xref: /openbsd-src/sys/kern/kern_tc.c (revision 1c733b92bb4dc807333a5780ab36f50df04fe341)
1 /*	$OpenBSD: kern_tc.c,v 1.52 2019/12/02 02:24:29 cheloha Exp $ */
2 
3 /*
4  * Copyright (c) 2000 Poul-Henning Kamp <phk@FreeBSD.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * If we meet some day, and you think this stuff is worth it, you
21  * can buy me a beer in return. Poul-Henning Kamp
22  */
23 
24 #include <sys/param.h>
25 #include <sys/atomic.h>
26 #include <sys/kernel.h>
27 #include <sys/mutex.h>
28 #include <sys/rwlock.h>
29 #include <sys/stdint.h>
30 #include <sys/timeout.h>
31 #include <sys/sysctl.h>
32 #include <sys/syslog.h>
33 #include <sys/systm.h>
34 #include <sys/timetc.h>
35 #include <sys/queue.h>
36 #include <sys/malloc.h>
37 #include <dev/rndvar.h>
38 
39 /*
40  * A large step happens on boot.  This constant detects such steps.
41  * It is relatively small so that ntp_update_second gets called enough
42  * in the typical 'missed a couple of seconds' case, but doesn't loop
43  * forever when the time step is large.
44  */
45 #define LARGE_STEP	200
46 
47 u_int dummy_get_timecount(struct timecounter *);
48 
49 int sysctl_tc_hardware(void *, size_t *, void *, size_t);
50 int sysctl_tc_choice(void *, size_t *, void *, size_t);
51 
52 /*
53  * Implement a dummy timecounter which we can use until we get a real one
54  * in the air.  This allows the console and other early stuff to use
55  * time services.
56  */
57 
58 u_int
59 dummy_get_timecount(struct timecounter *tc)
60 {
61 	static u_int now;
62 
63 	return (++now);
64 }
65 
66 static struct timecounter dummy_timecounter = {
67 	dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
68 };
69 
70 /*
71  * Locks used to protect struct members, global variables in this file:
72  *	I	immutable after initialization
73  *	t	tc_lock
74  *	w	windup_mtx
75  */
76 
77 struct timehands {
78 	/* These fields must be initialized by the driver. */
79 	struct timecounter	*th_counter;		/* [w] */
80 	int64_t			th_adjtimedelta;	/* [tw] */
81 	int64_t			th_adjustment;		/* [w] */
82 	u_int64_t		th_scale;		/* [w] */
83 	u_int	 		th_offset_count;	/* [w] */
84 	struct bintime		th_boottime;		/* [tw] */
85 	struct bintime		th_offset;		/* [w] */
86 	struct timeval		th_microtime;		/* [w] */
87 	struct timespec		th_nanotime;		/* [w] */
88 	/* Fields not to be copied in tc_windup start with th_generation. */
89 	volatile u_int		th_generation;		/* [w] */
90 	struct timehands	*th_next;		/* [I] */
91 };
92 
93 static struct timehands th0;
94 static struct timehands th1 = {
95 	.th_next = &th0
96 };
97 static struct timehands th0 = {
98 	.th_counter = &dummy_timecounter,
99 	.th_scale = UINT64_MAX / 1000000,
100 	.th_offset = { .sec = 1, .frac = 0 },
101 	.th_generation = 1,
102 	.th_next = &th1
103 };
104 
105 struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock");
106 
107 /*
108  * tc_windup() must be called before leaving this mutex.
109  */
110 struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK);
111 
112 static struct timehands *volatile timehands = &th0;		/* [w] */
113 struct timecounter *timecounter = &dummy_timecounter;		/* [t] */
114 static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list);
115 
116 volatile time_t time_second = 1;
117 volatile time_t time_uptime = 0;
118 
119 struct bintime naptime;
120 static int timestepwarnings;
121 
122 void ntp_update_second(struct timehands *);
123 void tc_windup(struct bintime *, struct bintime *, int64_t *);
124 
125 /*
126  * Return the difference between the timehands' counter value now and what
127  * was when we copied it to the timehands' offset_count.
