xref: /openbsd-src/sys/kern/kern_sysctl.c (revision f6aab3d83b51b91c24247ad2c2573574de475a82)
1 /*	$OpenBSD: kern_sysctl.c,v 1.420 2023/10/01 15:58:12 krw Exp $	*/
2 /*	$NetBSD: kern_sysctl.c,v 1.17 1996/05/20 17:49:05 mrg Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Mike Karels at Berkeley Software Design, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_sysctl.c	8.4 (Berkeley) 4/14/94
36  */
37 
38 /*
39  * sysctl system call.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/vnode.h>
54 #include <sys/unistd.h>
55 #include <sys/buf.h>
56 #include <sys/clockintr.h>
57 #include <sys/tty.h>
58 #include <sys/disklabel.h>
59 #include <sys/disk.h>
60 #include <sys/sysctl.h>
61 #include <sys/msgbuf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/namei.h>
64 #include <sys/exec.h>
65 #include <sys/mbuf.h>
66 #include <sys/percpu.h>
67 #include <sys/sensors.h>
68 #include <sys/pipe.h>
69 #include <sys/eventvar.h>
70 #include <sys/socketvar.h>
71 #include <sys/socket.h>
72 #include <sys/domain.h>
73 #include <sys/protosw.h>
74 #include <sys/pledge.h>
75 #include <sys/timetc.h>
76 #include <sys/evcount.h>
77 #include <sys/un.h>
78 #include <sys/unpcb.h>
79 #include <sys/sched.h>
80 #include <sys/mount.h>
81 #include <sys/syscallargs.h>
82 #include <sys/wait.h>
83 #include <sys/witness.h>
84 
85 #include <uvm/uvm_extern.h>
86 
87 #include <dev/cons.h>
88 
89 #include <dev/usb/ucomvar.h>
90 
91 #include <net/route.h>
92 #include <netinet/in.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/ip6.h>
97 #include <netinet/tcp.h>
98 #include <netinet/tcp_timer.h>
99 #include <netinet/tcp_var.h>
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102 #include <netinet6/ip6_var.h>
103 
104 #ifdef DDB
105 #include <ddb/db_var.h>
106 #endif
107 
108 #ifdef SYSVMSG
109 #include <sys/msg.h>
110 #endif
111 #ifdef SYSVSEM
112 #include <sys/sem.h>
113 #endif
114 #ifdef SYSVSHM
115 #include <sys/shm.h>
116 #endif
117 
118 #include "audio.h"
119 #include "dt.h"
120 #include "pf.h"
121 #include "ucom.h"
122 #include "video.h"
123 
124 extern struct forkstat forkstat;
125 extern struct nchstats nchstats;
126 extern int fscale;
127 extern fixpt_t ccpu;
128 extern long numvnodes;
129 extern int allowdt;
130 extern int audio_record_enable;
131 extern int video_record_enable;
132 extern int autoconf_serial;
133 
134 int allowkmem;
135 
136 int sysctl_diskinit(int, struct proc *);
137 int sysctl_proc_args(int *, u_int, void *, size_t *, struct proc *);
138 int sysctl_proc_cwd(int *, u_int, void *, size_t *, struct proc *);
139 int sysctl_proc_nobroadcastkill(int *, u_int, void *, size_t, void *, size_t *,
140 	struct proc *);
141 int sysctl_proc_vmmap(int *, u_int, void *, size_t *, struct proc *);
142 int sysctl_intrcnt(int *, u_int, void *, size_t *);
143 int sysctl_sensors(int *, u_int, void *, size_t *, void *, size_t);
144 int sysctl_cptime2(int *, u_int, void *, size_t *, void *, size_t);
145 int sysctl_audio(int *, u_int, void *, size_t *, void *, size_t);
146 int sysctl_video(int *, u_int, void *, size_t *, void *, size_t);
147 int sysctl_cpustats(int *, u_int, void *, size_t *, void *, size_t);
148 int sysctl_utc_offset(void *, size_t *, void *, size_t);
149 int sysctl_hwbattery(int *, u_int, void *, size_t *, void *, size_t);
150 
151 void fill_file(struct kinfo_file *, struct file *, struct filedesc *, int,
152     struct vnode *, struct process *, struct proc *, struct socket *, int);
153 void fill_kproc(struct process *, struct kinfo_proc *, struct proc *, int);
154 
155 int (*cpu_cpuspeed)(int *);
156 
157 /*
158  * Lock to avoid too many processes vslocking a large amount of memory
159  * at the same time.
160  */
161 struct rwlock sysctl_lock = RWLOCK_INITIALIZER("sysctllk");
162 struct rwlock sysctl_disklock = RWLOCK_INITIALIZER("sysctldlk");
163 
164 int
165 sys_sysctl(struct proc *p, void *v, register_t *retval)
166 {
167 	struct sys_sysctl_args /* {
168 		syscallarg(const int *) name;
169 		syscallarg(u_int) namelen;
170 		syscallarg(void *) old;
171 		syscallarg(size_t *) oldlenp;
172 		syscallarg(void *) new;
173 		syscallarg(size_t) newlen;
174 	} */ *uap = v;
175 	int error, dolock = 1;
176 	size_t savelen = 0, oldlen = 0;
177 	sysctlfn *fn;
178 	int name[CTL_MAXNAME];
179 
180 	if (SCARG(uap, new) != NULL &&
181 	    (error = suser(p)))
182 		return (error);
183 	/*
184 	 * all top-level sysctl names are non-terminal
185 	 */
186 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
187 		return (EINVAL);
188 	error = copyin(SCARG(uap, name), name,
189 		       SCARG(uap, namelen) * sizeof(int));
190 	if (error)
191 		return (error);
192 
193 	error = pledge_sysctl(p, SCARG(uap, namelen),
194 	    name, SCARG(uap, new));
195 	if (error)
196 		return (error);
197 
198 	switch (name[0]) {
199 	case CTL_KERN:
200 		fn = kern_sysctl;
201 		break;
202 	case CTL_HW:
203 		fn = hw_sysctl;
204 		break;
205 	case CTL_VM:
206 		fn = uvm_sysctl;
207 		break;
208 	case CTL_NET:
209 		fn = net_sysctl;
210 		break;
211 	case CTL_FS:
212 		fn = fs_sysctl;
213 		break;
214 	case CTL_VFS:
215 		fn = vfs_sysctl;
216 		break;
217 	case CTL_MACHDEP:
218 		fn = cpu_sysctl;
219 		break;
220 #ifdef DEBUG_SYSCTL
221 	case CTL_DEBUG:
222 		fn = debug_sysctl;
223 		break;
224 #endif
225 #ifdef DDB
226 	case CTL_DDB:
227 		fn = ddb_sysctl;
228 		break;
229 #endif
230 	default:
231 		return (EOPNOTSUPP);
232 	}
233 
234 	if (SCARG(uap, oldlenp) &&
235 	    (error = copyin(SCARG(uap, oldlenp), &oldlen, sizeof(oldlen))))
236 		return (error);
237 	if (SCARG(uap, old) != NULL) {
238 		if ((error = rw_enter(&sysctl_lock, RW_WRITE|RW_INTR)) != 0)
239 			return (error);
240 		if (dolock) {
241 			if (atop(oldlen) > uvmexp.wiredmax - uvmexp.wired) {
242 				rw_exit_write(&sysctl_lock);
243 				return (ENOMEM);
244 			}
245 			error = uvm_vslock(p, SCARG(uap, old), oldlen,
246 			    PROT_READ | PROT_WRITE);
247 			if (error) {
248 				rw_exit_write(&sysctl_lock);
249 				return (error);
250 			}
251 		}
252 		savelen = oldlen;
253 	}
254 	error = (*fn)(&name[1], SCARG(uap, namelen) - 1, SCARG(uap, old),
255 	    &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
256 	if (SCARG(uap, old) != NULL) {
257 		if (dolock)
258 			uvm_vsunlock(p, SCARG(uap, old), savelen);
259 		rw_exit_write(&sysctl_lock);
260 	}
261 	if (error)
262 		return (error);
263 	if (SCARG(uap, oldlenp))
264 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
265 	return (error);
266 }
267 
268 /*
269  * Attributes stored in the kernel.
270  */
271 char hostname[MAXHOSTNAMELEN];
272 int hostnamelen;
273 char domainname[MAXHOSTNAMELEN];
274 int domainnamelen;
275 long hostid;
276 char *disknames = NULL;
277 size_t disknameslen;
278 struct diskstats *diskstats = NULL;
279 size_t diskstatslen;
280 int securelevel;
281 
282 /* morally const values reported by sysctl_bounded_arr */
283 static int arg_max = ARG_MAX;
284 static int openbsd = OpenBSD;
285 static int posix_version = _POSIX_VERSION;
286 static int ngroups_max = NGROUPS_MAX;
287 static int int_zero = 0;
288 static int int_one = 1;
289 static int maxpartitions = MAXPARTITIONS;
290 static int raw_part = RAW_PART;
291 
292 extern int somaxconn, sominconn;
293 extern int nosuidcoredump;
294 extern int maxlocksperuid;
295 extern int uvm_wxabort;
296 extern int global_ptrace;
297 
298 const struct sysctl_bounded_args kern_vars[] = {
299 	{KERN_OSREV, &openbsd, SYSCTL_INT_READONLY},
300 	{KERN_MAXVNODES, &maxvnodes, 0, INT_MAX},
301 	{KERN_MAXPROC, &maxprocess, 0, INT_MAX},
302 	{KERN_MAXFILES, &maxfiles, 0, INT_MAX},
303 	{KERN_NFILES, &numfiles, SYSCTL_INT_READONLY},
304 	{KERN_TTYCOUNT, &tty_count, SYSCTL_INT_READONLY},
305 	{KERN_ARGMAX, &arg_max, SYSCTL_INT_READONLY},
306 	{KERN_POSIX1, &posix_version, SYSCTL_INT_READONLY},
307 	{KERN_NGROUPS, &ngroups_max, SYSCTL_INT_READONLY},
308 	{KERN_JOB_CONTROL, &int_one, SYSCTL_INT_READONLY},
309 	{KERN_SAVED_IDS, &int_one, SYSCTL_INT_READONLY},
310 	{KERN_MAXPARTITIONS, &maxpartitions, SYSCTL_INT_READONLY},
311 	{KERN_RAWPARTITION, &raw_part, SYSCTL_INT_READONLY},
312 	{KERN_MAXTHREAD, &maxthread, 0, INT_MAX},
313 	{KERN_NTHREADS, &nthreads, SYSCTL_INT_READONLY},
314 	{KERN_SOMAXCONN, &somaxconn, 0, SHRT_MAX},
315 	{KERN_SOMINCONN, &sominconn, 0, SHRT_MAX},
316 	{KERN_NOSUIDCOREDUMP, &nosuidcoredump, 0, 3},
317 	{KERN_FSYNC, &int_one, SYSCTL_INT_READONLY},
318 	{KERN_SYSVMSG,
319 #ifdef SYSVMSG
320 	 &int_one,
321 #else
322 	 &int_zero,
323 #endif
324 	 SYSCTL_INT_READONLY},
325 	{KERN_SYSVSEM,
326 #ifdef SYSVSEM
327 	 &int_one,
328 #else
329 	 &int_zero,
330 #endif
331 	 SYSCTL_INT_READONLY},
332 	{KERN_SYSVSHM,
333 #ifdef SYSVSHM
334 	 &int_one,
335 #else
336 	 &int_zero,
337 #endif
338 	 SYSCTL_INT_READONLY},
339 	{KERN_FSCALE, &fscale, SYSCTL_INT_READONLY},
340 	{KERN_CCPU, &ccpu, SYSCTL_INT_READONLY},
341 	{KERN_NPROCS, &nprocesses, SYSCTL_INT_READONLY},
342 	{KERN_SPLASSERT, &splassert_ctl, 0, 3},
343 	{KERN_MAXLOCKSPERUID, &maxlocksperuid, 0, INT_MAX},
344 	{KERN_WXABORT, &uvm_wxabort, 0, 1},
345 	{KERN_NETLIVELOCKS, &int_zero, SYSCTL_INT_READONLY},
346 #ifdef PTRACE
347 	{KERN_GLOBAL_PTRACE, &global_ptrace, 0, 1},
348 #endif
349 	{KERN_AUTOCONF_SERIAL, &autoconf_serial, SYSCTL_INT_READONLY},
350 };
351 
352 int
353 kern_sysctl_dirs(int top_name, int *name, u_int namelen,
354     void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p)
355 {
356 	switch (top_name) {
357 #ifndef SMALL_KERNEL
358 	case KERN_PROC:
359 		return (sysctl_doproc(name, namelen, oldp, oldlenp));
360 	case KERN_PROC_ARGS:
