_boottime;
730 	if (new_adjtimedelta != NULL) {
731 		th->th_adjtimedelta = *new_adjtimedelta;
732 		/* Reset the NTP update period. */
733 		bintimesub(&th->th_offset, &th->th_naptime,
734 		    &th->th_next_ntp_update);
735 	}
736 
737 	/*
738 	 * Deal with NTP second processing.  The while-loop normally
739 	 * iterates at most once, but in extreme situations it might
740 	 * keep NTP sane if tc_windup() is not run for several seconds.
741 	 */
742 	bintimesub(&th->th_offset, &th->th_naptime, &bt);
743 	while (bintimecmp(&th->th_next_ntp_update, &bt, <=)) {
744 		ntp_update_second(th);
745 		th->th_next_ntp_update.sec++;
746 	}
747 
748 	/* Update the UTC timestamps used by the get*() functions. */
749 	bintimeadd(&th->th_boottime, &th->th_offset, &bt);
750 	BINTIME_TO_TIMEVAL(&bt, &th->th_microtime);
751 	BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime);
752 
753 	/* Now is a good time to change timecounters. */
754 	if (th->th_counter != active_tc) {
755 		th->th_counter = active_tc;
756 		th->th_offset_count = ncount;
757 	}
758 
759 	/*-
760 	 * Recalculate the scaling factor.  We want the number of 1/2^64
761 	 * fractions of a second per period of the hardware counter, taking
762 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
763 	 * processing provides us with.
764 	 *
765 	 * The th_adjustment is nanoseconds per second with 32 bit binary
766 	 * fraction and we want 64 bit binary fraction of second:
767 	 *
768 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
769 	 *
770 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
771 	 * we can only multiply by about 850 without overflowing, but that
772 	 * leaves suitably precise fractions for multiply before divide.
773 	 *
774 	 * Divide before multiply with a fraction of 2199/512 results in a
775 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
776 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
777  	 *
778 	 * We happily sacrifice the lowest of the 64 bits of our result
779 	 * to the goddess of code clarity.
780 	 *
781 	 */
782 	scale = (u_int64_t)1 << 63;
783 	scale += \
784 	    ((th->th_adjustment + th->th_counter->tc_freq_adj) / 1024) * 2199;
785 	scale /= th->th_counter->tc_frequency;
786 	th->th_scale = scale * 2;
787 
788 	/*
789 	 * Now that the struct timehands is again consistent, set the new
790 	 * generation number, making sure to not make it zero.
791 	 */
792 	if (++ogen == 0)
793 		ogen = 1;
794 	membar_producer();
795 	th->th_generation = ogen;
796 
797 	/* Go live with the new struct timehands. */
798 	time_second = th->th_microtime.tv_sec;
799 	time_uptime = th->th_offset.sec;
800 	membar_producer();
801 	timehands = th;
802 
803 	tc_update_timekeep();
804 }
805 
806 /* Report or change the active timecounter hardware. */
807 int
808 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
809 {
810 	char newname[32];
811 	struct timecounter *newtc, *tc;
812 	int error;
813 
814 	tc = timecounter;
815 	strlcpy(newname, tc->tc_name, sizeof(newname));
816 
817 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
818 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
819 		return (error);
820 	SLIST_FOREACH(newtc, &tc_list, tc_next) {
821 		if (strcmp(newname, newtc->tc_name) != 0)
822 			continue;
823 
824 		/* Warm up new timecounter. */
825 		(void)newtc->tc_get_timecount(newtc);
826 		(void)newtc->tc_get_timecount(newtc);
827 
828 		rw_enter_write(&tc_lock);
829 		timecounter = newtc;
830 		rw_exit_write(&tc_lock);
831 
832 		return (0);
833 	}
834 	return (EINVAL);
835 }
836 
837 /* Report or change the active timecounter hardware. */
838 int
839 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
840 {
841 	char buf[32], *spc, *choices;
842 	struct timecounter *tc;
843 	int error, maxlen;
844 
845 	if (SLIST_EMPTY(&tc_list))
846 		return (sysctl_rdstring(oldp, oldlenp, newp, ""));
847 
848 	spc = "";
849 	maxlen = 0;
850 	SLIST_FOREACH(tc, &tc_list, tc_next)
851 		maxlen += sizeof(buf);
852 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
853 	*choices = '\0';
854 	SLIST_FOREACH(tc, &tc_list, tc_next) {
855 		snprintf(buf, sizeof(buf), "%s%s(%d)",
856 		    spc, tc->tc_name, tc->tc_quality);
857 		spc = " ";
858 		strlcat(choices, buf, maxlen);
859 	}
860 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
861 	free(choices, M_TEMP, maxlen);
862 	return (error);
863 }
864 
865 /*
866  * Timecounters need to be updated every so often to prevent the hardware
867  * counter from overflowing.  Updating also recalculates the cached values
868  * used by the get*() family of functions, so their precision depends on
869  * the update frequency.