128  */
129 static __inline u_int
130 tc_delta(struct timehands *th)
131 {
132 	struct timecounter *tc;
133 
134 	tc = th->th_counter;
135 	return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
136 	    tc->tc_counter_mask);
137 }
138 
139 /*
140  * Functions for reading the time.  We have to loop until we are sure that
141  * the timehands that we operated on was not updated under our feet.  See
142  * the comment in <sys/time.h> for a description of these functions.
143  */
144 
145 void
146 binboottime(struct bintime *bt)
147 {
148 	struct timehands *th;
149 	u_int gen;
150 
151 	do {
152 		th = timehands;
153 		gen = th->th_generation;
154 		membar_consumer();
155 		*bt = th->th_boottime;
156 		membar_consumer();
157 	} while (gen == 0 || gen != th->th_generation);
158 }
159 
160 void
161 microboottime(struct timeval *tvp)
162 {
163 	struct bintime bt;
164 
165 	binboottime(&bt);
166 	BINTIME_TO_TIMEVAL(&bt, tvp);
167 }
168 
169 void
170 nanoboottime(struct timespec *tsp)
171 {
172 	struct bintime bt;
173 
174 	binboottime(&bt);
175 	BINTIME_TO_TIMESPEC(&bt, tsp);
176 }
177 
178 void
179 binuptime(struct bintime *bt)
180 {
181 	struct timehands *th;
182 	u_int gen;
183 
184 	do {
185 		th = timehands;
186 		gen = th->th_generation;
187 		membar_consumer();
188 		*bt = th->th_offset;
189 		bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt);
190 		membar_consumer();
191 	} while (gen == 0 || gen != th->th_generation);
192 }
193 
194 void
195 nanouptime(struct timespec *tsp)
196 {
197 	struct bintime bt;
198 
199 	binuptime(&bt);
200 	BINTIME_TO_TIMESPEC(&bt, tsp);
201 }
202 
203 void
204 microuptime(struct timeval *tvp)
205 {
206 	struct bintime bt;
207 
208 	binuptime(&bt);
209 	BINTIME_TO_TIMEVAL(&bt, tvp);
210 }
211 
212 void
213 bintime(struct bintime *bt)
214 {
215 	struct timehands *th;
216 	u_int gen;
217 
218 	do {
219 		th = timehands;
220 		gen = th->th_generation;
221 		membar_consumer();
222 		*bt = th->th_offset;
223 		bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt);
224 		bintimeadd(bt, &th->th_boottime, bt);
225 		membar_consumer();
226 	} while (gen == 0 || gen != th->th_generation);
227 }
228 
229 void
230 nanotime(struct timespec *tsp)
231 {
232 	struct bintime bt;
233 
234 	bintime(&bt);
235 	BINTIME_TO_TIMESPEC(&bt, tsp);
236 }
237 
238 void
239 microtime(struct timeval *tvp)
240 {
241 	struct bintime bt;
242 
243 	bintime(&bt);
244 	BINTIME_TO_TIMEVAL(&bt, tvp);
245 }
246 
247 void
248 getnanouptime(struct timespec *tsp)
249 {
250 	struct timehands *th;
251 	u_int gen;
252 
253 	do {
254 		th = timehands;
255 		gen = th->th_generation;
256 		membar_consumer();
257 		BINTIME_TO_TIMESPEC(&th->th_offset, tsp);
258 		membar_consumer();
259 	} while (gen == 0 || gen != th->th_generation);
260 }
261 
262 void
263 getmicrouptime(struct timeval *tvp)
264 {
265 	struct timehands *th;
266 	u_int gen;
267 
268 	do {
269 		th = timehands;
270 		gen = th->th_generation;
271 		membar_consumer();
272 		BINTIME_TO_TIMEVAL(&th->th_offset, tvp);
273 		membar_consumer();
274 	} while (gen == 0 || gen != th->th_generation);
275 }
276 
277 void
278 getnanotime(struct timespec *tsp)
279 {
280 	struct timehands *th;
281 	u_int gen;
282 
283 	do {
284 		th = timehands;
285 		gen = th->th_generation;
286 		membar_consumer();
287 		*tsp = th->th_nanotime;
288 		membar_consumer();
289 	} while (gen == 0 || gen != th->th_generation);
290 }
291 
292 void
293 getmicrotime(struct timeval *tvp)
294 {
295 	struct timehands *th;
296 	u_int gen;
297 
298 	do {
299 		th = timehands;
300 		gen = th->th_generation;
301 		membar_consumer();
302 		*tvp = th->th_microtime;
303 		membar_consumer();
304 	} while (gen == 0 || gen != th->th_generation);
305 }
306 
307 /*
308  * Initialize a new timecounter and possibly use it.