361 		return (sysctl_proc_args(name, namelen, oldp, oldlenp, p));
362 	case KERN_PROC_CWD:
363 		return (sysctl_proc_cwd(name, namelen, oldp, oldlenp, p));
364 	case KERN_PROC_NOBROADCASTKILL:
365 		return (sysctl_proc_nobroadcastkill(name, namelen,
366 		     newp, newlen, oldp, oldlenp, p));
367 	case KERN_PROC_VMMAP:
368 		return (sysctl_proc_vmmap(name, namelen, oldp, oldlenp, p));
369 	case KERN_FILE:
370 		return (sysctl_file(name, namelen, oldp, oldlenp, p));
371 #endif
372 #if defined(GPROF) || defined(DDBPROF)
373 	case KERN_PROF:
374 		return (sysctl_doprof(name, namelen, oldp, oldlenp,
375 		    newp, newlen));
376 #endif
377 	case KERN_MALLOCSTATS:
378 		return (sysctl_malloc(name, namelen, oldp, oldlenp,
379 		    newp, newlen, p));
380 	case KERN_TTY:
381 		return (sysctl_tty(name, namelen, oldp, oldlenp,
382 		    newp, newlen));
383 	case KERN_POOL:
384 		return (sysctl_dopool(name, namelen, oldp, oldlenp));
385 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
386 	case KERN_SYSVIPC_INFO:
387 		return (sysctl_sysvipc(name, namelen, oldp, oldlenp));
388 #endif
389 #ifdef SYSVSEM
390 	case KERN_SEMINFO:
391 		return (sysctl_sysvsem(name, namelen, oldp, oldlenp,
392 		    newp, newlen));
393 #endif
394 #ifdef SYSVSHM
395 	case KERN_SHMINFO:
396 		return (sysctl_sysvshm(name, namelen, oldp, oldlenp,
397 		    newp, newlen));
398 #endif
399 #ifndef SMALL_KERNEL
400 	case KERN_INTRCNT:
401 		return (sysctl_intrcnt(name, namelen, oldp, oldlenp));
402 	case KERN_WATCHDOG:
403 		return (sysctl_wdog(name, namelen, oldp, oldlenp,
404 		    newp, newlen));
405 #endif
406 #ifndef SMALL_KERNEL
407 	case KERN_EVCOUNT:
408 		return (evcount_sysctl(name, namelen, oldp, oldlenp,
409 		    newp, newlen));
410 #endif
411 	case KERN_TIMECOUNTER:
412 		return (sysctl_tc(name, namelen, oldp, oldlenp, newp, newlen));
413 	case KERN_CPTIME2:
414 		return (sysctl_cptime2(name, namelen, oldp, oldlenp,
415 		    newp, newlen));
416 #ifdef WITNESS
417 	case KERN_WITNESSWATCH:
418 		return witness_sysctl_watch(oldp, oldlenp, newp, newlen);
419 	case KERN_WITNESS:
420 		return witness_sysctl(name, namelen, oldp, oldlenp,
421 		    newp, newlen);
422 #endif
423 #if NAUDIO > 0
424 	case KERN_AUDIO:
425 		return (sysctl_audio(name, namelen, oldp, oldlenp,
426 		    newp, newlen));
427 #endif
428 #if NVIDEO > 0
429 	case KERN_VIDEO:
430 		return (sysctl_video(name, namelen, oldp, oldlenp,
431 		    newp, newlen));
432 #endif
433 	case KERN_CPUSTATS:
434 		return (sysctl_cpustats(name, namelen, oldp, oldlenp,
435 		    newp, newlen));
436 	case KERN_CLOCKINTR:
437 		return sysctl_clockintr(name, namelen, oldp, oldlenp, newp,
438 		    newlen);
439 	default:
440 		return (ENOTDIR);	/* overloaded */
441 	}
442 }
443 
444 /*
445  * kernel related system variables.
446  */
447 int
448 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
449     size_t newlen, struct proc *p)
450 {
451 	int error, level, inthostid, stackgap;
452 	dev_t dev;
453 	extern int pool_debug;
454 
455 	/* dispatch the non-terminal nodes first */
456 	if (namelen != 1) {
457 		return kern_sysctl_dirs(name[0], name + 1, namelen - 1,
458 		    oldp, oldlenp, newp, newlen, p);
459 	}
460 
461 	switch (name[0]) {
462 	case KERN_OSTYPE:
463 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
464 	case KERN_OSRELEASE:
465 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
466 	case KERN_OSVERSION:
467 		return (sysctl_rdstring(oldp, oldlenp, newp, osversion));
468 	case KERN_VERSION:
469 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
470 	case KERN_NUMVNODES:  /* XXX numvnodes is a long */
471 		return (sysctl_rdint(oldp, oldlenp, newp, numvnodes));
472 	case KERN_SECURELVL:
473 		level = securelevel;
474 		if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
475 		    newp == NULL)
476 			return (error);
477 		if ((securelevel > 0 || level < -1) &&
478 		    level < securelevel && p->p_p->ps_pid != 1)
479 			return (EPERM);
480 		securelevel = level;
481 		return (0);
482 #if NDT > 0
483 	case KERN_ALLOWDT:
484 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
485 		    &allowdt));
486 #endif
487 	case KERN_ALLOWKMEM:
488 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
489 		    &allowkmem));
490 	case KERN_HOSTNAME:
491 		error = sysctl_tstring(oldp, oldlenp, newp, newlen,
492 		    hostname, sizeof(hostname));
493 		if (newp && !error)
494 			hostnamelen = newlen;
495 		return (error);
496 	case KERN_DOMAINNAME:
497 		if (securelevel >= 1 && domainnamelen && newp)
498 			error = EPERM;
499 		else
500 			error = sysctl_tstring(oldp, oldlenp, newp, newlen,
501 			    domainname, sizeof(domainname));
502 		if (newp && !error)
503 			domainnamelen = newlen;
504 		return (error);
505 	case KERN_HOSTID:
506 		inthostid = hostid;  /* XXX assumes sizeof long <= sizeof int */
507 		error =  sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
508 		hostid = inthostid;
509 		return (error);
510 	case KERN_CLOCKRATE:
511 		return (sysctl_clockrate(oldp, oldlenp, newp));
512 	case KERN_BOOTTIME: {
513 		struct timeval bt;
514 		memset(&bt, 0, sizeof bt);
515 		microboottime(&bt);
516 		return (sysctl_rdstruct(oldp, oldlenp, newp, &bt, sizeof bt));
517 	  }
518 	case KERN_MBSTAT: {
519 		extern struct cpumem *mbstat;
520 		uint64_t counters[MBSTAT_COUNT];
521 		struct mbstat mbs;
522 		unsigned int i;
523 
524 		memset(&mbs, 0, sizeof(mbs));
525 		counters_read(mbstat, counters, MBSTAT_COUNT, NULL);
526 		for (i = 0; i < MBSTAT_TYPES; i++)
527 			mbs.m_mtypes[i] = counters[i];
528 
529 		mbs.m_drops = counters[MBSTAT_DROPS];
530 		mbs.m_wait = counters[MBSTAT_WAIT];
531 		mbs.m_drain = counters[MBSTAT_DRAIN];
532 
533 		return (sysctl_rdstruct(oldp, oldlenp, newp,
534 		    &mbs, sizeof(mbs)));
535 	}
536 	case KERN_MSGBUFSIZE:
537 	case KERN_CONSBUFSIZE: {
538 		struct msgbuf *mp;
539 		mp = (name[0] == KERN_MSGBUFSIZE) ? msgbufp : consbufp;
540 		/*
541 		 * deal with cases where the message buffer has
542 		 * become corrupted.
543 		 */
544 		if (!mp || mp->msg_magic != MSG_MAGIC)
545 			return (ENXIO);
546 		return (sysctl_rdint(oldp, oldlenp, newp, mp->msg_bufs));
547 	}
548 	case KERN_CONSBUF:
549 		if ((error = suser(p)))
550 			return (error);
551 		/* FALLTHROUGH */
552 	case KERN_MSGBUF: {
553 		struct msgbuf *mp;
554 		mp = (name[0] == KERN_MSGBUF) ? msgbufp : consbufp;
555 		/* see note above */
556 		if (!mp || mp->msg_magic != MSG_MAGIC)
557 			return (ENXIO);
558 		return (sysctl_rdstruct(oldp, oldlenp, newp, mp,
559 		    mp->msg_bufs + offsetof(struct msgbuf, msg_bufc)));
560 	}
561 	case KERN_CPTIME:
562 	{
563 		CPU_INFO_ITERATOR cii;
564 		struct cpu_info *ci;
565 		long cp_time[CPUSTATES];
566 		int i, n = 0;
567 
568 		memset(cp_time, 0, sizeof(cp_time));
569 
570 		CPU_INFO_FOREACH(cii, ci) {
571 			if (!cpu_is_online(ci))
572 				continue;
573 			n++;
574 			for (i = 0; i < CPUSTATES; i++)
575 				cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
576 		}
577 
578 		for (i = 0; i < CPUSTATES; i++)
579 			cp_time[i] /= n;
580 
581 		return (sysctl_rdstruct(oldp, oldlenp, newp, &cp_time,
582 		    sizeof(cp_time)));
583 	}
584 	case KERN_NCHSTATS:
585 		return (sysctl_rdstruct(oldp, oldlenp, newp, &nchstats,
586 		    sizeof(struct nchstats)));
587 	case KERN_FORKSTAT:
588 		return (sysctl_rdstruct(oldp, oldlenp, newp, &forkstat,
589 		    sizeof(struct forkstat)));
590 	case KERN_STACKGAPRANDOM:
591 		stackgap = stackgap_random;
592 		error = sysctl_int(oldp, oldlenp, newp, newlen, &stackgap);
593 		if (error)
594 			return (error);
595 		/*
596 		 * Safety harness.
597 		 */
598 		if ((stackgap < ALIGNBYTES && stackgap != 0) ||
599 		    !powerof2(stackgap) || stackgap >= MAXSSIZ)
600 			return (EINVAL);
601 		stackgap_random = stackgap;
602 		return (0);
603 	case KERN_MAXCLUSTERS: {
604 		int val = nmbclust;
605 		error = sysctl_int(oldp, oldlenp, newp, newlen, &val);
606 		if (error == 0 && val != nmbclust)
607 			error = nmbclust_update(val);
608 		return (error);
609 	}
610 	case KERN_CACHEPCT: {
611 		u_int64_t dmapages;
612 		int opct, pgs;
613 		opct = bufcachepercent;
614 		error = sysctl_int(oldp, oldlenp, newp, newlen,
615 		    &bufcachepercent);
616 		if (error)
617 			return(error);
618 		if (bufcachepercent > 90 || bufcachepercent < 5) {
619 			bufcachepercent = opct;
620 			return (EINVAL);
621 		}
622 		dmapages = uvm_pagecount(&dma_constraint);
623 		if (bufcachepercent != opct) {
624 			pgs = bufcachepercent * dmapages / 100;
625 			bufadjust(pgs); /* adjust bufpages */
626 			bufhighpages = bufpages; /* set high water mark */
627 		}
628 		return(0);
629 	}
630 	case KERN_CONSDEV:
631 		if (cn_tab != NULL)
632 			dev = cn_tab->cn_dev;
633 		else
634 			dev = NODEV;
635 		return sysctl_rdstruct(oldp, oldlenp, newp, &dev, sizeof(dev));
636 	case KERN_POOL_DEBUG: {
637 		int old_pool_debug = pool_debug;
638 
639 		error = sysctl_int(oldp, oldlenp, newp, newlen,
640 		    &pool_debug);
641 		if (error == 0 && pool_debug != old_pool_debug)
642 			pool_reclaim_all();
643 		return (error);
644 	}
645 #if NPF > 0
646 	case KERN_PFSTATUS:
647 		return (pf_sysctl(oldp, oldlenp, newp, newlen));
648 #endif
649 	case KERN_TIMEOUT_STATS:
650 		return (timeout_sysctl(oldp, oldlenp, newp, newlen));
651 	case KERN_UTC_OFFSET:
652 		return (sysctl_utc_offset(oldp, oldlenp, newp, newlen));
653 	default:
654 		return (sysctl_bounded_arr(kern_vars, nitems(kern_vars), name,
655 		    namelen, oldp, oldlenp, newp, newlen));
656 	}
657 	/* NOTREACHED */
658 }
659 
660 /*
661  * hardware related system variables.
