xref: /openbsd-src/sys/kern/kern_sysctl.c (revision 25c4e8bd056e974b28f4a0ffd39d76c190a56013)
1 /*	$OpenBSD: kern_sysctl.c,v 1.403 2022/07/05 15:06:16 visa Exp $	*/
2 /*	$NetBSD: kern_sysctl.c,v 1.17 1996/05/20 17:49:05 mrg Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Mike Karels at Berkeley Software Design, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)kern_sysctl.c	8.4 (Berkeley) 4/14/94
36  */
37 
38 /*
39  * sysctl system call.
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/pool.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/filedesc.h>
53 #include <sys/vnode.h>
54 #include <sys/unistd.h>
55 #include <sys/buf.h>
56 #include <sys/ioctl.h>
57 #include <sys/tty.h>
58 #include <sys/disklabel.h>
59 #include <sys/disk.h>
60 #include <sys/sysctl.h>
61 #include <sys/msgbuf.h>
62 #include <sys/vmmeter.h>
63 #include <sys/namei.h>
64 #include <sys/exec.h>
65 #include <sys/mbuf.h>
66 #include <sys/percpu.h>
67 #include <sys/sensors.h>
68 #include <sys/pipe.h>
69 #include <sys/eventvar.h>
70 #include <sys/socketvar.h>
71 #include <sys/socket.h>
72 #include <sys/domain.h>
73 #include <sys/protosw.h>
74 #include <sys/pledge.h>
75 #include <sys/timetc.h>
76 #include <sys/evcount.h>
77 #include <sys/un.h>
78 #include <sys/unpcb.h>
79 #include <sys/sched.h>
80 #include <sys/mount.h>
81 #include <sys/syscallargs.h>
82 #include <sys/wait.h>
83 #include <sys/witness.h>
84 
85 #include <uvm/uvm_extern.h>
86 
87 #include <dev/cons.h>
88 
89 #include <net/route.h>
90 #include <netinet/in.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/ip6.h>
95 #include <netinet/tcp.h>
96 #include <netinet/tcp_timer.h>
97 #include <netinet/tcp_var.h>
98 #include <netinet/udp.h>
99 #include <netinet/udp_var.h>
100 #include <netinet6/ip6_var.h>
101 
102 #ifdef DDB
103 #include <ddb/db_var.h>
104 #endif
105 
106 #ifdef SYSVMSG
107 #include <sys/msg.h>
108 #endif
109 #ifdef SYSVSEM
110 #include <sys/sem.h>
111 #endif
112 #ifdef SYSVSHM
113 #include <sys/shm.h>
114 #endif
115 
116 #include "audio.h"
117 #include "dt.h"
118 #include "pf.h"
119 #include "video.h"
120 
121 extern struct forkstat forkstat;
122 extern struct nchstats nchstats;
123 extern int fscale;
124 extern fixpt_t ccpu;
125 extern long numvnodes;
126 extern int allowdt;
127 extern int audio_record_enable;
128 extern int video_record_enable;
129 
130 int allowkmem;
131 
132 int sysctl_diskinit(int, struct proc *);
133 int sysctl_proc_args(int *, u_int, void *, size_t *, struct proc *);
134 int sysctl_proc_cwd(int *, u_int, void *, size_t *, struct proc *);
135 int sysctl_proc_nobroadcastkill(int *, u_int, void *, size_t, void *, size_t *,
136 	struct proc *);
137 int sysctl_proc_vmmap(int *, u_int, void *, size_t *, struct proc *);
138 int sysctl_intrcnt(int *, u_int, void *, size_t *);
139 int sysctl_sensors(int *, u_int, void *, size_t *, void *, size_t);
140 int sysctl_cptime2(int *, u_int, void *, size_t *, void *, size_t);
141 int sysctl_audio(int *, u_int, void *, size_t *, void *, size_t);
142 int sysctl_video(int *, u_int, void *, size_t *, void *, size_t);
143 int sysctl_cpustats(int *, u_int, void *, size_t *, void *, size_t);
144 int sysctl_utc_offset(void *, size_t *, void *, size_t);
145 
146 void fill_file(struct kinfo_file *, struct file *, struct filedesc *, int,
147     struct vnode *, struct process *, struct proc *, struct socket *, int);
148 void fill_kproc(struct process *, struct kinfo_proc *, struct proc *, int);
149 
150 int (*cpu_cpuspeed)(int *);
151 
152 /*
153  * Lock to avoid too many processes vslocking a large amount of memory
154  * at the same time.
155  */
156 struct rwlock sysctl_lock = RWLOCK_INITIALIZER("sysctllk");
157 struct rwlock sysctl_disklock = RWLOCK_INITIALIZER("sysctldlk");
158 
159 int
160 sys_sysctl(struct proc *p, void *v, register_t *retval)
161 {
162 	struct sys_sysctl_args /* {
163 		syscallarg(const int *) name;
164 		syscallarg(u_int) namelen;
165 		syscallarg(void *) old;
166 		syscallarg(size_t *) oldlenp;
167 		syscallarg(void *) new;
168 		syscallarg(size_t) newlen;
169 	} */ *uap = v;
170 	int error, dolock = 1;
171 	size_t savelen = 0, oldlen = 0;
172 	sysctlfn *fn;
173 	int name[CTL_MAXNAME];
174 
175 	if (SCARG(uap, new) != NULL &&
176 	    (error = suser(p)))
177 		return (error);
178 	/*
179 	 * all top-level sysctl names are non-terminal
180 	 */
181 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
182 		return (EINVAL);
183 	error = copyin(SCARG(uap, name), name,
184 		       SCARG(uap, namelen) * sizeof(int));
185 	if (error)
186 		return (error);
187 
188 	error = pledge_sysctl(p, SCARG(uap, namelen),
189 	    name, SCARG(uap, new));
190 	if (error)
191 		return (error);
192 
193 	switch (name[0]) {
194 	case CTL_KERN:
195 		fn = kern_sysctl;
196 		break;
197 	case CTL_HW:
198 		fn = hw_sysctl;
199 		break;
200 	case CTL_VM:
201 		fn = uvm_sysctl;
202 		break;
203 	case CTL_NET:
204 		fn = net_sysctl;
205 		break;
206 	case CTL_FS:
207 		fn = fs_sysctl;
208 		break;
209 	case CTL_VFS:
210 		fn = vfs_sysctl;
211 		break;
212 	case CTL_MACHDEP:
213 		fn = cpu_sysctl;
214 		break;
215 #ifdef DEBUG_SYSCTL
216 	case CTL_DEBUG:
217 		fn = debug_sysctl;
218 		break;
219 #endif
220 #ifdef DDB
221 	case CTL_DDB:
222 		fn = ddb_sysctl;
223 		break;
224 #endif
225 	default:
226 		return (EOPNOTSUPP);
227 	}
228 
229 	if (SCARG(uap, oldlenp) &&
230 	    (error = copyin(SCARG(uap, oldlenp), &oldlen, sizeof(oldlen))))
231 		return (error);
232 	if (SCARG(uap, old) != NULL) {
233 		if ((error = rw_enter(&sysctl_lock, RW_WRITE|RW_INTR)) != 0)
234 			return (error);
235 		if (dolock) {
236 			if (atop(oldlen) > uvmexp.wiredmax - uvmexp.wired) {
237 				rw_exit_write(&sysctl_lock);
238 				return (ENOMEM);
239 			}
240 			error = uvm_vslock(p, SCARG(uap, old), oldlen,
241 			    PROT_READ | PROT_WRITE);
242 			if (error) {
243 				rw_exit_write(&sysctl_lock);
244 				return (error);
245 			}
246 		}
247 		savelen = oldlen;
248 	}
249 	error = (*fn)(&name[1], SCARG(uap, namelen) - 1, SCARG(uap, old),
250 	    &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
251 	if (SCARG(uap, old) != NULL) {
252 		if (dolock)
253 			uvm_vsunlock(p, SCARG(uap, old), savelen);
254 		rw_exit_write(&sysctl_lock);
255 	}
256 	if (error)
257 		return (error);
258 	if (SCARG(uap, oldlenp))
259 		error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen));
260 	return (error);
261 }
262 
263 /*
264  * Attributes stored in the kernel.