309  */
310 void
311 tc_init(struct timecounter *tc)
312 {
313 	u_int64_t tmp;
314 	u_int u;
315 
316 	u = tc->tc_frequency / tc->tc_counter_mask;
317 	/* XXX: We need some margin here, 10% is a guess */
318 	u *= 11;
319 	u /= 10;
320 	if (tc->tc_quality >= 0) {
321 		if (u > hz) {
322 			tc->tc_quality = -2000;
323 			printf("Timecounter \"%s\" frequency %lu Hz",
324 			    tc->tc_name, (unsigned long)tc->tc_frequency);
325 			printf(" -- Insufficient hz, needs at least %u\n", u);
326 		}
327 	}
328 
329 	/* Determine the counter's precision. */
330 	for (tmp = 1; (tmp & tc->tc_counter_mask) == 0; tmp <<= 1)
331 		continue;
332 	tc->tc_precision = tmp;
333 
334 	SLIST_INSERT_HEAD(&tc_list, tc, tc_next);
335 
336 	/*
337 	 * Never automatically use a timecounter with negative quality.
338 	 * Even though we run on the dummy counter, switching here may be
339 	 * worse since this timecounter may not be monotonic.
340 	 */
341 	if (tc->tc_quality < 0)
342 		return;
343 	if (tc->tc_quality < timecounter->tc_quality)
344 		return;
345 	if (tc->tc_quality == timecounter->tc_quality &&
346 	    tc->tc_frequency < timecounter->tc_frequency)
347 		return;
348 	(void)tc->tc_get_timecount(tc);
349 	enqueue_randomness(tc->tc_get_timecount(tc));
350 
351 	timecounter = tc;
352 }
353 
354 /* Report the frequency of the current timecounter. */
355 u_int64_t
356 tc_getfrequency(void)
357 {
358 	return (timehands->th_counter->tc_frequency);
359 }
360 
361 /* Report the precision of the current timecounter. */
362 u_int64_t
363 tc_getprecision(void)
364 {
365 	return (timehands->th_counter->tc_precision);
366 }
367 
368 /*
369  * Step our concept of UTC, aka the realtime clock.
370  * This is done by modifying our estimate of when we booted.
371  *
372  * Any ongoing adjustment is meaningless after a clock jump,
373  * so we zero adjtimedelta here as well.