662  */
663 char *hw_vendor, *hw_prod, *hw_uuid, *hw_serial, *hw_ver;
664 int allowpowerdown = 1;
665 int hw_power = 1;
666 
667 /* morally const values reported by sysctl_bounded_arr */
668 static int byte_order = BYTE_ORDER;
669 static int page_size = PAGE_SIZE;
670 
671 const struct sysctl_bounded_args hw_vars[] = {
672 	{HW_NCPU, &ncpus, SYSCTL_INT_READONLY},
673 	{HW_NCPUFOUND, &ncpusfound, SYSCTL_INT_READONLY},
674 	{HW_BYTEORDER, &byte_order, SYSCTL_INT_READONLY},
675 	{HW_PAGESIZE, &page_size, SYSCTL_INT_READONLY},
676 	{HW_DISKCOUNT, &disk_count, SYSCTL_INT_READONLY},
677 	{HW_POWER, &hw_power, SYSCTL_INT_READONLY},
678 };
679 
680 int
681 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
682     size_t newlen, struct proc *p)
683 {
684 	extern char machine[], cpu_model[];
685 	int err, cpuspeed;
686 
687 	/*
688 	 * all sysctl names at this level except sensors and battery
689 	 * are terminal
690 	 */
691 	if (name[0] != HW_SENSORS && name[0] != HW_BATTERY && namelen != 1)
692 		return (ENOTDIR);		/* overloaded */
693 
694 	switch (name[0]) {
695 	case HW_MACHINE:
696 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
697 	case HW_MODEL:
698 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
699 	case HW_NCPUONLINE:
700 		return (sysctl_rdint(oldp, oldlenp, newp,
701 		    sysctl_hwncpuonline()));
702 	case HW_PHYSMEM:
703 		return (sysctl_rdint(oldp, oldlenp, newp, ptoa(physmem)));
704 	case HW_USERMEM:
705 		return (sysctl_rdint(oldp, oldlenp, newp,
706 		    ptoa(physmem - uvmexp.wired)));
707 	case HW_DISKNAMES:
708 		err = sysctl_diskinit(0, p);
709 		if (err)
710 			return err;
711 		if (disknames)
712 			return (sysctl_rdstring(oldp, oldlenp, newp,
713 			    disknames));
714 		else
715 			return (sysctl_rdstring(oldp, oldlenp, newp, ""));
716 	case HW_DISKSTATS:
717 		err = sysctl_diskinit(1, p);
718 		if (err)
719 			return err;
720 		return (sysctl_rdstruct(oldp, oldlenp, newp, diskstats,
721 		    disk_count * sizeof(struct diskstats)));
722 	case HW_CPUSPEED:
723 		if (!cpu_cpuspeed)
724 			return (EOPNOTSUPP);
725 		err = cpu_cpuspeed(&cpuspeed);
726 		if (err)
727 			return err;
728 		return (sysctl_rdint(oldp, oldlenp, newp, cpuspeed));
729 #ifndef	SMALL_KERNEL
730 	case HW_SENSORS:
731 		return (sysctl_sensors(name + 1, namelen - 1, oldp, oldlenp,
732 		    newp, newlen));
733 	case HW_SETPERF:
734 		return (sysctl_hwsetperf(oldp, oldlenp, newp, newlen));
735 	case HW_PERFPOLICY:
736 		return (sysctl_hwperfpolicy(oldp, oldlenp, newp, newlen));
737 #endif /* !SMALL_KERNEL */
738 	case HW_VENDOR:
739 		if (hw_vendor)
740 			return (sysctl_rdstring(oldp, oldlenp, newp,
741 			    hw_vendor));
742 		else
743 			return (EOPNOTSUPP);
744 	case HW_PRODUCT:
745 		if (hw_prod)
746 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_prod));
747 		else
748 			return (EOPNOTSUPP);
749 	case HW_VERSION:
750 		if (hw_ver)
751 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_ver));
752 		else
753 			return (EOPNOTSUPP);
754 	case HW_SERIALNO:
755 		if (hw_serial)
756 			return (sysctl_rdstring(oldp, oldlenp, newp,
757 			    hw_serial));
758 		else
759 			return (EOPNOTSUPP);
760 	case HW_UUID:
761 		if (hw_uuid)
762 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_uuid));
763 		else
764 			return (EOPNOTSUPP);
765 	case HW_PHYSMEM64:
766 		return (sysctl_rdquad(oldp, oldlenp, newp,
767 		    ptoa((psize_t)physmem)));
768 	case HW_USERMEM64:
769 		return (sysctl_rdquad(oldp, oldlenp, newp,
770 		    ptoa((psize_t)physmem - uvmexp.wired)));
771 	case HW_ALLOWPOWERDOWN:
772 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
773 		    &allowpowerdown));
774 #if NUCOM > 0
775 	case HW_UCOMNAMES: {
776 		const char *str = sysctl_ucominit();
777 		if (str == NULL)
778 			return EINVAL;
779 		return (sysctl_rdstring(oldp, oldlenp, newp, str));
780 	}
781 #endif	/* NUCOM > 0 */
782 #ifdef __HAVE_CPU_TOPOLOGY
783 	case HW_SMT:
784 		return (sysctl_hwsmt(oldp, oldlenp, newp, newlen));
785 #endif
786 #ifndef SMALL_KERNEL
787 	case HW_BATTERY:
788 		return (sysctl_hwbattery(name + 1, namelen - 1, oldp, oldlenp,
789 		    newp, newlen));
790 #endif
791 	default:
792 		return sysctl_bounded_arr(hw_vars, nitems(hw_vars), name,
793 		    namelen, oldp, oldlenp, newp, newlen);
794 	}
795 	/* NOTREACHED */
796 }
797 
798 #ifndef SMALL_KERNEL
799 
800 int hw_battery_chargemode;
801 int hw_battery_chargestart;
802 int hw_battery_chargestop;
803 int (*hw_battery_setchargemode)(int);
804 int (*hw_battery_setchargestart)(int);
805 int (*hw_battery_setchargestop)(int);
806 
807 int
808 sysctl_hwchargemode(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
809 {
810 	int mode = hw_battery_chargemode;
811 	int error;
812 
813 	if (!hw_battery_setchargemode)
814 		return EOPNOTSUPP;
815 
816 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
817 	    &mode, -1, 1);
818 	if (error)
819 		return error;
820 
821 	if (newp != NULL)
822 		error = hw_battery_setchargemode(mode);
823 
824 	return error;
825 }
826 
827 int
828 sysctl_hwchargestart(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
829 {
830 	int start = hw_battery_chargestart;
831 	int error;
832 
833 	if (!hw_battery_setchargestart)
834 		return EOPNOTSUPP;
835 
836 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
837 	    &start, 0, 100);
838 	if (error)
839 		return error;
840 
841 	if (newp != NULL)
842 		error = hw_battery_setchargestart(start);
843 
844 	return error;
845 }
846 
847 int
848 sysctl_hwchargestop(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
849 {
850 	int stop = hw_battery_chargestop;
851 	int error;
852 
853 	if (!hw_battery_setchargestop)
854 		return EOPNOTSUPP;
855 
856 	error = sysctl_int_bounded(oldp, oldlenp, newp, newlen,
857 	    &stop, 0, 100);
858 	if (error)
859 		return error;
860 
861 	if (newp != NULL)
862 		error = hw_battery_setchargestop(stop);
863 
864 	return error;
865 }
866 
867 int
868 sysctl_hwbattery(int *name, u_int namelen, void *oldp, size_t *oldlenp,
869     void *newp, size_t newlen)
870 {
871 	if (namelen != 1)
872 		return (ENOTDIR);
873 
874 	switch (name[0]) {
875 	case HW_BATTERY_CHARGEMODE:
876 		return (sysctl_hwchargemode(oldp, oldlenp, newp, newlen));
877 	case HW_BATTERY_CHARGESTART:
878 		return (sysctl_hwchargestart(oldp, oldlenp, newp, newlen));
879 	case HW_BATTERY_CHARGESTOP:
880 		return (sysctl_hwchargestop(oldp, oldlenp, newp, newlen));
881 	default:
882 		return (EOPNOTSUPP);
883 	}
884 	/* NOTREACHED */
885 }
886 
887 #endif
888 
889 #ifdef DEBUG_SYSCTL
890 /*
891  * Debugging related system variables.
892  */
893 extern struct ctldebug debug_vfs_busyprt;
894 struct ctldebug debug1, debug2, debug3, debug4;
895 struct ctldebug debug5, debug6, debug7, debug8, debug9;
896 struct ctldebug debug10, debug11, debug12, debug13, debug14;
897 struct ctldebug debug15, debug16, debug17, debug18, debug19;
898 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
899 	&debug_vfs_busyprt,
900 	&debug1, &debug2, &debug3, &debug4,
901 	&debug5, &debug6, &debug7, &debug8, &debug9,
902 	&debug10, &debug11, &debug12, &debug13, &debug14,
903 	&debug15, &debug16, &debug17, &debug18, &debug19,
904 };
905 int
906 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
907     size_t newlen, struct proc *p)
908 {
909 	struct ctldebug *cdp;
910 
911 	/* all sysctl names at this level are name and field */
912 	if (namelen != 2)
913 		return (ENOTDIR);		/* overloaded */
914 	if (name[0] < 0 || name[0] >= nitems(debugvars))
915 		return (EOPNOTSUPP);
916 	cdp = debugvars[name[0]];
917 	if (cdp->debugname == 0)
918 		return (EOPNOTSUPP);
919 	switch (name[1]) {
920 	case CTL_DEBUG_NAME:
921 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
922 	case CTL_DEBUG_VALUE:
923 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
924 	default:
925 		return (EOPNOTSUPP);
926 	}
927 	/* NOTREACHED */
928 }
929 #endif /* DEBUG_SYSCTL */
930 
931 /*
932  * Reads, or writes that lower the value
933  */
934 int
935 sysctl_int_lower(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
936     int *valp)
937 {
938 	unsigned int oval = *valp, val = *valp;
939 	int error;
940 
941 	if (newp == NULL)
942 		return (sysctl_rdint(oldp, oldlenp, newp, val));
943 
944 	if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val)))
945 		return (error);
946 	if (val > oval)
947 		return (EPERM);		/* do not allow raising */
948 	*(unsigned int *)valp = val;
949 	return (0);
950 }
951 
952 /*
953  * Validate parameters and get old / set new parameters
954  * for an integer-valued sysctl function.
955  */
956 int
957 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
958 {
959 	int error = 0;
960 
961 	if (oldp && *oldlenp < sizeof(int))
962 		return (ENOMEM);
963 	if (newp && newlen != sizeof(int))
964 		return (EINVAL);
965 	*oldlenp = sizeof(int);
966 	if (oldp)
967 		error = copyout(valp, oldp, sizeof(int));
968 	if (error == 0 && newp)
969 		error = copyin(newp, valp, sizeof(int));
970 	return (error);
971 }
972 
973 /*
974  * As above, but read-only.
975  */
976 int
977 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
978 {
979 	int error = 0;
980 
981 	if (oldp && *oldlenp < sizeof(int))
982 		return (ENOMEM);
983 	if (newp)
984 		return (EPERM);
985 	*oldlenp = sizeof(int);
986 	if (oldp)
987 		error = copyout((caddr_t)&val, oldp, sizeof(int));
988 	return (error);
989 }
990 
991 /*
992  * Selects between sysctl_rdint and sysctl_int according to securelevel.
993  */
994 int
995 sysctl_securelevel_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
996     int *valp)
997 {
998 	if (securelevel > 0)
999 		return (sysctl_rdint(oldp, oldlenp, newp, *valp));
1000 	return (sysctl_int(oldp, oldlenp, newp, newlen, valp));
1001 }
1002 
1003 /*
1004  * Read-only or bounded integer values.