265  */
266 char hostname[MAXHOSTNAMELEN];
267 int hostnamelen;
268 char domainname[MAXHOSTNAMELEN];
269 int domainnamelen;
270 long hostid;
271 char *disknames = NULL;
272 size_t disknameslen;
273 struct diskstats *diskstats = NULL;
274 size_t diskstatslen;
275 int securelevel;
276 
277 /* morally const values reported by sysctl_bounded_arr */
278 static int arg_max = ARG_MAX;
279 static int openbsd = OpenBSD;
280 static int posix_version = _POSIX_VERSION;
281 static int ngroups_max = NGROUPS_MAX;
282 static int int_zero = 0;
283 static int int_one = 1;
284 static int maxpartitions = MAXPARTITIONS;
285 static int raw_part = RAW_PART;
286 
287 extern int somaxconn, sominconn;
288 extern int nosuidcoredump;
289 extern int maxlocksperuid;
290 extern int uvm_wxabort;
291 extern int global_ptrace;
292 
293 const struct sysctl_bounded_args kern_vars[] = {
294 	{KERN_OSREV, &openbsd, SYSCTL_INT_READONLY},
295 	{KERN_MAXVNODES, &maxvnodes, 0, INT_MAX},
296 	{KERN_MAXPROC, &maxprocess, 0, INT_MAX},
297 	{KERN_MAXFILES, &maxfiles, 0, INT_MAX},
298 	{KERN_NFILES, &numfiles, SYSCTL_INT_READONLY},
299 	{KERN_TTYCOUNT, &tty_count, SYSCTL_INT_READONLY},
300 	{KERN_ARGMAX, &arg_max, SYSCTL_INT_READONLY},
301 	{KERN_NSELCOLL, &int_zero, SYSCTL_INT_READONLY},
302 	{KERN_POSIX1, &posix_version, SYSCTL_INT_READONLY},
303 	{KERN_NGROUPS, &ngroups_max, SYSCTL_INT_READONLY},
304 	{KERN_JOB_CONTROL, &int_one, SYSCTL_INT_READONLY},
305 	{KERN_SAVED_IDS, &int_one, SYSCTL_INT_READONLY},
306 	{KERN_MAXPARTITIONS, &maxpartitions, SYSCTL_INT_READONLY},
307 	{KERN_RAWPARTITION, &raw_part, SYSCTL_INT_READONLY},
308 	{KERN_MAXTHREAD, &maxthread, 0, INT_MAX},
309 	{KERN_NTHREADS, &nthreads, SYSCTL_INT_READONLY},
310 	{KERN_SOMAXCONN, &somaxconn, 0, SHRT_MAX},
311 	{KERN_SOMINCONN, &sominconn, 0, SHRT_MAX},
312 	{KERN_NOSUIDCOREDUMP, &nosuidcoredump, 0, 3},
313 	{KERN_FSYNC, &int_one, SYSCTL_INT_READONLY},
314 	{KERN_SYSVMSG,
315 #ifdef SYSVMSG
316 	 &int_one,
317 #else
318 	 &int_zero,
319 #endif
320 	 SYSCTL_INT_READONLY},
321 	{KERN_SYSVSEM,
322 #ifdef SYSVSEM
323 	 &int_one,
324 #else
325 	 &int_zero,
326 #endif
327 	 SYSCTL_INT_READONLY},
328 	{KERN_SYSVSHM,
329 #ifdef SYSVSHM
330 	 &int_one,
331 #else
332 	 &int_zero,
333 #endif
334 	 SYSCTL_INT_READONLY},
335 	{KERN_FSCALE, &fscale, SYSCTL_INT_READONLY},
336 	{KERN_CCPU, &ccpu, SYSCTL_INT_READONLY},
337 	{KERN_NPROCS, &nprocesses, SYSCTL_INT_READONLY},
338 	{KERN_SPLASSERT, &splassert_ctl, 0, 3},
339 	{KERN_MAXLOCKSPERUID, &maxlocksperuid, 0, INT_MAX},
340 	{KERN_WXABORT, &uvm_wxabort, 0, 1},
341 	{KERN_NETLIVELOCKS, &int_zero, SYSCTL_INT_READONLY},
342 #ifdef PTRACE
343 	{KERN_GLOBAL_PTRACE, &global_ptrace, 0, 1},
344 #endif
345 };
346 
347 int
348 kern_sysctl_dirs(int top_name, int *name, u_int namelen,
349     void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p)
350 {
351 	switch (top_name) {
352 #ifndef SMALL_KERNEL
353 	case KERN_PROC:
354 		return (sysctl_doproc(name, namelen, oldp, oldlenp));
355 	case KERN_PROC_ARGS:
356 		return (sysctl_proc_args(name, namelen, oldp, oldlenp, p));
357 	case KERN_PROC_CWD:
358 		return (sysctl_proc_cwd(name, namelen, oldp, oldlenp, p));
359 	case KERN_PROC_NOBROADCASTKILL:
360 		return (sysctl_proc_nobroadcastkill(name, namelen,
361 		     newp, newlen, oldp, oldlenp, p));
362 	case KERN_PROC_VMMAP:
363 		return (sysctl_proc_vmmap(name, namelen, oldp, oldlenp, p));
364 	case KERN_FILE:
365 		return (sysctl_file(name, namelen, oldp, oldlenp, p));
366 #endif
367 #if defined(GPROF) || defined(DDBPROF)
368 	case KERN_PROF:
369 		return (sysctl_doprof(name, namelen, oldp, oldlenp,
370 		    newp, newlen));
371 #endif
372 	case KERN_MALLOCSTATS:
373 		return (sysctl_malloc(name, namelen, oldp, oldlenp,
374 		    newp, newlen, p));
375 	case KERN_TTY:
376 		return (sysctl_tty(name, namelen, oldp, oldlenp,
377 		    newp, newlen));
378 	case KERN_POOL:
379 		return (sysctl_dopool(name, namelen, oldp, oldlenp));
380 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
381 	case KERN_SYSVIPC_INFO:
382 		return (sysctl_sysvipc(name, namelen, oldp, oldlenp));
383 #endif
384 #ifdef SYSVSEM
385 	case KERN_SEMINFO:
386 		return (sysctl_sysvsem(name, namelen, oldp, oldlenp,
387 		    newp, newlen));
388 #endif
389 #ifdef SYSVSHM
390 	case KERN_SHMINFO:
391 		return (sysctl_sysvshm(name, namelen, oldp, oldlenp,
392 		    newp, newlen));
393 #endif
394 #ifndef SMALL_KERNEL