870  */
871 static int tc_tick;
872 
873 void
874 tc_ticktock(void)
875 {
876 	static int count;
877 
878 	if (++count < tc_tick)
879 		return;
880 	if (!mtx_enter_try(&windup_mtx))
881 		return;
882 	count = 0;
883 	tc_windup(NULL, NULL, NULL);
884 	mtx_leave(&windup_mtx);
885 }
886 
887 void
888 inittimecounter(void)
889 {
890 #ifdef DEBUG
891 	u_int p;
892 #endif
893 
894 	/*
895 	 * Set the initial timeout to
896 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
897 	 * People should probably not use the sysctl to set the timeout
898 	 * to smaller than its initial value, since that value is the
899 	 * smallest reasonable one.  If they want better timestamps they
900 	 * should use the non-"get"* functions.
901 	 */
902 	if (hz > 1000)
903 		tc_tick = (hz + 500) / 1000;
904 	else
905 		tc_tick = 1;
906 #ifdef DEBUG
907 	p = (tc_tick * 1000000) / hz;
908 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
909 #endif
910 
911 	/* warm up new timecounter (again) and get rolling. */
912 	(void)timecounter->tc_get_timecount(timecounter);
913 	(void)timecounter->tc_get_timecount(timecounter);
914 }
915 
916 const struct sysctl_bounded_args tc_vars[] = {
917 	{ KERN_TIMECOUNTER_TICK, &tc_tick, SYSCTL_INT_READONLY },
918 	{ KERN_TIMECOUNTER_TIMESTEPWARNINGS, &timestepwarnings, 0, 1 },
919 };
920 
921 /*
922  * Return timecounter-related information.
923  */
924 int
925 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
926     void *newp, size_t newlen)
927 {
928 	if (namelen != 1)
929 		return (ENOTDIR);
930 
931 	switch (name[0]) {
932 	case KERN_TIMECOUNTER_HARDWARE:
933 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
934 	case KERN_TIMECOUNTER_CHOICE:
935 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
936 	default:
937 		return (sysctl_bounded_arr(tc_vars, nitems(tc_vars), name,
938 		    namelen, oldp, oldlenp, newp, newlen));
939 	}
940 	/* NOTREACHED */
941 }
942 
943 /*
944  * Skew the timehands according to any adjtime(2) adjustment.
945  */
946 void
947 ntp_update_second(struct timehands *th)
948 {
949 	int64_t adj;
950 
951 	MUTEX_ASSERT_LOCKED(&windup_mtx);
952 
953 	if (th->th_adjtimedelta > 0)
954 		adj = MIN(5000, th->th_adjtimedelta);
955 	else
956 		adj = MAX(-5000, th->th_adjtimedelta);
957 	th->th_adjtimedelta -= adj;
958 	th->th_adjustment = (adj * 1000) << 32;
959 }
960 
961 void
962 tc_adjfreq(int64_t *old, int64_t *new)
963 {
964 	if (old != NULL) {
965 		rw_assert_anylock(&tc_lock);
966 		*old = timecounter->tc_freq_adj;
967 	}
968 	if (new != NULL) {
969 		rw_assert_wrlock(&tc_lock);
970 		mtx_enter(&windup_mtx);
971 		timecounter->tc_freq_adj = *new;
972 		tc_windup(NULL, NULL, NULL);
973 		mtx_leave(&windup_mtx);
974 	}
975 }
976 
977 void
978 tc_adjtime(int64_t *old, int64_t *new)
979 {
980 	struct timehands *th;
981 	u_int gen;
982 
983 	if (old != NULL) {
984 		do {
985 			th = timehands;
986 			gen = th->th_generation;
987 			membar_consumer();
988 			*old = th->th_adjtimedelta;
989 			membar_consumer();
990 		} while (gen == 0 || gen != th->th_generation);
991 	}
992 	if (new != NULL) {
993 		rw_assert_wrlock(&tc_lock);
994 		mtx_enter(&windup_mtx);
995 		tc_windup(NULL, NULL, new);
996 		mtx_leave(&windup_mtx);
997 	}
998 }
999