1005  */
1006 int
1007 sysctl_int_bounded(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1008     int *valp, int minimum, int maximum)
1009 {
1010 	int val = *valp;
1011 	int error;
1012 
1013 	/* read only */
1014 	if (newp == NULL || minimum > maximum)
1015 		return (sysctl_rdint(oldp, oldlenp, newp, val));
1016 
1017 	if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val)))
1018 		return (error);
1019 	/* outside limits */
1020 	if (val < minimum || maximum < val)
1021 		return (EINVAL);
1022 	*valp = val;
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Array of read-only or bounded integer values.
1028  */
1029 int
1030 sysctl_bounded_arr(const struct sysctl_bounded_args *valpp, u_int valplen,
1031     int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1032     size_t newlen)
1033 {
1034 	u_int i;
1035 	if (namelen != 1)
1036 		return (ENOTDIR);
1037 	for (i = 0; i < valplen; ++i) {
1038 		if (valpp[i].mib == name[0]) {
1039 			return (sysctl_int_bounded(oldp, oldlenp, newp, newlen,
1040 			    valpp[i].var, valpp[i].minimum, valpp[i].maximum));
1041 		}
1042 	}
1043 	return (EOPNOTSUPP);
1044 }
1045 
1046 /*
1047  * Validate parameters and get old / set new parameters
1048  * for an integer-valued sysctl function.
1049  */
1050 int
1051 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1052     int64_t *valp)
1053 {
1054 	int error = 0;
1055 
1056 	if (oldp && *oldlenp < sizeof(int64_t))
1057 		return (ENOMEM);
1058 	if (newp && newlen != sizeof(int64_t))
1059 		return (EINVAL);
1060 	*oldlenp = sizeof(int64_t);
1061 	if (oldp)
1062 		error = copyout(valp, oldp, sizeof(int64_t));
1063 	if (error == 0 && newp)
1064 		error = copyin(newp, valp, sizeof(int64_t));
1065 	return (error);
1066 }
1067 
1068 /*
1069  * As above, but read-only.
1070  */
1071 int
1072 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, int64_t val)
1073 {
1074 	int error = 0;
1075 
1076 	if (oldp && *oldlenp < sizeof(int64_t))
1077 		return (ENOMEM);
1078 	if (newp)
1079 		return (EPERM);
1080 	*oldlenp = sizeof(int64_t);
1081 	if (oldp)
1082 		error = copyout((caddr_t)&val, oldp, sizeof(int64_t));
1083 	return (error);
1084 }
1085 
1086 /*
1087  * Validate parameters and get old / set new parameters
1088  * for a string-valued sysctl function.
1089  */
1090 int
1091 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
1092     size_t maxlen)
1093 {
1094 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 0);
1095 }
1096 
1097 int
1098 sysctl_tstring(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1099     char *str, size_t maxlen)
1100 {
1101 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 1);
1102 }
1103 
1104 int
1105 sysctl__string(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
1106     char *str, size_t maxlen, int trunc)
1107 {
1108 	size_t len;
1109 	int error = 0;
1110 
1111 	len = strlen(str) + 1;
1112 	if (oldp && *oldlenp < len) {
1113 		if (trunc == 0 || *oldlenp == 0)
1114 			return (ENOMEM);
1115 	}
1116 	if (newp && newlen >= maxlen)
1117 		return (EINVAL);
1118 	if (oldp) {
1119 		if (trunc && *oldlenp < len) {
1120 			len = *oldlenp;
1121 			error = copyout(str, oldp, len - 1);
1122 			if (error == 0)
1123 				error = copyout("", (char *)oldp + len - 1, 1);
1124 		} else {
1125 			error = copyout(str, oldp, len);
1126 		}
1127 	}
1128 	*oldlenp = len;
1129 	if (error == 0 && newp) {
1130 		error = copyin(newp, str, newlen);
1131 		str[newlen] = 0;
1132 	}
1133 	return (error);
1134 }
1135 
1136 /*
1137  * As above, but read-only.
1138  */
1139 int
1140 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1141 {
1142 	size_t len;
1143 	int error = 0;
1144 
1145 	len = strlen(str) + 1;
1146 	if (oldp && *oldlenp < len)
1147 		return (ENOMEM);
1148 	if (newp)
1149 		return (EPERM);
1150 	*oldlenp = len;
1151 	if (oldp)
1152 		error = copyout(str, oldp, len);
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Validate parameters and get old / set new parameters
1158  * for a structure oriented sysctl function.
1159  */
1160 int
1161 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1162     size_t len)
1163 {
1164 	int error = 0;
1165 
1166 	if (oldp && *oldlenp < len)
1167 		return (ENOMEM);
1168 	if (newp && newlen > len)
1169 		return (EINVAL);
1170 	if (oldp) {
1171 		*oldlenp = len;
1172 		error = copyout(sp, oldp, len);
1173 	}
1174 	if (error == 0 && newp)
1175 		error = copyin(newp, sp, len);
1176 	return (error);
1177 }
1178 
1179 /*
1180  * Validate parameters and get old parameters
1181  * for a structure oriented sysctl function.
1182  */
1183 int
1184 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1185     size_t len)
1186 {
1187 	int error = 0;
1188 
1189 	if (oldp && *oldlenp < len)
1190 		return (ENOMEM);
1191 	if (newp)
1192 		return (EPERM);
1193 	*oldlenp = len;
1194 	if (oldp)
1195 		error = copyout(sp, oldp, len);
1196 	return (error);
1197 }
1198 
1199 #ifndef SMALL_KERNEL
1200 void
1201 fill_file(struct kinfo_file *kf, struct file *fp, struct filedesc *fdp,
1202 	  int fd, struct vnode *vp, struct process *pr, struct proc *p,
1203 	  struct socket *so, int show_pointers)
1204 {
1205 	struct vattr va;
1206 
1207 	memset(kf, 0, sizeof(*kf));
1208 
1209 	kf->fd_fd = fd;		/* might not really be an fd */
1210 
1211 	if (fp != NULL) {
1212 		if (show_pointers)
1213 			kf->f_fileaddr = PTRTOINT64(fp);
1214 		kf->f_flag = fp->f_flag;
1215 		kf->f_iflags = fp->f_iflags;
1216 		kf->f_type = fp->f_type;
1217 		kf->f_count = fp->f_count;
1218 		if (show_pointers)
1219 			kf->f_ucred = PTRTOINT64(fp->f_cred);
1220 		kf->f_uid = fp->f_cred->cr_uid;
1221 		kf->f_gid = fp->f_cred->cr_gid;
1222 		if (show_pointers)
1223 			kf->f_ops = PTRTOINT64(fp->f_ops);
1224 		if (show_pointers)
1225 			kf->f_data = PTRTOINT64(fp->f_data);
1226 		kf->f_usecount = 0;
1227 
1228 		if (suser(p) == 0 || p->p_ucred->cr_uid == fp->f_cred->cr_uid) {
1229 			mtx_enter(&fp->f_mtx);
1230 			kf->f_offset = fp->f_offset;
1231 			kf->f_rxfer = fp->f_rxfer;
1232 			kf->f_rwfer = fp->f_wxfer;
1233 			kf->f_seek = fp->f_seek;
1234 			kf->f_rbytes = fp->f_rbytes;
1235 			kf->f_wbytes = fp->f_wbytes;
1236 			mtx_leave(&fp->f_mtx);
1237 		} else
1238 			kf->f_offset = -1;
1239 	} else if (vp != NULL) {
1240 		/* fake it */
1241 		kf->f_type = DTYPE_VNODE;
1242 		kf->f_flag = FREAD;
1243 		if (fd == KERN_FILE_TRACE)
1244 			kf->f_flag |= FWRITE;
1245 	} else if (so != NULL) {
1246 		/* fake it */
1247 		kf->f_type = DTYPE_SOCKET;
1248 	}
1249 
1250 	/* information about the object associated with this file */
1251 	switch (kf->f_type) {
1252 	case DTYPE_VNODE:
1253 		if (fp != NULL)
1254 			vp = (struct vnode *)fp->f_data;
1255 
1256 		if (show_pointers)
1257 			kf->v_un = PTRTOINT64(vp->v_un.vu_socket);
1258 		kf->v_type = vp->v_type;
1259 		kf->v_tag = vp->v_tag;
1260 		kf->v_flag = vp->v_flag;
1261 		if (show_pointers)
1262 			kf->v_data = PTRTOINT64(vp->v_data);
1263 		if (show_pointers)
1264 			kf->v_mount = PTRTOINT64(vp->v_mount);
1265 		if (vp->v_mount)
1266 			strlcpy(kf->f_mntonname,
1267 			    vp->v_mount->mnt_stat.f_mntonname,
1268 			    sizeof(kf->f_mntonname));
1269 
1270 		if (VOP_GETATTR(vp, &va, p->p_ucred, p) == 0) {
1271 			kf->va_fileid = va.va_fileid;
1272 			kf->va_mode = MAKEIMODE(va.va_type, va.va_mode);
1273 			kf->va_size = va.va_size;
1274 			kf->va_rdev = va.va_rdev;
1275 			kf->va_fsid = va.va_fsid & 0xffffffff;
1276 			kf->va_nlink = va.va_nlink;
1277 		}
1278 		break;
1279 
1280 	case DTYPE_SOCKET: {
1281 		int locked = 0;
1282 
1283 		if (so == NULL) {
1284 			so = (struct socket *)fp->f_data;
1285 			/* if so is passed as parameter it is already locked */
1286 			switch (so->so_proto->pr_domain->dom_family) {
1287 			case AF_INET:
1288 			case AF_INET6:
1289 				NET_LOCK();
1290 				locked = 1;
1291 				break;
1292 			}
1293 		}
1294 
1295 		kf->so_type = so->so_type;
1296 		kf->so_state = so->so_state | so->so_snd.sb_state |
1297 		    so->so_rcv.sb_state;
1298 		if (show_pointers)
1299 			kf->so_pcb = PTRTOINT64(so->so_pcb);
1300 		else
1301 			kf->so_pcb = -1;
1302 		kf->so_protocol = so->so_proto->pr_protocol;
1303 		kf->so_family = so->so_proto->pr_domain->dom_family;
1304 		kf->so_rcv_cc = so->so_rcv.sb_cc;
1305 		kf->so_snd_cc = so->so_snd.sb_cc;
1306 		if (isspliced(so)) {
1307 			if (show_pointers)
1308 				kf->so_splice =
1309 				    PTRTOINT64(so->so_sp->ssp_socket);
1310 			kf->so_splicelen = so->so_sp->ssp_len;
1311 		} else if (issplicedback(so))
1312 			kf->so_splicelen = -1;
1313 		if (so->so_pcb == NULL) {
1314 			if (locked)
1315 				NET_UNLOCK();
1316 			break;
1317 		}
1318 		switch (kf->so_family) {
1319 		case AF_INET: {
1320 			struct inpcb *inpcb = so->so_pcb;
1321 
1322 			NET_ASSERT_LOCKED();
1323 			if (show_pointers)
1324 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1325 			kf->inp_lport = inpcb->inp_lport;
1326 			kf->inp_laddru[0] = inpcb->inp_laddr.s_addr;
1327 			kf->inp_fport = inpcb->inp_fport;
1328 			kf->inp_faddru[0] = inpcb->inp_faddr.s_addr;
1329 			kf->inp_rtableid = inpcb->inp_rtableid;
1330 			if (so->so_type == SOCK_RAW)
1331 				kf->inp_proto = inpcb->inp_ip.ip_p;
1332 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1333 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1334 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1335 				kf->t_snd_wnd = tcpcb->snd_wnd;
1336 				kf->t_snd_cwnd = tcpcb->snd_cwnd;
1337 				kf->t_state = tcpcb->t_state;
1338 			}
1339 			break;
1340 		    }