395 	case KERN_INTRCNT:
396 		return (sysctl_intrcnt(name, namelen, oldp, oldlenp));
397 	case KERN_WATCHDOG:
398 		return (sysctl_wdog(name, namelen, oldp, oldlenp,
399 		    newp, newlen));
400 #endif
401 #ifndef SMALL_KERNEL
402 	case KERN_EVCOUNT:
403 		return (evcount_sysctl(name, namelen, oldp, oldlenp,
404 		    newp, newlen));
405 #endif
406 	case KERN_TIMECOUNTER:
407 		return (sysctl_tc(name, namelen, oldp, oldlenp, newp, newlen));
408 	case KERN_CPTIME2:
409 		return (sysctl_cptime2(name, namelen, oldp, oldlenp,
410 		    newp, newlen));
411 #ifdef WITNESS
412 	case KERN_WITNESSWATCH:
413 		return witness_sysctl_watch(oldp, oldlenp, newp, newlen);
414 	case KERN_WITNESS:
415 		return witness_sysctl(name, namelen, oldp, oldlenp,
416 		    newp, newlen);
417 #endif
418 #if NAUDIO > 0
419 	case KERN_AUDIO:
420 		return (sysctl_audio(name, namelen, oldp, oldlenp,
421 		    newp, newlen));
422 #endif
423 #if NVIDEO > 0
424 	case KERN_VIDEO:
425 		return (sysctl_video(name, namelen, oldp, oldlenp,
426 		    newp, newlen));
427 #endif
428 	case KERN_CPUSTATS:
429 		return (sysctl_cpustats(name, namelen, oldp, oldlenp,
430 		    newp, newlen));
431 	default:
432 		return (ENOTDIR);	/* overloaded */
433 	}
434 }
435 
436 /*
437  * kernel related system variables.
438  */
439 int
440 kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
441     size_t newlen, struct proc *p)
442 {
443 	int error, level, inthostid, stackgap;
444 	dev_t dev;
445 	extern int pool_debug;
446 
447 	/* dispatch the non-terminal nodes first */
448 	if (namelen != 1) {
449 		return kern_sysctl_dirs(name[0], name + 1, namelen - 1,
450 		    oldp, oldlenp, newp, newlen, p);
451 	}
452 
453 	switch (name[0]) {
454 	case KERN_OSTYPE:
455 		return (sysctl_rdstring(oldp, oldlenp, newp, ostype));
456 	case KERN_OSRELEASE:
457 		return (sysctl_rdstring(oldp, oldlenp, newp, osrelease));
458 	case KERN_OSVERSION:
459 		return (sysctl_rdstring(oldp, oldlenp, newp, osversion));
460 	case KERN_VERSION:
461 		return (sysctl_rdstring(oldp, oldlenp, newp, version));
462 	case KERN_NUMVNODES:  /* XXX numvnodes is a long */
463 		return (sysctl_rdint(oldp, oldlenp, newp, numvnodes));
464 	case KERN_SECURELVL:
465 		level = securelevel;
466 		if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) ||
467 		    newp == NULL)
468 			return (error);
469 		if ((securelevel > 0 || level < -1) &&
470 		    level < securelevel && p->p_p->ps_pid != 1)
471 			return (EPERM);
472 		securelevel = level;
473 		return (0);
474 #if NDT > 0
475 	case KERN_ALLOWDT:
476 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
477 		    &allowdt));
478 #endif
479 	case KERN_ALLOWKMEM:
480 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
481 		    &allowkmem));
482 	case KERN_HOSTNAME:
483 		error = sysctl_tstring(oldp, oldlenp, newp, newlen,
484 		    hostname, sizeof(hostname));
485 		if (newp && !error)
486 			hostnamelen = newlen;
487 		return (error);
488 	case KERN_DOMAINNAME:
489 		error = sysctl_tstring(oldp, oldlenp, newp, newlen,
490 		    domainname, sizeof(domainname));
491 		if (newp && !error)
492 			domainnamelen = newlen;
493 		return (error);
494 	case KERN_HOSTID:
495 		inthostid = hostid;  /* XXX assumes sizeof long <= sizeof int */
496 		error =  sysctl_int(oldp, oldlenp, newp, newlen, &inthostid);
497 		hostid = inthostid;
498 		return (error);
499 	case KERN_CLOCKRATE:
500 		return (sysctl_clockrate(oldp, oldlenp, newp));
501 	case KERN_BOOTTIME: {
502 		struct timeval bt;
503 		memset(&bt, 0, sizeof bt);
504 		microboottime(&bt);
505 		return (sysctl_rdstruct(oldp, oldlenp, newp, &bt, sizeof bt));
506 	  }
507 	case KERN_MBSTAT: {
508 		extern struct cpumem *mbstat;
509 		uint64_t counters[MBSTAT_COUNT];
510 		struct mbstat mbs;
511 		unsigned int i;
512 
513 		memset(&mbs, 0, sizeof(mbs));
514 		counters_read(mbstat, counters, MBSTAT_COUNT);
515 		for (i = 0; i < MBSTAT_TYPES; i++)
516 			mbs.m_mtypes[i] = counters[i];
517 
518 		mbs.m_drops = counters[MBSTAT_DROPS];
519 		mbs.m_wait = counters[MBSTAT_WAIT];
520 		mbs.m_drain = counters[MBSTAT_DRAIN];
521 
522 		return (sysctl_rdstruct(oldp, oldlenp, newp,
523 		    &mbs, sizeof(mbs)));
524 	}
525 	case KERN_MSGBUFSIZE:
526 	case KERN_CONSBUFSIZE: {
527 		struct msgbuf *mp;
528 		mp = (name[0] == KERN_MSGBUFSIZE) ? msgbufp : consbufp;
529 		/*
530 		 * deal with cases where the message buffer has
531 		 * become corrupted.