374  */
375 void
376 tc_setrealtimeclock(const struct timespec *ts)
377 {
378 	struct timespec ts2;
379 	struct bintime bt, bt2;
380 	int64_t zero = 0;
381 
382 	rw_enter_write(&tc_lock);
383 	mtx_enter(&windup_mtx);
384 	binuptime(&bt2);
385 	TIMESPEC_TO_BINTIME(ts, &bt);
386 	bintimesub(&bt, &bt2, &bt);
387 	bintimeadd(&bt2, &timehands->th_boottime, &bt2);
388 
389 	/* XXX fiddle all the little crinkly bits around the fiords... */
390 	tc_windup(&bt, NULL, &zero);
391 	mtx_leave(&windup_mtx);
392 	rw_exit_write(&tc_lock);
393 
394 	enqueue_randomness(ts->tv_sec);
395 
396 	if (timestepwarnings) {
397 		BINTIME_TO_TIMESPEC(&bt2, &ts2);
398 		log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n",
399 		    (long long)ts2.tv_sec, ts2.tv_nsec,
400 		    (long long)ts->tv_sec, ts->tv_nsec);
401 	}
402 }
403 
404 /*
405  * Step the monotonic and realtime clocks, triggering any timeouts that
406  * should have occurred across the interval.
407  */
408 void
409 tc_setclock(const struct timespec *ts)
410 {
411 	struct bintime bt, bt2;
412 	struct timespec earlier;
413 	static int first = 1;
414 	int rewind = 0;
415 #ifndef SMALL_KERNEL
416 	long long adj_ticks;
417 #endif
418 
419 	/*
420 	 * When we're called for the first time, during boot when
421 	 * the root partition is mounted, we need to set boottime.
422 	 */
423 	if (first) {
424 		tc_setrealtimeclock(ts);
425 		first = 0;
426 		return;
427 	}
428 
429 	enqueue_randomness(ts->tv_sec);
430 
431 	mtx_enter(&windup_mtx);
432 	TIMESPEC_TO_BINTIME(ts, &bt);
433 	bintimesub(&bt, &timehands->th_boottime, &bt);
434 
435 	/*
436 	 * Don't rewind the offset.
437 	 */
438 	if (bintimecmp(&bt, &timehands->th_offset, <))
439 		rewind = 1;
440 
441 	bt2 = timehands->th_offset;
442 
443 	/* XXX fiddle all the little crinkly bits around the fiords... */
444 	tc_windup(NULL, rewind ? NULL : &bt, NULL);
445 	mtx_leave(&windup_mtx);
446 
447 	if (rewind) {
448 		BINTIME_TO_TIMESPEC(&bt, &earlier);
449 		printf("%s: cannot rewind uptime to %lld.%09ld\n",
450 		    __func__, (long long)earlier.tv_sec, earlier.tv_nsec);
451 		return;
452 	}
453 
454 #ifndef SMALL_KERNEL
455 	/* convert the bintime to ticks */
456 	bintimesub(&bt, &bt2, &bt);
457 	bintimeadd(&naptime, &bt, &naptime);
458 	adj_ticks = (uint64_t)hz * bt.sec +
459 	    (((uint64_t)1000000 * (uint32_t)(bt.frac >> 32)) >> 32) / tick;
460 	if (adj_ticks > 0) {
461 		if (adj_ticks > INT_MAX)
462 			adj_ticks = INT_MAX;
463 		ticks += adj_ticks;
464 	}
465 #endif
466 }
467 
468 /*
469  * Initialize the next struct timehands in the ring and make
470  * it the active timehands.  Along the way we might switch to a different
471  * timecounter and/or do seconds processing in NTP.  Slightly magic.
472  */
473 void
474 tc_windup(struct bintime *new_boottime, struct bintime *new_offset,
475     int64_t *new_adjtimedelta)
476 {
477 	struct bintime bt;
478 	struct timecounter *active_tc;
479 	struct timehands *th, *tho;
480 	int64_t counter_adjustment;
481 	u_int64_t scale;
482 	u_int delta, ncount, ogen;
483 	int i;
484 
485 	if (new_boottime != NULL || new_adjtimedelta != NULL)
486 		rw_assert_wrlock(&tc_lock);
487 	MUTEX_ASSERT_LOCKED(&windup_mtx);
488 
489 	active_tc = timecounter;
490 
491 	/*
492 	 * Make the next timehands a copy of the current one, but do not
493 	 * overwrite the generation or next pointer.  While we update
494 	 * the contents, the generation must be zero.