1341 		case AF_INET6: {
1342 			struct inpcb *inpcb = so->so_pcb;
1343 
1344 			NET_ASSERT_LOCKED();
1345 			if (show_pointers)
1346 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1347 			kf->inp_lport = inpcb->inp_lport;
1348 			kf->inp_laddru[0] = inpcb->inp_laddr6.s6_addr32[0];
1349 			kf->inp_laddru[1] = inpcb->inp_laddr6.s6_addr32[1];
1350 			kf->inp_laddru[2] = inpcb->inp_laddr6.s6_addr32[2];
1351 			kf->inp_laddru[3] = inpcb->inp_laddr6.s6_addr32[3];
1352 			kf->inp_fport = inpcb->inp_fport;
1353 			kf->inp_faddru[0] = inpcb->inp_faddr6.s6_addr32[0];
1354 			kf->inp_faddru[1] = inpcb->inp_faddr6.s6_addr32[1];
1355 			kf->inp_faddru[2] = inpcb->inp_faddr6.s6_addr32[2];
1356 			kf->inp_faddru[3] = inpcb->inp_faddr6.s6_addr32[3];
1357 			kf->inp_rtableid = inpcb->inp_rtableid;
1358 			if (so->so_type == SOCK_RAW)
1359 				kf->inp_proto = inpcb->inp_ipv6.ip6_nxt;
1360 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1361 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1362 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1363 				kf->t_snd_wnd = tcpcb->snd_wnd;
1364 				kf->t_state = tcpcb->t_state;
1365 			}
1366 			break;
1367 		    }
1368 		case AF_UNIX: {
1369 			struct unpcb *unpcb = so->so_pcb;
1370 
1371 			kf->f_msgcount = unpcb->unp_msgcount;
1372 			if (show_pointers) {
1373 				kf->unp_conn	= PTRTOINT64(unpcb->unp_conn);
1374 				kf->unp_refs	= PTRTOINT64(
1375 				    SLIST_FIRST(&unpcb->unp_refs));
1376 				kf->unp_nextref	= PTRTOINT64(
1377 				    SLIST_NEXT(unpcb, unp_nextref));
1378 				kf->v_un	= PTRTOINT64(unpcb->unp_vnode);
1379 				kf->unp_addr	= PTRTOINT64(unpcb->unp_addr);
1380 			}
1381 			if (unpcb->unp_addr != NULL) {
1382 				struct sockaddr_un *un = mtod(unpcb->unp_addr,
1383 				    struct sockaddr_un *);
1384 				memcpy(kf->unp_path, un->sun_path, un->sun_len
1385 				    - offsetof(struct sockaddr_un,sun_path));
1386 			}
1387 			break;
1388 		    }
1389 		}
1390 		if (locked)
1391 			NET_UNLOCK();
1392 		break;
1393 	    }
1394 
1395 	case DTYPE_PIPE: {
1396 		struct pipe *pipe = (struct pipe *)fp->f_data;
1397 
1398 		if (show_pointers)
1399 			kf->pipe_peer = PTRTOINT64(pipe->pipe_peer);
1400 		kf->pipe_state = pipe->pipe_state;
1401 		break;
1402 	    }
1403 
1404 	case DTYPE_KQUEUE: {
1405 		struct kqueue *kqi = (struct kqueue *)fp->f_data;
1406 
1407 		kf->kq_count = kqi->kq_count;
1408 		kf->kq_state = kqi->kq_state;
1409 		break;
1410 	    }
1411 	}
1412 
1413 	/* per-process information for KERN_FILE_BY[PU]ID */
1414 	if (pr != NULL) {
1415 		kf->p_pid = pr->ps_pid;
1416 		kf->p_uid = pr->ps_ucred->cr_uid;
1417 		kf->p_gid = pr->ps_ucred->cr_gid;
1418 		kf->p_tid = -1;
1419 		strlcpy(kf->p_comm, pr->ps_comm, sizeof(kf->p_comm));
1420 	}
1421 	if (fdp != NULL) {
1422 		fdplock(fdp);
1423 		kf->fd_ofileflags = fdp->fd_ofileflags[fd];
1424 		fdpunlock(fdp);
1425 	}
1426 }
1427 
1428 /*
1429  * Get file structures.
1430  */
1431 int
1432 sysctl_file(int *name, u_int namelen, char *where, size_t *sizep,
1433     struct proc *p)
1434 {
1435 	struct kinfo_file *kf;
1436 	struct filedesc *fdp;
1437 	struct file *fp;
1438 	struct process *pr;
1439 	size_t buflen, elem_size, elem_count, outsize;
1440 	char *dp = where;
1441 	int arg, i, error = 0, needed = 0, matched;
1442 	u_int op;
1443 	int show_pointers;
1444 
1445 	if (namelen > 4)
1446 		return (ENOTDIR);
1447 	if (namelen < 4 || name[2] > sizeof(*kf))
1448 		return (EINVAL);
1449 
1450 	buflen = where != NULL ? *sizep : 0;
1451 	op = name[0];
1452 	arg = name[1];
1453 	elem_size = name[2];
1454 	elem_count = name[3];
1455 	outsize = MIN(sizeof(*kf), elem_size);
1456 
1457 	if (elem_size < 1)
1458 		return (EINVAL);
1459 
1460 	show_pointers = suser(curproc) == 0;
1461 
1462 	kf = malloc(sizeof(*kf), M_TEMP, M_WAITOK);
1463 
1464 #define FILLIT2(fp, fdp, i, vp, pr, so) do {				\
1465 	if (buflen >= elem_size && elem_count > 0) {			\
1466 		fill_file(kf, fp, fdp, i, vp, pr, p, so, show_pointers);\
1467 		error = copyout(kf, dp, outsize);			\
1468 		if (error)						\
1469 			break;						\
1470 		dp += elem_size;					\
1471 		buflen -= elem_size;					\
1472 		elem_count--;						\
1473 	}								\
1474 	needed += elem_size;						\
1475 } while (0)
1476 #define FILLIT(fp, fdp, i, vp, pr) \
1477 	FILLIT2(fp, fdp, i, vp, pr, NULL)
1478 #define FILLSO(so) \
1479 	FILLIT2(NULL, NULL, 0, NULL, NULL, so)
1480 
1481 	switch (op) {
1482 	case KERN_FILE_BYFILE:
1483 		/* use the inp-tables to pick up closed connections, too */
1484 		if (arg == DTYPE_SOCKET) {
1485 			struct inpcb *inp;
1486 
1487 			NET_LOCK();
1488 			mtx_enter(&tcbtable.inpt_mtx);
1489 			TAILQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue)
1490 				FILLSO(inp->inp_socket);
1491 			mtx_leave(&tcbtable.inpt_mtx);
1492 			mtx_enter(&udbtable.inpt_mtx);
1493 			TAILQ_FOREACH(inp, &udbtable.inpt_queue, inp_queue)
1494 				FILLSO(inp->inp_socket);
1495 			mtx_leave(&udbtable.inpt_mtx);
1496 			mtx_enter(&rawcbtable.inpt_mtx);
1497 			TAILQ_FOREACH(inp, &rawcbtable.inpt_queue, inp_queue)
1498 				FILLSO(inp->inp_socket);
1499 			mtx_leave(&rawcbtable.inpt_mtx);
1500 #ifdef INET6
1501 			mtx_enter(&rawin6pcbtable.inpt_mtx);
1502 			TAILQ_FOREACH(inp, &rawin6pcbtable.inpt_queue,
1503 			    inp_queue)
1504 				FILLSO(inp->inp_socket);
1505 			mtx_leave(&rawin6pcbtable.inpt_mtx);
1506 #endif
1507 			NET_UNLOCK();
1508 		}
1509 		fp = NULL;
1510 		while ((fp = fd_iterfile(fp, p)) != NULL) {
1511 			if ((arg == 0 || fp->f_type == arg)) {
1512 				int af, skip = 0;
1513 				if (arg == DTYPE_SOCKET && fp->f_type == arg) {
1514 					af = ((struct socket *)fp->f_data)->
1515 					    so_proto->pr_domain->dom_family;
1516 					if (af == AF_INET || af == AF_INET6)
1517 						skip = 1;
1518 				}
1519 				if (!skip)
1520 					FILLIT(fp, NULL, 0, NULL, NULL);
1521 			}
1522 		}
1523 		break;
1524 	case KERN_FILE_BYPID:
1525 		/* A arg of -1 indicates all processes */
1526 		if (arg < -1) {
1527 			error = EINVAL;
1528 			break;
1529 		}
1530 		matched = 0;
1531 		LIST_FOREACH(pr, &allprocess, ps_list) {
1532 			/*
1533 			 * skip system, exiting, embryonic and undead
1534 			 * processes
1535 			 */
1536 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1537 				continue;
1538 			if (arg > 0 && pr->ps_pid != (pid_t)arg) {
1539 				/* not the pid we are looking for */
1540 				continue;
1541 			}
1542 			matched = 1;
1543 			fdp = pr->ps_fd;
1544 			if (pr->ps_textvp)
1545 				FILLIT(NULL, NULL, KERN_FILE_TEXT, pr->ps_textvp, pr);
1546 			if (fdp->fd_cdir)
1547 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1548 			if (fdp->fd_rdir)
1549 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1550 			if (pr->ps_tracevp)
1551 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1552 			for (i = 0; i < fdp->fd_nfiles; i++) {
1553 				if ((fp = fd_getfile(fdp, i)) == NULL)
1554 					continue;
1555 				FILLIT(fp, fdp, i, NULL, pr);
1556 				FRELE(fp, p);
1557 			}
1558 		}
1559 		if (!matched)
1560 			error = ESRCH;
1561 		break;
1562 	case KERN_FILE_BYUID:
1563 		LIST_FOREACH(pr, &allprocess, ps_list) {
1564 			/*
1565 			 * skip system, exiting, embryonic and undead
1566 			 * processes
1567 			 */
1568 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1569 				continue;
1570 			if (arg >= 0 && pr->ps_ucred->cr_uid != (uid_t)arg) {
1571 				/* not the uid we are looking for */
1572 				continue;
1573 			}
1574 			fdp = pr->ps_fd;
1575 			if (fdp->fd_cdir)
1576 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1577 			if (fdp->fd_rdir)
1578 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1579 			if (pr->ps_tracevp)
1580 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1581 			for (i = 0; i < fdp->fd_nfiles; i++) {
1582 				if ((fp = fd_getfile(fdp, i)) == NULL)
1583 					continue;
1584 				FILLIT(fp, fdp, i, NULL, pr);
1585 				FRELE(fp, p);
1586 			}
1587 		}
1588 		break;
1589 	default:
1590 		error = EINVAL;
1591 		break;
1592 	}
1593 	free(kf, M_TEMP, sizeof(*kf));
1594 
1595 	if (!error) {
1596 		if (where == NULL)
1597 			needed += KERN_FILESLOP * elem_size;
1598 		else if (*sizep < needed)
1599 			error = ENOMEM;
1600 		*sizep = needed;
1601 	}
1602 
1603 	return (error);
1604 }
1605 
1606 /*
1607  * try over estimating by 5 procs
1608  */
1609 #define KERN_PROCSLOP	5
1610 
1611 int
1612 sysctl_doproc(int *name, u_int namelen, char *where, size_t *sizep)
1613 {
1614 	struct kinfo_proc *kproc = NULL;
1615 	struct proc *p;
1616 	struct process *pr;
1617 	char *dp;
1618 	int arg, buflen, doingzomb, elem_size, elem_count;
1619 	int error, needed, op;
1620 	int dothreads = 0;
1621 	int show_pointers;
1622 
1623 	dp = where;
1624 	buflen = where != NULL ? *sizep : 0;
1625 	needed = error = 0;
1626 
1627 	if (namelen != 4 || name[2] <= 0 || name[3] < 0 ||
1628 	    name[2] > sizeof(*kproc))
1629 		return (EINVAL);
1630 	op = name[0];
1631 	arg = name[1];
1632 	elem_size = name[2];
1633 	elem_count = name[3];
1634 
1635 	dothreads = op & KERN_PROC_SHOW_THREADS;
1636 	op &= ~KERN_PROC_SHOW_THREADS;
1637 
1638 	show_pointers = suser(curproc) == 0;
1639 
1640 	if (where != NULL)
1641 		kproc = malloc(sizeof(*kproc), M_TEMP, M_WAITOK);
1642 
1643 	pr = LIST_FIRST(&allprocess);
1644 	doingzomb = 0;
1645 again:
1646 	for (; pr != NULL; pr = LIST_NEXT(pr, ps_list)) {
1647 		/* XXX skip processes in the middle of being zapped */
1648 		if (pr->ps_pgrp == NULL)
1649 			continue;
1650 
1651 		/*
1652 		 * Skip embryonic processes.