532 		 */
533 		if (!mp || mp->msg_magic != MSG_MAGIC)
534 			return (ENXIO);
535 		return (sysctl_rdint(oldp, oldlenp, newp, mp->msg_bufs));
536 	}
537 	case KERN_CONSBUF:
538 		if ((error = suser(p)))
539 			return (error);
540 		/* FALLTHROUGH */
541 	case KERN_MSGBUF: {
542 		struct msgbuf *mp;
543 		mp = (name[0] == KERN_MSGBUF) ? msgbufp : consbufp;
544 		/* see note above */
545 		if (!mp || mp->msg_magic != MSG_MAGIC)
546 			return (ENXIO);
547 		return (sysctl_rdstruct(oldp, oldlenp, newp, mp,
548 		    mp->msg_bufs + offsetof(struct msgbuf, msg_bufc)));
549 	}
550 	case KERN_CPTIME:
551 	{
552 		CPU_INFO_ITERATOR cii;
553 		struct cpu_info *ci;
554 		long cp_time[CPUSTATES];
555 		int i, n = 0;
556 
557 		memset(cp_time, 0, sizeof(cp_time));
558 
559 		CPU_INFO_FOREACH(cii, ci) {
560 			if (!cpu_is_online(ci))
561 				continue;
562 			n++;
563 			for (i = 0; i < CPUSTATES; i++)
564 				cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
565 		}
566 
567 		for (i = 0; i < CPUSTATES; i++)
568 			cp_time[i] /= n;
569 
570 		return (sysctl_rdstruct(oldp, oldlenp, newp, &cp_time,
571 		    sizeof(cp_time)));
572 	}
573 	case KERN_NCHSTATS:
574 		return (sysctl_rdstruct(oldp, oldlenp, newp, &nchstats,
575 		    sizeof(struct nchstats)));
576 	case KERN_FORKSTAT:
577 		return (sysctl_rdstruct(oldp, oldlenp, newp, &forkstat,
578 		    sizeof(struct forkstat)));
579 	case KERN_STACKGAPRANDOM:
580 		stackgap = stackgap_random;
581 		error = sysctl_int(oldp, oldlenp, newp, newlen, &stackgap);
582 		if (error)
583 			return (error);
584 		/*
585 		 * Safety harness.
586 		 */
587 		if ((stackgap < ALIGNBYTES && stackgap != 0) ||
588 		    !powerof2(stackgap) || stackgap >= MAXSSIZ)
589 			return (EINVAL);
590 		stackgap_random = stackgap;
591 		return (0);
592 	case KERN_MAXCLUSTERS: {
593 		int val = nmbclust;
594 		error = sysctl_int(oldp, oldlenp, newp, newlen, &val);
595 		if (error == 0 && val != nmbclust)
596 			error = nmbclust_update(val);
597 		return (error);
598 	}
599 	case KERN_CACHEPCT: {
600 		u_int64_t dmapages;
601 		int opct, pgs;
602 		opct = bufcachepercent;
603 		error = sysctl_int(oldp, oldlenp, newp, newlen,
604 		    &bufcachepercent);
605 		if (error)
606 			return(error);
607 		if (bufcachepercent > 90 || bufcachepercent < 5) {
608 			bufcachepercent = opct;
609 			return (EINVAL);
610 		}
611 		dmapages = uvm_pagecount(&dma_constraint);
612 		if (bufcachepercent != opct) {
613 			pgs = bufcachepercent * dmapages / 100;
614 			bufadjust(pgs); /* adjust bufpages */
615 			bufhighpages = bufpages; /* set high water mark */
616 		}
617 		return(0);
618 	}
619 	case KERN_CONSDEV:
620 		if (cn_tab != NULL)
621 			dev = cn_tab->cn_dev;
622 		else
623 			dev = NODEV;
624 		return sysctl_rdstruct(oldp, oldlenp, newp, &dev, sizeof(dev));
625 	case KERN_POOL_DEBUG: {
626 		int old_pool_debug = pool_debug;
627 
628 		error = sysctl_int(oldp, oldlenp, newp, newlen,
629 		    &pool_debug);
630 		if (error == 0 && pool_debug != old_pool_debug)
631 			pool_reclaim_all();
632 		return (error);
633 	}
634 #if NPF > 0
635 	case KERN_PFSTATUS:
636 		return (pf_sysctl(oldp, oldlenp, newp, newlen));
637 #endif
638 	case KERN_TIMEOUT_STATS:
639 		return (timeout_sysctl(oldp, oldlenp, newp, newlen));
640 	case KERN_UTC_OFFSET:
641 		return (sysctl_utc_offset(oldp, oldlenp, newp, newlen));
642 	default:
643 		return (sysctl_bounded_arr(kern_vars, nitems(kern_vars), name,
644 		    namelen, oldp, oldlenp, newp, newlen));
645 	}
646 	/* NOTREACHED */
647 }
648 
649 /*
650  * hardware related system variables.