495 	 */
496 	tho = timehands;
497 	th = tho->th_next;
498 	ogen = th->th_generation;
499 	th->th_generation = 0;
500 	membar_producer();
501 	memcpy(th, tho, offsetof(struct timehands, th_generation));
502 
503 	/*
504 	 * If changing the boot offset, do so before updating the
505 	 * offset fields.
506 	 */
507 	if (new_offset != NULL)
508 		th->th_offset = *new_offset;
509 
510 	/*
511 	 * Capture a timecounter delta on the current timecounter and if
512 	 * changing timecounters, a counter value from the new timecounter.
513 	 * Update the offset fields accordingly.
514 	 */
515 	delta = tc_delta(th);
516 	if (th->th_counter != active_tc)
517 		ncount = active_tc->tc_get_timecount(active_tc);
518 	else
519 		ncount = 0;
520 	th->th_offset_count += delta;
521 	th->th_offset_count &= th->th_counter->tc_counter_mask;
522 	bintimeaddfrac(&th->th_offset, th->th_scale * delta, &th->th_offset);
523 
524 #ifdef notyet
525 	/*
526 	 * Hardware latching timecounters may not generate interrupts on
527 	 * PPS events, so instead we poll them.  There is a finite risk that
528 	 * the hardware might capture a count which is later than the one we
529 	 * got above, and therefore possibly in the next NTP second which might
530 	 * have a different rate than the current NTP second.  It doesn't
531 	 * matter in practice.
532 	 */
533 	if (tho->th_counter->tc_poll_pps)
534 		tho->th_counter->tc_poll_pps(tho->th_counter);
535 #endif
536 
537 	/*
538 	 * If changing the boot time or clock adjustment, do so before
539 	 * NTP processing.
540 	 */
541 	if (new_boottime != NULL)
542 		th->th_boottime = *new_boottime;
543 	if (new_adjtimedelta != NULL)
544 		th->th_adjtimedelta = *new_adjtimedelta;
545 
546 	/*
547 	 * Deal with NTP second processing.  The for loop normally
548 	 * iterates at most once, but in extreme situations it might
549 	 * keep NTP sane if timeouts are not run for several seconds.
550 	 * At boot, the time step can be large when the TOD hardware
551 	 * has been read, so on really large steps, we call
552 	 * ntp_update_second only twice.  We need to call it twice in
553 	 * case we missed a leap second.
554 	 */
555 	bt = th->th_offset;
556 	bintimeadd(&bt, &th->th_boottime, &bt);
557 	i = bt.sec - tho->th_microtime.tv_sec;
558 	if (i > LARGE_STEP)
559 		i = 2;
560 	for (; i > 0; i--)
561 		ntp_update_second(th);
562 
563 	/* Update the UTC timestamps used by the get*() functions. */
564 	/* XXX shouldn't do this here.  Should force non-`get' versions. */
565 	BINTIME_TO_TIMEVAL(&bt, &th->th_microtime);
566 	BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime);
567 
568 	/* Now is a good time to change timecounters. */
569 	if (th->th_counter != active_tc) {
570 		th->th_counter = active_tc;
571 		th->th_offset_count = ncount;
572 	}
573 
574 	/*-
575 	 * Recalculate the scaling factor.  We want the number of 1/2^64
576 	 * fractions of a second per period of the hardware counter, taking
577 	 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
578 	 * processing provides us with.
579 	 *
580 	 * The th_adjustment is nanoseconds per second with 32 bit binary
581 	 * fraction and we want 64 bit binary fraction of second:
582 	 *
583 	 *	 x = a * 2^32 / 10^9 = a * 4.294967296
584 	 *
585 	 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
586 	 * we can only multiply by about 850 without overflowing, but that
587 	 * leaves suitably precise fractions for multiply before divide.