1653 		 */
1654 		if (pr->ps_flags & PS_EMBRYO)
1655 			continue;
1656 
1657 		/*
1658 		 * TODO - make more efficient (see notes below).
1659 		 */
1660 		switch (op) {
1661 
1662 		case KERN_PROC_PID:
1663 			/* could do this with just a lookup */
1664 			if (pr->ps_pid != (pid_t)arg)
1665 				continue;
1666 			break;
1667 
1668 		case KERN_PROC_PGRP:
1669 			/* could do this by traversing pgrp */
1670 			if (pr->ps_pgrp->pg_id != (pid_t)arg)
1671 				continue;
1672 			break;
1673 
1674 		case KERN_PROC_SESSION:
1675 			if (pr->ps_session->s_leader == NULL ||
1676 			    pr->ps_session->s_leader->ps_pid != (pid_t)arg)
1677 				continue;
1678 			break;
1679 
1680 		case KERN_PROC_TTY:
1681 			if ((pr->ps_flags & PS_CONTROLT) == 0 ||
1682 			    pr->ps_session->s_ttyp == NULL ||
1683 			    pr->ps_session->s_ttyp->t_dev != (dev_t)arg)
1684 				continue;
1685 			break;
1686 
1687 		case KERN_PROC_UID:
1688 			if (pr->ps_ucred->cr_uid != (uid_t)arg)
1689 				continue;
1690 			break;
1691 
1692 		case KERN_PROC_RUID:
1693 			if (pr->ps_ucred->cr_ruid != (uid_t)arg)
1694 				continue;
1695 			break;
1696 
1697 		case KERN_PROC_ALL:
1698 			if (pr->ps_flags & PS_SYSTEM)
1699 				continue;
1700 			break;
1701 
1702 		case KERN_PROC_KTHREAD:
1703 			/* no filtering */
1704 			break;
1705 
1706 		default:
1707 			error = EINVAL;
1708 			goto err;
1709 		}
1710 
1711 		if (buflen >= elem_size && elem_count > 0) {
1712 			fill_kproc(pr, kproc, NULL, show_pointers);
1713 			error = copyout(kproc, dp, elem_size);
1714 			if (error)
1715 				goto err;
1716 			dp += elem_size;
1717 			buflen -= elem_size;
1718 			elem_count--;
1719 		}
1720 		needed += elem_size;
1721 
1722 		/* Skip per-thread entries if not required by op */
1723 		if (!dothreads)
1724 			continue;
1725 
1726 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1727 			if (buflen >= elem_size && elem_count > 0) {
1728 				fill_kproc(pr, kproc, p, show_pointers);
1729 				error = copyout(kproc, dp, elem_size);
1730 				if (error)
1731 					goto err;
1732 				dp += elem_size;
1733 				buflen -= elem_size;
1734 				elem_count--;
1735 			}
1736 			needed += elem_size;
1737 		}
1738 	}
1739 	if (doingzomb == 0) {
1740 		pr = LIST_FIRST(&zombprocess);
1741 		doingzomb++;
1742 		goto again;
1743 	}
1744 	if (where != NULL) {
1745 		*sizep = dp - where;
1746 		if (needed > *sizep) {
1747 			error = ENOMEM;
1748 			goto err;
1749 		}
1750 	} else {
1751 		needed += KERN_PROCSLOP * elem_size;
1752 		*sizep = needed;
1753 	}
1754 err:
1755 	if (kproc)
1756 		free(kproc, M_TEMP, sizeof(*kproc));
1757 	return (error);
1758 }
1759 
1760 /*
1761  * Fill in a kproc structure for the specified process.
1762  */
1763 void
1764 fill_kproc(struct process *pr, struct kinfo_proc *ki, struct proc *p,
1765     int show_pointers)
1766 {
1767 	struct session *s = pr->ps_session;
1768 	struct tty *tp;
1769 	struct vmspace *vm = pr->ps_vmspace;
1770 	struct timespec booted, st, ut, utc;
1771 	int isthread;
1772 
1773 	isthread = p != NULL;
1774 	if (!isthread)
1775 		p = pr->ps_mainproc;		/* XXX */
1776 
1777 	FILL_KPROC(ki, strlcpy, p, pr, pr->ps_ucred, pr->ps_pgrp,
1778 	    p, pr, s, vm, pr->ps_limit, pr->ps_sigacts, isthread,
1779 	    show_pointers);
1780 
1781 	/* stuff that's too painful to generalize into the macros */
1782 	if (pr->ps_pptr)
1783 		ki->p_ppid = pr->ps_ppid;
1784 	if (s->s_leader)
1785 		ki->p_sid = s->s_leader->ps_pid;
1786 
1787 	if ((pr->ps_flags & PS_CONTROLT) && (tp = s->s_ttyp)) {
1788 		ki->p_tdev = tp->t_dev;
1789 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : -1;
1790 		if (show_pointers)
1791 			ki->p_tsess = PTRTOINT64(tp->t_session);
1792 	} else {
1793 		ki->p_tdev = NODEV;
1794 		ki->p_tpgid = -1;
1795 	}
1796 
1797 	/* fixups that can only be done in the kernel */
1798 	if ((pr->ps_flags & PS_ZOMBIE) == 0) {
1799 		if ((pr->ps_flags & PS_EMBRYO) == 0 && vm != NULL)
1800 			ki->p_vm_rssize = vm_resident_count(vm);
1801 		calctsru(isthread ? &p->p_tu : &pr->ps_tu, &ut, &st, NULL);
1802 		ki->p_uutime_sec = ut.tv_sec;
1803 		ki->p_uutime_usec = ut.tv_nsec/1000;
1804 		ki->p_ustime_sec = st.tv_sec;
1805 		ki->p_ustime_usec = st.tv_nsec/1000;
1806 
1807 		/* Convert starting uptime to a starting UTC time. */
1808 		nanoboottime(&booted);
1809 		timespecadd(&booted, &pr->ps_start, &utc);
1810 		ki->p_ustart_sec = utc.tv_sec;
1811 		ki->p_ustart_usec = utc.tv_nsec / 1000;
1812 
1813 #ifdef MULTIPROCESSOR
1814 		if (p->p_cpu != NULL)
1815 			ki->p_cpuid = CPU_INFO_UNIT(p->p_cpu);
1816 #endif
1817 	}
1818 
1819 	/* get %cpu and schedule state: just one thread or sum of all? */
1820 	if (isthread) {
1821 		ki->p_pctcpu = p->p_pctcpu;
1822 		ki->p_stat   = p->p_stat;
1823 	} else {
1824 		ki->p_pctcpu = 0;
1825 		ki->p_stat = (pr->ps_flags & PS_ZOMBIE) ? SDEAD : SIDL;
1826 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1827 			ki->p_pctcpu += p->p_pctcpu;
1828 			/* find best state: ONPROC > RUN > STOP > SLEEP > .. */
1829 			if (p->p_stat == SONPROC || ki->p_stat == SONPROC)
1830 				ki->p_stat = SONPROC;
1831 			else if (p->p_stat == SRUN || ki->p_stat == SRUN)
1832 				ki->p_stat = SRUN;
1833 			else if (p->p_stat == SSTOP || ki->p_stat == SSTOP)
1834 				ki->p_stat = SSTOP;
1835 			else if (p->p_stat == SSLEEP)
1836 				ki->p_stat = SSLEEP;
1837 		}
1838 	}
1839 }
1840 
1841 int
1842 sysctl_proc_args(int *name, u_int namelen, void *oldp, size_t *oldlenp,
1843     struct proc *cp)
1844 {
1845 	struct process *vpr;
1846 	pid_t pid;
1847 	struct ps_strings pss;
1848 	struct iovec iov;
1849 	struct uio uio;
1850 	int error, cnt, op;
1851 	size_t limit;
1852 	char **rargv, **vargv;		/* reader vs. victim */
1853 	char *rarg, *varg, *buf;
1854 	struct vmspace *vm;
1855 	vaddr_t ps_strings;
1856 
1857 	if (namelen > 2)
1858 		return (ENOTDIR);
1859 	if (namelen < 2)
1860 		return (EINVAL);
1861 
1862 	pid = name[0];
1863 	op = name[1];
1864 
1865 	switch (op) {
1866 	case KERN_PROC_ARGV:
1867 	case KERN_PROC_NARGV:
1868 	case KERN_PROC_ENV:
1869 	case KERN_PROC_NENV:
1870 		break;
1871 	default:
1872 		return (EOPNOTSUPP);
1873 	}
1874 
1875 	if ((vpr = prfind(pid)) == NULL)
1876 		return (ESRCH);
1877 
1878 	if (oldp == NULL) {
1879 		if (op == KERN_PROC_NARGV || op == KERN_PROC_NENV)
1880 			*oldlenp = sizeof(int);
1881 		else
1882 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
1883 		return (0);
1884 	}
1885 
1886 	/* Either system process or exiting/zombie */
1887 	if (vpr->ps_flags & (PS_SYSTEM | PS_EXITING))
1888 		return (EINVAL);
1889 
1890 	/* Execing - danger. */
1891 	if ((vpr->ps_flags & PS_INEXEC))
1892 		return (EBUSY);
1893 
1894 	/* Only owner or root can get env */
1895 	if ((op == KERN_PROC_NENV || op == KERN_PROC_ENV) &&
1896 	    (vpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
1897 	    (error = suser(cp)) != 0))
1898 		return (error);
1899 
1900 	ps_strings = vpr->ps_strings;
1901 	vm = vpr->ps_vmspace;
1902 	uvmspace_addref(vm);
1903 	vpr = NULL;
1904 
1905 	buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1906 
1907 	iov.iov_base = &pss;
1908 	iov.iov_len = sizeof(pss);
1909 	uio.uio_iov = &iov;
1910 	uio.uio_iovcnt = 1;
1911 	uio.uio_offset = (off_t)ps_strings;
1912 	uio.uio_resid = sizeof(pss);
1913 	uio.uio_segflg = UIO_SYSSPACE;
1914 	uio.uio_rw = UIO_READ;
1915 	uio.uio_procp = cp;
1916 
1917 	if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1918 		goto out;
1919 
1920 	if (op == KERN_PROC_NARGV) {
1921 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nargvstr);
1922 		goto out;
1923 	}
1924 	if (op == KERN_PROC_NENV) {
1925 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nenvstr);
1926 		goto out;
1927 	}
1928 
1929 	if (op == KERN_PROC_ARGV) {
1930 		cnt = pss.ps_nargvstr;
1931 		vargv = pss.ps_argvstr;
1932 	} else {
1933 		cnt = pss.ps_nenvstr;
1934 		vargv = pss.ps_envstr;
1935 	}
1936 
1937 	/* -1 to have space for a terminating NUL */
1938 	limit = *oldlenp - 1;
1939 	*oldlenp = 0;
1940 
1941 	rargv = oldp;
1942 
1943 	/*
1944 	 * *oldlenp - number of bytes copied out into readers buffer.
1945 	 * limit - maximal number of bytes allowed into readers buffer.
1946 	 * rarg - pointer into readers buffer where next arg will be stored.
1947 	 * rargv - pointer into readers buffer where the next rarg pointer
1948 	 *  will be stored.
1949 	 * vargv - pointer into victim address space where the next argument
1950 	 *  will be read.
1951 	 */
1952 
1953 	/* space for cnt pointers and a NULL */
1954 	rarg = (char *)(rargv + cnt + 1);
1955 	*oldlenp += (cnt + 1) * sizeof(char **);
1956 
1957 	while (cnt > 0 && *oldlenp < limit) {
1958 		size_t len, vstrlen;
1959 
1960 		/* Write to readers argv */
1961 		if ((error = copyout(&rarg, rargv, sizeof(rarg))) != 0)
1962 			goto out;
1963 
1964 		/* read the victim argv */
1965 		iov.iov_base = &varg;
1966 		iov.iov_len = sizeof(varg);
1967 		uio.uio_iov = &iov;
1968 		uio.uio_iovcnt = 1;
1969 		uio.uio_offset = (off_t)(vaddr_t)vargv;
1970 		uio.uio_resid = sizeof(varg);
1971 		uio.uio_segflg = UIO_SYSSPACE;
1972 		uio.uio_rw = UIO_READ;
1973 		uio.uio_procp = cp;
1974 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1975 			goto out;
1976 
1977 		if (varg == NULL)
1978 			break;
1979 
1980 		/*
1981 		 * read the victim arg. We must jump through hoops to avoid
1982 		 * crossing a page boundary too much and returning an error.