651  */
652 char *hw_vendor, *hw_prod, *hw_uuid, *hw_serial, *hw_ver;
653 int allowpowerdown = 1;
654 int hw_power = 1;
655 
656 /* morally const values reported by sysctl_bounded_arr */
657 static int byte_order = BYTE_ORDER;
658 static int page_size = PAGE_SIZE;
659 
660 const struct sysctl_bounded_args hw_vars[] = {
661 	{HW_NCPU, &ncpus, SYSCTL_INT_READONLY},
662 	{HW_NCPUFOUND, &ncpusfound, SYSCTL_INT_READONLY},
663 	{HW_BYTEORDER, &byte_order, SYSCTL_INT_READONLY},
664 	{HW_PAGESIZE, &page_size, SYSCTL_INT_READONLY},
665 	{HW_DISKCOUNT, &disk_count, SYSCTL_INT_READONLY},
666 	{HW_POWER, &hw_power, SYSCTL_INT_READONLY},
667 };
668 
669 int
670 hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
671     size_t newlen, struct proc *p)
672 {
673 	extern char machine[], cpu_model[];
674 	int err, cpuspeed;
675 
676 	/* all sysctl names at this level except sensors are terminal */
677 	if (name[0] != HW_SENSORS && namelen != 1)
678 		return (ENOTDIR);		/* overloaded */
679 
680 	switch (name[0]) {
681 	case HW_MACHINE:
682 		return (sysctl_rdstring(oldp, oldlenp, newp, machine));
683 	case HW_MODEL:
684 		return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model));
685 	case HW_NCPUONLINE:
686 		return (sysctl_rdint(oldp, oldlenp, newp,
687 		    sysctl_hwncpuonline()));
688 	case HW_PHYSMEM:
689 		return (sysctl_rdint(oldp, oldlenp, newp, ptoa(physmem)));
690 	case HW_USERMEM:
691 		return (sysctl_rdint(oldp, oldlenp, newp,
692 		    ptoa(physmem - uvmexp.wired)));
693 	case HW_DISKNAMES:
694 		err = sysctl_diskinit(0, p);
695 		if (err)
696 			return err;
697 		if (disknames)
698 			return (sysctl_rdstring(oldp, oldlenp, newp,
699 			    disknames));
700 		else
701 			return (sysctl_rdstring(oldp, oldlenp, newp, ""));
702 	case HW_DISKSTATS:
703 		err = sysctl_diskinit(1, p);
704 		if (err)
705 			return err;
706 		return (sysctl_rdstruct(oldp, oldlenp, newp, diskstats,
707 		    disk_count * sizeof(struct diskstats)));
708 	case HW_CPUSPEED:
709 		if (!cpu_cpuspeed)
710 			return (EOPNOTSUPP);
711 		err = cpu_cpuspeed(&cpuspeed);
712 		if (err)
713 			return err;
714 		return (sysctl_rdint(oldp, oldlenp, newp, cpuspeed));
715 #ifndef	SMALL_KERNEL
716 	case HW_SENSORS:
717 		return (sysctl_sensors(name + 1, namelen - 1, oldp, oldlenp,
718 		    newp, newlen));
719 	case HW_SETPERF:
720 		return (sysctl_hwsetperf(oldp, oldlenp, newp, newlen));
721 	case HW_PERFPOLICY:
722 		return (sysctl_hwperfpolicy(oldp, oldlenp, newp, newlen));
723 #endif /* !SMALL_KERNEL */
724 	case HW_VENDOR:
725 		if (hw_vendor)
726 			return (sysctl_rdstring(oldp, oldlenp, newp,
727 			    hw_vendor));
728 		else
729 			return (EOPNOTSUPP);
730 	case HW_PRODUCT:
731 		if (hw_prod)
732 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_prod));
733 		else
734 			return (EOPNOTSUPP);
735 	case HW_VERSION:
736 		if (hw_ver)
737 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_ver));
738 		else
739 			return (EOPNOTSUPP);
740 	case HW_SERIALNO:
741 		if (hw_serial)
742 			return (sysctl_rdstring(oldp, oldlenp, newp,
743 			    hw_serial));
744 		else
745 			return (EOPNOTSUPP);
746 	case HW_UUID:
747 		if (hw_uuid)
748 			return (sysctl_rdstring(oldp, oldlenp, newp, hw_uuid));
749 		else
750 			return (EOPNOTSUPP);
751 	case HW_PHYSMEM64:
752 		return (sysctl_rdquad(oldp, oldlenp, newp,
753 		    ptoa((psize_t)physmem)));
754 	case HW_USERMEM64:
755 		return (sysctl_rdquad(oldp, oldlenp, newp,
756 		    ptoa((psize_t)physmem - uvmexp.wired)));
757 	case HW_ALLOWPOWERDOWN:
758 		return (sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
759 		    &allowpowerdown));
760 #ifdef __HAVE_CPU_TOPOLOGY
761 	case HW_SMT:
762 		return (sysctl_hwsmt(oldp, oldlenp, newp, newlen));
763 #endif
764 	default:
765 		return sysctl_bounded_arr(hw_vars, nitems(hw_vars), name,
766 		    namelen, oldp, oldlenp, newp, newlen);
767 	}
768 	/* NOTREACHED */
769 }
770 
771 #ifdef DEBUG_SYSCTL
772 /*
773  * Debugging related system variables.
774  */
775 extern struct ctldebug debug_vfs_busyprt;
776 struct ctldebug debug1, debug2, debug3, debug4;
777 struct ctldebug debug5, debug6, debug7, debug8, debug9;
778 struct ctldebug debug10, debug11, debug12, debug13, debug14;
779 struct ctldebug debug15, debug16, debug17, debug18, debug19;
780 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
781 	&debug_vfs_busyprt,
782 	&debug1, &debug2, &debug3, &debug4,
783 	&debug5, &debug6, &debug7, &debug8, &debug9,
784 	&debug10, &debug11, &debug12, &debug13, &debug14,
785 	&debug15, &debug16, &debug17, &debug18, &debug19,
786 };
787 int
788 debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
789     size_t newlen, struct proc *p)
790 {
791 	struct ctldebug *cdp;
792 
793 	/* all sysctl names at this level are name and field */
794 	if (namelen != 2)
795 		return (ENOTDIR);		/* overloaded */
796 	if (name[0] < 0 || name[0] >= nitems(debugvars))
797 		return (EOPNOTSUPP);
798 	cdp = debugvars[name[0]];
799 	if (cdp->debugname == 0)
800 		return (EOPNOTSUPP);
801 	switch (name[1]) {
802 	case CTL_DEBUG_NAME:
803 		return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname));
804 	case CTL_DEBUG_VALUE:
805 		return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar));
806 	default:
807 		return (EOPNOTSUPP);
808 	}
809 	/* NOTREACHED */
810 }
811 #endif /* DEBUG_SYSCTL */
812 
813 /*
814  * Reads, or writes that lower the value
815  */
816 int
817 sysctl_int_lower(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
818     int *valp)
819 {
820 	unsigned int oval = *valp, val = *valp;
821 	int error;
822 
823 	if (newp == NULL)
824 		return (sysctl_rdint(oldp, oldlenp, newp, val));
825 
826 	if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val)))
827 		return (error);
828 	if (val > oval)
829 		return (EPERM);		/* do not allow raising */
830 	*(unsigned int *)valp = val;
831 	return (0);
832 }
833 
834 /*
835  * Validate parameters and get old / set new parameters
836  * for an integer-valued sysctl function.