588 	 *
589 	 * Divide before multiply with a fraction of 2199/512 results in a
590 	 * systematic undercompensation of 10PPM of th_adjustment.  On a
591 	 * 5000PPM adjustment this is a 0.05PPM error.  This is acceptable.
592  	 *
593 	 * We happily sacrifice the lowest of the 64 bits of our result
594 	 * to the goddess of code clarity.
595 	 *
596 	 */
597 	scale = (u_int64_t)1 << 63;
598 	counter_adjustment = th->th_counter->tc_freq_adj;
599 	scale += ((th->th_adjustment + counter_adjustment) / 1024) * 2199;
600 	scale /= th->th_counter->tc_frequency;
601 	th->th_scale = scale * 2;
602 
603 	/*
604 	 * Now that the struct timehands is again consistent, set the new
605 	 * generation number, making sure to not make it zero.
606 	 */
607 	if (++ogen == 0)
608 		ogen = 1;
609 	membar_producer();
610 	th->th_generation = ogen;
611 
612 	/* Go live with the new struct timehands. */
613 	time_second = th->th_microtime.tv_sec;
614 	time_uptime = th->th_offset.sec;
615 	membar_producer();
616 	timehands = th;
617 }
618 
619 /* Report or change the active timecounter hardware. */
620 int
621 sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
622 {
623 	char newname[32];
624 	struct timecounter *newtc, *tc;
625 	int error;
626 
627 	tc = timecounter;
628 	strlcpy(newname, tc->tc_name, sizeof(newname));
629 
630 	error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname));
631 	if (error != 0 || strcmp(newname, tc->tc_name) == 0)
632 		return (error);
633 	SLIST_FOREACH(newtc, &tc_list, tc_next) {
634 		if (strcmp(newname, newtc->tc_name) != 0)
635 			continue;
636 
637 		/* Warm up new timecounter. */
638 		(void)newtc->tc_get_timecount(newtc);
639 		(void)newtc->tc_get_timecount(newtc);
640 
641 		rw_enter_write(&tc_lock);
642 		timecounter = newtc;
643 		rw_exit_write(&tc_lock);
644 
645 		return (0);
646 	}
647 	return (EINVAL);
648 }
649 
650 /* Report or change the active timecounter hardware. */
651 int
652 sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
653 {
654 	char buf[32], *spc, *choices;
655 	struct timecounter *tc;
656 	int error, maxlen;
657 
658 	if (SLIST_EMPTY(&tc_list))
659 		return (sysctl_rdstring(oldp, oldlenp, newp, ""));
660 
661 	spc = "";
662 	maxlen = 0;
663 	SLIST_FOREACH(tc, &tc_list, tc_next)
664 		maxlen += sizeof(buf);
665 	choices = malloc(maxlen, M_TEMP, M_WAITOK);
666 	*choices = '\0';
667 	SLIST_FOREACH(tc, &tc_list, tc_next) {
668 		snprintf(buf, sizeof(buf), "%s%s(%d)",
669 		    spc, tc->tc_name, tc->tc_quality);
670 		spc = " ";
671 		strlcat(choices, buf, maxlen);
672 	}
673 	error = sysctl_rdstring(oldp, oldlenp, newp, choices);
674 	free(choices, M_TEMP, maxlen);
675 	return (error);
676 }
677 
678 /*
679  * Timecounters need to be updated every so often to prevent the hardware
680  * counter from overflowing.  Updating also recalculates the cached values
681  * used by the get*() family of functions, so their precision depends on
682  * the update frequency.