1983 		 */
1984 more:
1985 		len = PAGE_SIZE - (((vaddr_t)varg) & PAGE_MASK);
1986 		/* leave space for the terminating NUL */
1987 		iov.iov_base = buf;
1988 		iov.iov_len = len;
1989 		uio.uio_iov = &iov;
1990 		uio.uio_iovcnt = 1;
1991 		uio.uio_offset = (off_t)(vaddr_t)varg;
1992 		uio.uio_resid = len;
1993 		uio.uio_segflg = UIO_SYSSPACE;
1994 		uio.uio_rw = UIO_READ;
1995 		uio.uio_procp = cp;
1996 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1997 			goto out;
1998 
1999 		for (vstrlen = 0; vstrlen < len; vstrlen++) {
2000 			if (buf[vstrlen] == '\0')
2001 				break;
2002 		}
2003 
2004 		/* Don't overflow readers buffer. */
2005 		if (*oldlenp + vstrlen + 1 >= limit) {
2006 			error = ENOMEM;
2007 			goto out;
2008 		}
2009 
2010 		if ((error = copyout(buf, rarg, vstrlen)) != 0)
2011 			goto out;
2012 
2013 		*oldlenp += vstrlen;
2014 		rarg += vstrlen;
2015 
2016 		/* The string didn't end in this page? */
2017 		if (vstrlen == len) {
2018 			varg += vstrlen;
2019 			goto more;
2020 		}
2021 
2022 		/* End of string. Terminate it with a NUL */
2023 		buf[0] = '\0';
2024 		if ((error = copyout(buf, rarg, 1)) != 0)
2025 			goto out;
2026 		*oldlenp += 1;
2027 		rarg += 1;
2028 
2029 		vargv++;
2030 		rargv++;
2031 		cnt--;
2032 	}
2033 
2034 	if (*oldlenp >= limit) {
2035 		error = ENOMEM;
2036 		goto out;
2037 	}
2038 
2039 	/* Write the terminating null */
2040 	rarg = NULL;
2041 	error = copyout(&rarg, rargv, sizeof(rarg));
2042 
2043 out:
2044 	uvmspace_free(vm);
2045 	free(buf, M_TEMP, PAGE_SIZE);
2046 	return (error);
2047 }
2048 
2049 int
2050 sysctl_proc_cwd(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2051     struct proc *cp)
2052 {
2053 	struct process *findpr;
2054 	struct vnode *vp;
2055 	pid_t pid;
2056 	int error;
2057 	size_t lenused, len;
2058 	char *path, *bp, *bend;
2059 
2060 	if (namelen > 1)
2061 		return (ENOTDIR);
2062 	if (namelen < 1)
2063 		return (EINVAL);
2064 
2065 	pid = name[0];
2066 	if ((findpr = prfind(pid)) == NULL)
2067 		return (ESRCH);
2068 
2069 	if (oldp == NULL) {
2070 		*oldlenp = MAXPATHLEN * 4;
2071 		return (0);
2072 	}
2073 
2074 	/* Either system process or exiting/zombie */
2075 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2076 		return (EINVAL);
2077 
2078 	/* Only owner or root can get cwd */
2079 	if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2080 	    (error = suser(cp)) != 0)
2081 		return (error);
2082 
2083 	len = *oldlenp;
2084 	if (len > MAXPATHLEN * 4)
2085 		len = MAXPATHLEN * 4;
2086 	else if (len < 2)
2087 		return (ERANGE);
2088 	*oldlenp = 0;
2089 
2090 	/* snag a reference to the vnode before we can sleep */
2091 	vp = findpr->ps_fd->fd_cdir;
2092 	vref(vp);
2093 
2094 	path = malloc(len, M_TEMP, M_WAITOK);
2095 
2096 	bp = &path[len];
2097 	bend = bp;
2098 	*(--bp) = '\0';
2099 
2100 	/* Same as sys__getcwd */
2101 	error = vfs_getcwd_common(vp, NULL,
2102 	    &bp, path, len / 2, GETCWD_CHECK_ACCESS, cp);
2103 	if (error == 0) {
2104 		*oldlenp = lenused = bend - bp;
2105 		error = copyout(bp, oldp, lenused);
2106 	}
2107 
2108 	vrele(vp);
2109 	free(path, M_TEMP, len);
2110 
2111 	return (error);
2112 }
2113 
2114 int
2115 sysctl_proc_nobroadcastkill(int *name, u_int namelen, void *newp, size_t newlen,
2116     void *oldp, size_t *oldlenp, struct proc *cp)
2117 {
2118 	struct process *findpr;
2119 	pid_t pid;
2120 	int error, flag;
2121 
2122 	if (namelen > 1)
2123 		return (ENOTDIR);
2124 	if (namelen < 1)
2125 		return (EINVAL);
2126 
2127 	pid = name[0];
2128 	if ((findpr = prfind(pid)) == NULL)
2129 		return (ESRCH);
2130 
2131 	/* Either system process or exiting/zombie */
2132 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2133 		return (EINVAL);
2134 
2135 	/* Only root can change PS_NOBROADCASTKILL */
2136 	if (newp != NULL && (error = suser(cp)) != 0)
2137 		return (error);
2138 
2139 	/* get the PS_NOBROADCASTKILL flag */
2140 	flag = findpr->ps_flags & PS_NOBROADCASTKILL ? 1 : 0;
2141 
2142 	error = sysctl_int(oldp, oldlenp, newp, newlen, &flag);
2143 	if (error == 0 && newp) {
2144 		if (flag)
2145 			atomic_setbits_int(&findpr->ps_flags,
2146 			    PS_NOBROADCASTKILL);
2147 		else
2148 			atomic_clearbits_int(&findpr->ps_flags,
2149 			    PS_NOBROADCASTKILL);
2150 	}
2151 
2152 	return (error);
2153 }
2154 
2155 /* Arbitrary but reasonable limit for one iteration. */
2156 #define	VMMAP_MAXLEN	MAXPHYS
2157 
2158 int
2159 sysctl_proc_vmmap(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2160     struct proc *cp)
2161 {
2162 	struct process *findpr;
2163 	pid_t pid;
2164 	int error;
2165 	size_t oldlen, len;
2166 	struct kinfo_vmentry *kve, *ukve;
2167 	u_long *ustart, start;
2168 
2169 	if (namelen > 1)
2170 		return (ENOTDIR);
2171 	if (namelen < 1)
2172 		return (EINVAL);
2173 
2174 	/* Provide max buffer length as hint. */
2175 	if (oldp == NULL) {
2176 		if (oldlenp == NULL)
2177 			return (EINVAL);
2178 		else {
2179 			*oldlenp = VMMAP_MAXLEN;
2180 			return (0);
2181 		}
2182 	}
2183 
2184 	pid = name[0];
2185 	if (pid == cp->p_p->ps_pid) {
2186 		/* Self process mapping. */
2187 		findpr = cp->p_p;
2188 	} else if (pid > 0) {
2189 		if ((findpr = prfind(pid)) == NULL)
2190 			return (ESRCH);
2191 
2192 		/* Either system process or exiting/zombie */
2193 		if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2194 			return (EINVAL);
2195 
2196 #if 1
2197 		/* XXX Allow only root for now */
2198 		if ((error = suser(cp)) != 0)
2199 			return (error);
2200 #else
2201 		/* Only owner or root can get vmmap */
2202 		if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2203 		    (error = suser(cp)) != 0)
2204 			return (error);
2205 #endif
2206 	} else {
2207 		/* Only root can get kernel_map */
2208 		if ((error = suser(cp)) != 0)
2209 			return (error);
2210 		findpr = NULL;
2211 	}
2212 
2213 	/* Check the given size. */
2214 	oldlen = *oldlenp;
2215 	if (oldlen == 0 || oldlen % sizeof(*kve) != 0)
2216 		return (EINVAL);
2217 
2218 	/* Deny huge allocation. */
2219 	if (oldlen > VMMAP_MAXLEN)
2220 		return (EINVAL);
2221 
2222 	/*
2223 	 * Iterate from the given address passed as the first element's
2224 	 * kve_start via oldp.
2225 	 */
2226 	ukve = (struct kinfo_vmentry *)oldp;
2227 	ustart = &ukve->kve_start;
2228 	error = copyin(ustart, &start, sizeof(start));
2229 	if (error != 0)
2230 		return (error);
2231 
2232 	/* Allocate wired memory to not block. */
2233 	kve = malloc(oldlen, M_TEMP, M_WAITOK);
2234 
2235 	/* Set the base address and read entries. */
2236 	kve[0].kve_start = start;
2237 	len = oldlen;
2238 	error = fill_vmmap(findpr, kve, &len);
2239 	if (error != 0 && error != ENOMEM)
2240 		goto done;
2241 	if (len == 0)
2242 		goto done;
2243 
2244 	KASSERT(len <= oldlen);
2245 	KASSERT((len % sizeof(struct kinfo_vmentry)) == 0);
2246 
2247 	error = copyout(kve, oldp, len);
2248 
2249 done:
2250 	*oldlenp = len;
2251 
2252 	free(kve, M_TEMP, oldlen);
2253 
2254 	return (error);
2255 }
2256 #endif
2257 
2258 /*
2259  * Initialize disknames/diskstats for export by sysctl. If update is set,
2260  * then we simply update the disk statistics information.
2261  */
2262 int
2263 sysctl_diskinit(int update, struct proc *p)
2264 {
2265 	struct diskstats *sdk;
2266 	struct disk *dk;
2267 	const char *duid;
2268 	int error, changed = 0;
2269 
2270 	KERNEL_ASSERT_LOCKED();
2271 
2272 	if ((error = rw_enter(&sysctl_disklock, RW_WRITE|RW_INTR)) != 0)
2273 		return error;
2274 
2275 	/* Run in a loop, disks may change while malloc sleeps. */
2276 	while (disk_change) {
2277 		int tlen;
2278 
2279 		disk_change = 0;
2280 
2281 		tlen = 0;
2282 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2283 			if (dk->dk_name)
2284 				tlen += strlen(dk->dk_name);
2285 			tlen += 18;	/* label uid + separators */
2286 		}
2287 		tlen++;
2288 
2289 		/*
2290 		 * The sysctl_disklock ensures that no other process can
2291 		 * allocate disknames and diskstats while our malloc sleeps.