837  */
838 int
839 sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp)
840 {
841 	int error = 0;
842 
843 	if (oldp && *oldlenp < sizeof(int))
844 		return (ENOMEM);
845 	if (newp && newlen != sizeof(int))
846 		return (EINVAL);
847 	*oldlenp = sizeof(int);
848 	if (oldp)
849 		error = copyout(valp, oldp, sizeof(int));
850 	if (error == 0 && newp)
851 		error = copyin(newp, valp, sizeof(int));
852 	return (error);
853 }
854 
855 /*
856  * As above, but read-only.
857  */
858 int
859 sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val)
860 {
861 	int error = 0;
862 
863 	if (oldp && *oldlenp < sizeof(int))
864 		return (ENOMEM);
865 	if (newp)
866 		return (EPERM);
867 	*oldlenp = sizeof(int);
868 	if (oldp)
869 		error = copyout((caddr_t)&val, oldp, sizeof(int));
870 	return (error);
871 }
872 
873 /*
874  * Selects between sysctl_rdint and sysctl_int according to securelevel.
875  */
876 int
877 sysctl_securelevel_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
878     int *valp)
879 {
880 	if (securelevel > 0)
881 		return (sysctl_rdint(oldp, oldlenp, newp, *valp));
882 	return (sysctl_int(oldp, oldlenp, newp, newlen, valp));
883 }
884 
885 /*
886  * Read-only or bounded integer values.
887  */
888 int
889 sysctl_int_bounded(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
890     int *valp, int minimum, int maximum)
891 {
892 	int val = *valp;
893 	int error;
894 
895 	/* read only */
896 	if (newp == NULL || minimum > maximum)
897 		return (sysctl_rdint(oldp, oldlenp, newp, val));
898 
899 	if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val)))
900 		return (error);
901 	/* outside limits */
902 	if (val < minimum || maximum < val)
903 		return (EINVAL);
904 	*valp = val;
905 	return (0);
906 }
907 
908 /*
909  * Array of read-only or bounded integer values.
910  */
911 int
912 sysctl_bounded_arr(const struct sysctl_bounded_args *valpp, u_int valplen,
913     int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
914     size_t newlen)
915 {
916 	u_int i;
917 	if (namelen != 1)
918 		return (ENOTDIR);
919 	for (i = 0; i < valplen; ++i) {
920 		if (valpp[i].mib == name[0]) {
921 			return (sysctl_int_bounded(oldp, oldlenp, newp, newlen,
922 			    valpp[i].var, valpp[i].minimum, valpp[i].maximum));
923 		}
924 	}
925 	return (EOPNOTSUPP);
926 }
927 
928 /*
929  * Validate parameters and get old / set new parameters
930  * for an integer-valued sysctl function.
931  */
932 int
933 sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
934     int64_t *valp)
935 {
936 	int error = 0;
937 
938 	if (oldp && *oldlenp < sizeof(int64_t))
939 		return (ENOMEM);
940 	if (newp && newlen != sizeof(int64_t))
941 		return (EINVAL);
942 	*oldlenp = sizeof(int64_t);
943 	if (oldp)
944 		error = copyout(valp, oldp, sizeof(int64_t));
945 	if (error == 0 && newp)
946 		error = copyin(newp, valp, sizeof(int64_t));
947 	return (error);
948 }
949 
950 /*
951  * As above, but read-only.
952  */
953 int
954 sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, int64_t val)
955 {
956 	int error = 0;
957 
958 	if (oldp && *oldlenp < sizeof(int64_t))
959 		return (ENOMEM);
960 	if (newp)
961 		return (EPERM);
962 	*oldlenp = sizeof(int64_t);
963 	if (oldp)
964 		error = copyout((caddr_t)&val, oldp, sizeof(int64_t));
965 	return (error);
966 }
967 
968 /*
969  * Validate parameters and get old / set new parameters
970  * for a string-valued sysctl function.
971  */
972 int
973 sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str,
974     size_t maxlen)
975 {
976 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 0);
977 }
978 
979 int
980 sysctl_tstring(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
981     char *str, size_t maxlen)
982 {
983 	return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 1);
984 }
985 
986 int
987 sysctl__string(void *oldp, size_t *oldlenp, void *newp, size_t newlen,
988     char *str, size_t maxlen, int trunc)
989 {
990 	size_t len;
991 	int error = 0;
992 
993 	len = strlen(str) + 1;
994 	if (oldp && *oldlenp < len) {
995 		if (trunc == 0 || *oldlenp == 0)
996 			return (ENOMEM);
997 	}
998 	if (newp && newlen >= maxlen)
999 		return (EINVAL);
1000 	if (oldp) {
1001 		if (trunc && *oldlenp < len) {
1002 			len = *oldlenp;
1003 			error = copyout(str, oldp, len - 1);
1004 			if (error == 0)
1005 				error = copyout("", (char *)oldp + len - 1, 1);
1006 		} else {
1007 			error = copyout(str, oldp, len);
1008 		}
1009 	}
1010 	*oldlenp = len;
1011 	if (error == 0 && newp) {
1012 		error = copyin(newp, str, newlen);
1013 		str[newlen] = 0;
1014 	}
1015 	return (error);
1016 }
1017 
1018 /*
1019  * As above, but read-only.
1020  */
1021 int
1022 sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str)
1023 {
1024 	size_t len;
1025 	int error = 0;
1026 
1027 	len = strlen(str) + 1;
1028 	if (oldp && *oldlenp < len)
1029 		return (ENOMEM);
1030 	if (newp)
1031 		return (EPERM);
1032 	*oldlenp = len;
1033 	if (oldp)
1034 		error = copyout(str, oldp, len);
1035 	return (error);
1036 }
1037 
1038 /*
1039  * Validate parameters and get old / set new parameters
1040  * for a structure oriented sysctl function.
1041  */
1042 int
1043 sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp,
1044     size_t len)
1045 {
1046 	int error = 0;
1047 
1048 	if (oldp && *oldlenp < len)
1049 		return (ENOMEM);
1050 	if (newp && newlen > len)
1051 		return (EINVAL);
1052 	if (oldp) {
1053 		*oldlenp = len;
1054 		error = copyout(sp, oldp, len);
1055 	}
1056 	if (error == 0 && newp)
1057 		error = copyin(newp, sp, len);
1058 	return (error);
1059 }
1060 
1061 /*
1062  * Validate parameters and get old parameters
1063  * for a structure oriented sysctl function.