683  */
684 static int tc_tick;
685 
686 void
687 tc_ticktock(void)
688 {
689 	static int count;
690 
691 	if (++count < tc_tick)
692 		return;
693 	if (!mtx_enter_try(&windup_mtx))
694 		return;
695 	count = 0;
696 	tc_windup(NULL, NULL, NULL);
697 	mtx_leave(&windup_mtx);
698 }
699 
700 void
701 inittimecounter(void)
702 {
703 #ifdef DEBUG
704 	u_int p;
705 #endif
706 
707 	/*
708 	 * Set the initial timeout to
709 	 * max(1, <approx. number of hardclock ticks in a millisecond>).
710 	 * People should probably not use the sysctl to set the timeout
711 	 * to smaller than its initial value, since that value is the
712 	 * smallest reasonable one.  If they want better timestamps they
713 	 * should use the non-"get"* functions.
714 	 */
715 	if (hz > 1000)
716 		tc_tick = (hz + 500) / 1000;
717 	else
718 		tc_tick = 1;
719 #ifdef DEBUG
720 	p = (tc_tick * 1000000) / hz;
721 	printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
722 #endif
723 
724 	/* warm up new timecounter (again) and get rolling. */
725 	(void)timecounter->tc_get_timecount(timecounter);
726 	(void)timecounter->tc_get_timecount(timecounter);
727 }
728 
729 /*
730  * Return timecounter-related information.
731  */
732 int
733 sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp,
734     void *newp, size_t newlen)
735 {
736 	if (namelen != 1)
737 		return (ENOTDIR);
738 
739 	switch (name[0]) {
740 	case KERN_TIMECOUNTER_TICK:
741 		return (sysctl_rdint(oldp, oldlenp, newp, tc_tick));
742 	case KERN_TIMECOUNTER_TIMESTEPWARNINGS:
743 		return (sysctl_int(oldp, oldlenp, newp, newlen,
744 		    &timestepwarnings));
745 	case KERN_TIMECOUNTER_HARDWARE:
746 		return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen));
747 	case KERN_TIMECOUNTER_CHOICE:
748 		return (sysctl_tc_choice(oldp, oldlenp, newp, newlen));
749 	default:
750 		return (EOPNOTSUPP);
751 	}
752 	/* NOTREACHED */
753 }
754 
755 /*
756  * Skew the timehands according to any adjtime(2) adjustment.
757  */
758 void
759 ntp_update_second(struct timehands *th)
760 {
761 	int64_t adj;
762 
763 	MUTEX_ASSERT_LOCKED(&windup_mtx);
764 
765 	if (th->th_adjtimedelta > 0)
766 		adj = MIN(5000, th->th_adjtimedelta);
767 	else
768 		adj = MAX(-5000, th->th_adjtimedelta);
769 	th->th_adjtimedelta -= adj;
770 	th->th_adjustment = (adj * 1000) << 32;
771 }
772 
773 void
774 tc_adjfreq(int64_t *old, int64_t *new)
775 {
776 	if (old != NULL) {
777 		rw_assert_anylock(&tc_lock);
778 		*old = timecounter->tc_freq_adj;
779 	}
780 	if (new != NULL) {
781 		rw_assert_wrlock(&tc_lock);
782 		mtx_enter(&windup_mtx);
783 		timecounter->tc_freq_adj = *new;
784 		tc_windup(NULL, NULL, NULL);
785 		mtx_leave(&windup_mtx);
786 	}
787 }
788 
789 void
790 tc_adjtime(int64_t *old, int64_t *new)
791 {
792 	struct timehands *th;
793 	u_int gen;
794 
795 	if (old != NULL) {
796 		do {
797 			th = timehands;
798 			gen = th->th_generation;
799 			membar_consumer();
800 			*old = th->th_adjtimedelta;
801 			membar_consumer();
802 		} while (gen == 0 || gen != th->th_generation);
803 	}
804 	if (new != NULL) {
805 		rw_assert_wrlock(&tc_lock);
806 		mtx_enter(&windup_mtx);
807 		tc_windup(NULL, NULL, new);
808 		mtx_leave(&windup_mtx);
809 	}
810 }
811