2292 		 */
2293 		free(disknames, M_SYSCTL, disknameslen);
2294 		free(diskstats, M_SYSCTL, diskstatslen);
2295 		diskstats = NULL;
2296 		disknames = NULL;
2297 		diskstats = mallocarray(disk_count, sizeof(struct diskstats),
2298 		    M_SYSCTL, M_WAITOK|M_ZERO);
2299 		diskstatslen = disk_count * sizeof(struct diskstats);
2300 		disknames = malloc(tlen, M_SYSCTL, M_WAITOK|M_ZERO);
2301 		disknameslen = tlen;
2302 		disknames[0] = '\0';
2303 		changed = 1;
2304 	}
2305 
2306 	if (changed) {
2307 		int l;
2308 
2309 		l = 0;
2310 		sdk = diskstats;
2311 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2312 			duid = NULL;
2313 			if (dk->dk_label && !duid_iszero(dk->dk_label->d_uid))
2314 				duid = duid_format(dk->dk_label->d_uid);
2315 			snprintf(disknames + l, disknameslen - l, "%s:%s,",
2316 			    dk->dk_name ? dk->dk_name : "",
2317 			    duid ? duid : "");
2318 			l += strlen(disknames + l);
2319 			strlcpy(sdk->ds_name, dk->dk_name,
2320 			    sizeof(sdk->ds_name));
2321 			mtx_enter(&dk->dk_mtx);
2322 			sdk->ds_busy = dk->dk_busy;
2323 			sdk->ds_rxfer = dk->dk_rxfer;
2324 			sdk->ds_wxfer = dk->dk_wxfer;
2325 			sdk->ds_seek = dk->dk_seek;
2326 			sdk->ds_rbytes = dk->dk_rbytes;
2327 			sdk->ds_wbytes = dk->dk_wbytes;
2328 			sdk->ds_attachtime = dk->dk_attachtime;
2329 			sdk->ds_timestamp = dk->dk_timestamp;
2330 			sdk->ds_time = dk->dk_time;
2331 			mtx_leave(&dk->dk_mtx);
2332 			sdk++;
2333 		}
2334 
2335 		/* Eliminate trailing comma */
2336 		if (l != 0)
2337 			disknames[l - 1] = '\0';
2338 	} else if (update) {
2339 		/* Just update, number of drives hasn't changed */
2340 		sdk = diskstats;
2341 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2342 			strlcpy(sdk->ds_name, dk->dk_name,
2343 			    sizeof(sdk->ds_name));
2344 			mtx_enter(&dk->dk_mtx);
2345 			sdk->ds_busy = dk->dk_busy;
2346 			sdk->ds_rxfer = dk->dk_rxfer;
2347 			sdk->ds_wxfer = dk->dk_wxfer;
2348 			sdk->ds_seek = dk->dk_seek;
2349 			sdk->ds_rbytes = dk->dk_rbytes;
2350 			sdk->ds_wbytes = dk->dk_wbytes;
2351 			sdk->ds_attachtime = dk->dk_attachtime;
2352 			sdk->ds_timestamp = dk->dk_timestamp;
2353 			sdk->ds_time = dk->dk_time;
2354 			mtx_leave(&dk->dk_mtx);
2355 			sdk++;
2356 		}
2357 	}
2358 	rw_exit_write(&sysctl_disklock);
2359 	return 0;
2360 }
2361 
2362 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
2363 int
2364 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
2365 {
2366 #ifdef SYSVSEM
2367 	struct sem_sysctl_info *semsi;
2368 #endif
2369 #ifdef SYSVSHM
2370 	struct shm_sysctl_info *shmsi;
2371 #endif
2372 	size_t infosize, dssize, tsize, buflen, bufsiz;
2373 	int i, nds, error, ret;
2374 	void *buf;
2375 
2376 	if (namelen != 1)
2377 		return (EINVAL);
2378 
2379 	buflen = *sizep;
2380 
2381 	switch (*name) {
2382 	case KERN_SYSVIPC_MSG_INFO:
2383 #ifdef SYSVMSG
2384 		return (sysctl_sysvmsg(name, namelen, where, sizep));
2385 #else
2386 		return (EOPNOTSUPP);
2387 #endif
2388 	case KERN_SYSVIPC_SEM_INFO:
2389 #ifdef SYSVSEM
2390 		infosize = sizeof(semsi->seminfo);
2391 		nds = seminfo.semmni;
2392 		dssize = sizeof(semsi->semids[0]);
2393 		break;
2394 #else
2395 		return (EOPNOTSUPP);
2396 #endif
2397 	case KERN_SYSVIPC_SHM_INFO:
2398 #ifdef SYSVSHM
2399 		infosize = sizeof(shmsi->shminfo);
2400 		nds = shminfo.shmmni;
2401 		dssize = sizeof(shmsi->shmids[0]);
2402 		break;
2403 #else
2404 		return (EOPNOTSUPP);
2405 #endif
2406 	default:
2407 		return (EINVAL);
2408 	}
2409 	tsize = infosize + (nds * dssize);
2410 
2411 	/* Return just the total size required. */
2412 	if (where == NULL) {
2413 		*sizep = tsize;
2414 		return (0);
2415 	}
2416 
2417 	/* Not enough room for even the info struct. */
2418 	if (buflen < infosize) {
2419 		*sizep = 0;
2420 		return (ENOMEM);
2421 	}
2422 	bufsiz = min(tsize, buflen);
2423 	buf = malloc(bufsiz, M_TEMP, M_WAITOK|M_ZERO);
2424 
2425 	switch (*name) {
2426 #ifdef SYSVSEM
2427 	case KERN_SYSVIPC_SEM_INFO:
2428 		semsi = (struct sem_sysctl_info *)buf;
2429 		semsi->seminfo = seminfo;
2430 		break;
2431 #endif
2432 #ifdef SYSVSHM
2433 	case KERN_SYSVIPC_SHM_INFO:
2434 		shmsi = (struct shm_sysctl_info *)buf;
2435 		shmsi->shminfo = shminfo;
2436 		break;
2437 #endif
2438 	}
2439 	buflen -= infosize;
2440 
2441 	ret = 0;
2442 	if (buflen > 0) {
2443 		/* Fill in the IPC data structures.  */
2444 		for (i = 0; i < nds; i++) {
2445 			if (buflen < dssize) {
2446 				ret = ENOMEM;
2447 				break;
2448 			}
2449 			switch (*name) {
2450 #ifdef SYSVSEM
2451 			case KERN_SYSVIPC_SEM_INFO:
2452 				if (sema[i] != NULL)
2453 					memcpy(&semsi->semids[i], sema[i],
2454 					    dssize);
2455 				else
2456 					memset(&semsi->semids[i], 0, dssize);
2457 				break;
2458 #endif
2459 #ifdef SYSVSHM
2460 			case KERN_SYSVIPC_SHM_INFO:
2461 				if (shmsegs[i] != NULL)
2462 					memcpy(&shmsi->shmids[i], shmsegs[i],
2463 					    dssize);
2464 				else
2465 					memset(&shmsi->shmids[i], 0, dssize);
2466 				break;
2467 #endif
2468 			}
2469 			buflen -= dssize;
2470 		}
2471 	}
2472 	*sizep -= buflen;
2473 	error = copyout(buf, where, *sizep);
2474 	free(buf, M_TEMP, bufsiz);
2475 	/* If copyout succeeded, use return code set earlier. */
2476 	return (error ? error : ret);
2477 }
2478 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
2479 
2480 #ifndef	SMALL_KERNEL
2481 
2482 int
2483 sysctl_intrcnt(int *name, u_int namelen, void *oldp, size_t *oldlenp)
2484 {
2485 	return (evcount_sysctl(name, namelen, oldp, oldlenp, NULL, 0));
2486 }
2487 
2488 
2489 int
2490 sysctl_sensors(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2491     void *newp, size_t newlen)
2492 {
2493 	struct ksensor *ks;
2494 	struct sensor *us;
2495 	struct ksensordev *ksd;
2496 	struct sensordev *usd;
2497 	int dev, numt, ret;
2498 	enum sensor_type type;
2499 
2500 	if (namelen != 1 && namelen != 3)
2501 		return (ENOTDIR);
2502 
2503 	dev = name[0];
2504 	if (namelen == 1) {
2505 		ret = sensordev_get(dev, &ksd);
2506 		if (ret)
2507 			return (ret);
2508 
2509 		/* Grab a copy, to clear the kernel pointers */
2510 		usd = malloc(sizeof(*usd), M_TEMP, M_WAITOK|M_ZERO);
2511 		usd->num = ksd->num;
2512 		strlcpy(usd->xname, ksd->xname, sizeof(usd->xname));
2513 		memcpy(usd->maxnumt, ksd->maxnumt, sizeof(usd->maxnumt));
2514 		usd->sensors_count = ksd->sensors_count;
2515 
2516 		ret = sysctl_rdstruct(oldp, oldlenp, newp, usd,
2517 		    sizeof(struct sensordev));
2518 
2519 		free(usd, M_TEMP, sizeof(*usd));
2520 		return (ret);
2521 	}
2522 
2523 	type = name[1];
2524 	numt = name[2];
2525 
2526 	ret = sensor_find(dev, type, numt, &ks);
2527 	if (ret)
2528 		return (ret);
2529 
2530 	/* Grab a copy, to clear the kernel pointers */
2531 	us = malloc(sizeof(*us), M_TEMP, M_WAITOK|M_ZERO);
2532 	memcpy(us->desc, ks->desc, sizeof(us->desc));
2533 	us->tv = ks->tv;
2534 	us->value = ks->value;
2535 	us->type = ks->type;
2536 	us->status = ks->status;
2537 	us->numt = ks->numt;
2538 	us->flags = ks->flags;
2539 
2540 	ret = sysctl_rdstruct(oldp, oldlenp, newp, us,
2541 	    sizeof(struct sensor));
2542 	free(us, M_TEMP, sizeof(*us));
2543 	return (ret);
2544 }
2545 #endif	/* SMALL_KERNEL */
2546 
2547 int
2548 sysctl_cptime2(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2549     void *newp, size_t newlen)
2550 {
2551 	CPU_INFO_ITERATOR cii;
2552 	struct cpu_info *ci;
2553 	int found = 0;
2554 
2555 	if (namelen != 1)
2556 		return (ENOTDIR);
2557 
2558 	CPU_INFO_FOREACH(cii, ci) {
2559 		if (name[0] == CPU_INFO_UNIT(ci)) {
2560 			found = 1;
2561 			break;
2562 		}
2563 	}
2564 	if (!found)
2565 		return (ENOENT);
2566 
2567 	return (sysctl_rdstruct(oldp, oldlenp, newp,
2568 	    &ci->ci_schedstate.spc_cp_time,
2569 	    sizeof(ci->ci_schedstate.spc_cp_time)));
2570 }
2571 
2572 #if NAUDIO > 0
2573 int
2574 sysctl_audio(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2575     void *newp, size_t newlen)
2576 {
2577 	if (namelen != 1)
2578 		return (ENOTDIR);
2579 
2580 	if (name[0] != KERN_AUDIO_RECORD)
2581 		return (ENOENT);
2582 
2583 	return (sysctl_int(oldp, oldlenp, newp, newlen, &audio_record_enable));
2584 }
2585 #endif
2586 
2587 #if NVIDEO > 0
2588 int
2589 sysctl_video(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2590     void *newp, size_t newlen)
2591 {
2592 	if (namelen != 1)
2593 		return (ENOTDIR);
2594 
2595 	if (name[0] != KERN_VIDEO_RECORD)
2596 		return (ENOENT);
2597 
2598 	return (sysctl_int(oldp, oldlenp, newp, newlen, &video_record_enable));
2599 }
2600 #endif
2601 
2602 int
2603 sysctl_cpustats(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2604     void *newp, size_t newlen)
2605 {
2606 	CPU_INFO_ITERATOR cii;
2607 	struct cpustats cs;
2608 	struct cpu_info *ci;
2609 	int found = 0;
2610 
2611 	if (namelen != 1)
2612 		return (ENOTDIR);
2613 
2614 	CPU_INFO_FOREACH(cii, ci) {
2615 		if (name[0] == CPU_INFO_UNIT(ci)) {
2616 			found = 1;
2617 			break;
2618 		}
2619 	}
2620 	if (!found)
2621 		return (ENOENT);
2622 
2623 	memset(&cs, 0, sizeof cs);
2624 	memcpy(&cs.cs_time, &ci->ci_schedstate.spc_cp_time, sizeof(cs.cs_time));
2625 	cs.cs_flags = 0;
2626 	if (cpu_is_online(ci))
2627 		cs.cs_flags |= CPUSTATS_ONLINE;
2628 
2629 	return (sysctl_rdstruct(oldp, oldlenp, newp, &cs, sizeof(cs)));
2630 }
2631 
2632 int
2633 sysctl_utc_offset(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2634 {
2635 	struct timespec adjusted, now;
2636 	int adjustment_seconds, error, new_offset_minutes, old_offset_minutes;
2637 
2638 	old_offset_minutes = utc_offset / 60;	/* seconds -> minutes */
2639 	new_offset_minutes = old_offset_minutes;
2640 	error = sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
2641 	     &new_offset_minutes);
2642 	if (error)
2643 		return error;
2644 	if (new_offset_minutes < -24 * 60 || new_offset_minutes > 24 * 60)
2645 		return EINVAL;
2646 	if (new_offset_minutes == old_offset_minutes)
2647 		return 0;
2648 
2649 	utc_offset = new_offset_minutes * 60;	/* minutes -> seconds */
2650 	adjustment_seconds = (new_offset_minutes - old_offset_minutes) * 60;
2651 
2652 	nanotime(&now);
2653 	adjusted = now;
2654 	adjusted.tv_sec -= adjustment_seconds;
2655 	tc_setrealtimeclock(&adjusted);
2656 	resettodr();
2657 
2658 	return 0;
2659 }
2660