1064  */
1065 int
1066 sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp,
1067     size_t len)
1068 {
1069 	int error = 0;
1070 
1071 	if (oldp && *oldlenp < len)
1072 		return (ENOMEM);
1073 	if (newp)
1074 		return (EPERM);
1075 	*oldlenp = len;
1076 	if (oldp)
1077 		error = copyout(sp, oldp, len);
1078 	return (error);
1079 }
1080 
1081 #ifndef SMALL_KERNEL
1082 void
1083 fill_file(struct kinfo_file *kf, struct file *fp, struct filedesc *fdp,
1084 	  int fd, struct vnode *vp, struct process *pr, struct proc *p,
1085 	  struct socket *so, int show_pointers)
1086 {
1087 	struct vattr va;
1088 
1089 	memset(kf, 0, sizeof(*kf));
1090 
1091 	kf->fd_fd = fd;		/* might not really be an fd */
1092 
1093 	if (fp != NULL) {
1094 		if (show_pointers)
1095 			kf->f_fileaddr = PTRTOINT64(fp);
1096 		kf->f_flag = fp->f_flag;
1097 		kf->f_iflags = fp->f_iflags;
1098 		kf->f_type = fp->f_type;
1099 		kf->f_count = fp->f_count;
1100 		if (show_pointers)
1101 			kf->f_ucred = PTRTOINT64(fp->f_cred);
1102 		kf->f_uid = fp->f_cred->cr_uid;
1103 		kf->f_gid = fp->f_cred->cr_gid;
1104 		if (show_pointers)
1105 			kf->f_ops = PTRTOINT64(fp->f_ops);
1106 		if (show_pointers)
1107 			kf->f_data = PTRTOINT64(fp->f_data);
1108 		kf->f_usecount = 0;
1109 
1110 		if (suser(p) == 0 || p->p_ucred->cr_uid == fp->f_cred->cr_uid) {
1111 			mtx_enter(&fp->f_mtx);
1112 			kf->f_offset = fp->f_offset;
1113 			kf->f_rxfer = fp->f_rxfer;
1114 			kf->f_rwfer = fp->f_wxfer;
1115 			kf->f_seek = fp->f_seek;
1116 			kf->f_rbytes = fp->f_rbytes;
1117 			kf->f_wbytes = fp->f_wbytes;
1118 			mtx_leave(&fp->f_mtx);
1119 		} else
1120 			kf->f_offset = -1;
1121 	} else if (vp != NULL) {
1122 		/* fake it */
1123 		kf->f_type = DTYPE_VNODE;
1124 		kf->f_flag = FREAD;
1125 		if (fd == KERN_FILE_TRACE)
1126 			kf->f_flag |= FWRITE;
1127 	} else if (so != NULL) {
1128 		/* fake it */
1129 		kf->f_type = DTYPE_SOCKET;
1130 	}
1131 
1132 	/* information about the object associated with this file */
1133 	switch (kf->f_type) {
1134 	case DTYPE_VNODE:
1135 		if (fp != NULL)
1136 			vp = (struct vnode *)fp->f_data;
1137 
1138 		if (show_pointers)
1139 			kf->v_un = PTRTOINT64(vp->v_un.vu_socket);
1140 		kf->v_type = vp->v_type;
1141 		kf->v_tag = vp->v_tag;
1142 		kf->v_flag = vp->v_flag;
1143 		if (show_pointers)
1144 			kf->v_data = PTRTOINT64(vp->v_data);
1145 		if (show_pointers)
1146 			kf->v_mount = PTRTOINT64(vp->v_mount);
1147 		if (vp->v_mount)
1148 			strlcpy(kf->f_mntonname,
1149 			    vp->v_mount->mnt_stat.f_mntonname,
1150 			    sizeof(kf->f_mntonname));
1151 
1152 		if (VOP_GETATTR(vp, &va, p->p_ucred, p) == 0) {
1153 			kf->va_fileid = va.va_fileid;
1154 			kf->va_mode = MAKEIMODE(va.va_type, va.va_mode);
1155 			kf->va_size = va.va_size;
1156 			kf->va_rdev = va.va_rdev;
1157 			kf->va_fsid = va.va_fsid & 0xffffffff;
1158 			kf->va_nlink = va.va_nlink;
1159 		}
1160 		break;
1161 
1162 	case DTYPE_SOCKET: {
1163 		int locked = 0;
1164 
1165 		if (so == NULL) {
1166 			so = (struct socket *)fp->f_data;
1167 			/* if so is passed as parameter it is already locked */
1168 			switch (so->so_proto->pr_domain->dom_family) {
1169 			case AF_INET:
1170 			case AF_INET6:
1171 				NET_LOCK();
1172 				locked = 1;
1173 				break;
1174 			}
1175 		}
1176 
1177 		kf->so_type = so->so_type;
1178 		kf->so_state = so->so_state;
1179 		if (show_pointers)
1180 			kf->so_pcb = PTRTOINT64(so->so_pcb);
1181 		else
1182 			kf->so_pcb = -1;
1183 		kf->so_protocol = so->so_proto->pr_protocol;
1184 		kf->so_family = so->so_proto->pr_domain->dom_family;
1185 		kf->so_rcv_cc = so->so_rcv.sb_cc;
1186 		kf->so_snd_cc = so->so_snd.sb_cc;
1187 		if (isspliced(so)) {
1188 			if (show_pointers)
1189 				kf->so_splice =
1190 				    PTRTOINT64(so->so_sp->ssp_socket);
1191 			kf->so_splicelen = so->so_sp->ssp_len;
1192 		} else if (issplicedback(so))
1193 			kf->so_splicelen = -1;
1194 		if (so->so_pcb == NULL) {
1195 			if (locked)
1196 				NET_UNLOCK();
1197 			break;
1198 		}
1199 		switch (kf->so_family) {
1200 		case AF_INET: {
1201 			struct inpcb *inpcb = so->so_pcb;
1202 
1203 			NET_ASSERT_LOCKED();
1204 			if (show_pointers)
1205 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1206 			kf->inp_lport = inpcb->inp_lport;
1207 			kf->inp_laddru[0] = inpcb->inp_laddr.s_addr;
1208 			kf->inp_fport = inpcb->inp_fport;
1209 			kf->inp_faddru[0] = inpcb->inp_faddr.s_addr;
1210 			kf->inp_rtableid = inpcb->inp_rtableid;
1211 			if (so->so_type == SOCK_RAW)
1212 				kf->inp_proto = inpcb->inp_ip.ip_p;
1213 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1214 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1215 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1216 				kf->t_snd_wnd = tcpcb->snd_wnd;
1217 				kf->t_snd_cwnd = tcpcb->snd_cwnd;
1218 				kf->t_state = tcpcb->t_state;
1219 			}
1220 			break;
1221 		    }
1222 		case AF_INET6: {
1223 			struct inpcb *inpcb = so->so_pcb;
1224 
1225 			NET_ASSERT_LOCKED();
1226 			if (show_pointers)
1227 				kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb);
1228 			kf->inp_lport = inpcb->inp_lport;
1229 			kf->inp_laddru[0] = inpcb->inp_laddr6.s6_addr32[0];
1230 			kf->inp_laddru[1] = inpcb->inp_laddr6.s6_addr32[1];
1231 			kf->inp_laddru[2] = inpcb->inp_laddr6.s6_addr32[2];
1232 			kf->inp_laddru[3] = inpcb->inp_laddr6.s6_addr32[3];
1233 			kf->inp_fport = inpcb->inp_fport;
1234 			kf->inp_faddru[0] = inpcb->inp_faddr6.s6_addr32[0];
1235 			kf->inp_faddru[1] = inpcb->inp_faddr6.s6_addr32[1];
1236 			kf->inp_faddru[2] = inpcb->inp_faddr6.s6_addr32[2];
1237 			kf->inp_faddru[3] = inpcb->inp_faddr6.s6_addr32[3];
1238 			kf->inp_rtableid = inpcb->inp_rtableid;
1239 			if (so->so_type == SOCK_RAW)
1240 				kf->inp_proto = inpcb->inp_ipv6.ip6_nxt;
1241 			if (so->so_proto->pr_protocol == IPPROTO_TCP) {
1242 				struct tcpcb *tcpcb = (void *)inpcb->inp_ppcb;
1243 				kf->t_rcv_wnd = tcpcb->rcv_wnd;
1244 				kf->t_snd_wnd = tcpcb->snd_wnd;
1245 				kf->t_state = tcpcb->t_state;
1246 			}
1247 			break;
1248 		    }
1249 		case AF_UNIX: {
1250 			struct unpcb *unpcb = so->so_pcb;
1251 
1252 			kf->f_msgcount = unpcb->unp_msgcount;
1253 			if (show_pointers) {
1254 				kf->unp_conn	= PTRTOINT64(unpcb->unp_conn);
1255 				kf->unp_refs	= PTRTOINT64(
1256 				    SLIST_FIRST(&unpcb->unp_refs));
1257 				kf->unp_nextref	= PTRTOINT64(
1258 				    SLIST_NEXT(unpcb, unp_nextref));
1259 				kf->v_un	= PTRTOINT64(unpcb->unp_vnode);
1260 				kf->unp_addr	= PTRTOINT64(unpcb->unp_addr);
1261 			}
1262 			if (unpcb->unp_addr != NULL) {
1263 				struct sockaddr_un *un = mtod(unpcb->unp_addr,
1264 				    struct sockaddr_un *);
1265 				memcpy(kf->unp_path, un->sun_path, un->sun_len
1266 				    - offsetof(struct sockaddr_un,sun_path));
1267 			}
1268 			break;
1269 		    }
1270 		}
1271 		if (locked)
1272 			NET_UNLOCK();
1273 		break;
1274 	    }
1275 
1276 	case DTYPE_PIPE: {
1277 		struct pipe *pipe = (struct pipe *)fp->f_data;
1278 
1279 		if (show_pointers)
1280 			kf->pipe_peer = PTRTOINT64(pipe->pipe_peer);
1281 		kf->pipe_state = pipe->pipe_state;
1282 		break;
1283 	    }
1284 
1285 	case DTYPE_KQUEUE: {
1286 		struct kqueue *kqi = (struct kqueue *)fp->f_data;
1287 
1288 		kf->kq_count = kqi->kq_count;
1289 		kf->kq_state = kqi->kq_state;
1290 		break;
1291 	    }
1292 	}
1293 
1294 	/* per-process information for KERN_FILE_BY[PU]ID */
1295 	if (pr != NULL) {
1296 		kf->p_pid = pr->ps_pid;
1297 		kf->p_uid = pr->ps_ucred->cr_uid;
1298 		kf->p_gid = pr->ps_ucred->cr_gid;
1299 		kf->p_tid = -1;
1300 		strlcpy(kf->p_comm, pr->ps_comm, sizeof(kf->p_comm));
1301 	}
1302 	if (fdp != NULL) {
1303 		fdplock(fdp);
1304 		kf->fd_ofileflags = fdp->fd_ofileflags[fd];
1305 		fdpunlock(fdp);
1306 	}
1307 }
1308 
1309 /*
1310  * Get file structures.
1311  */
1312 int
1313 sysctl_file(int *name, u_int namelen, char *where, size_t *sizep,
1314     struct proc *p)
1315 {
1316 	struct kinfo_file *kf;
1317 	struct filedesc *fdp;
1318 	struct file *fp;
1319 	struct process *pr;
1320 	size_t buflen, elem_size, elem_count, outsize;
1321 	char *dp = where;
1322 	int arg, i, error = 0, needed = 0, matched;
1323 	u_int op;
1324 	int show_pointers;
1325 
1326 	if (namelen > 4)
1327 		return (ENOTDIR);
1328 	if (namelen < 4 || name[2] > sizeof(*kf))
1329 		return (EINVAL);
1330 
1331 	buflen = where != NULL ? *sizep : 0;
1332 	op = name[0];
1333 	arg = name[1];
1334 	elem_size = name[2];
1335 	elem_count = name[3];
1336 	outsize = MIN(sizeof(*kf), elem_size);
1337 
1338 	if (elem_size < 1)
1339 		return (EINVAL);
1340 
1341 	show_pointers = suser(curproc) == 0;
1342 
1343 	kf = malloc(sizeof(*kf), M_TEMP, M_WAITOK);
1344 
1345 #define FILLIT2(fp, fdp, i, vp, pr, so) do {				\
1346 	if (buflen >= elem_size && elem_count > 0) {			\
1347 		fill_file(kf, fp, fdp, i, vp, pr, p, so, show_pointers);\
1348 		error = copyout(kf, dp, outsize);			\
1349 		if (error)						\
1350 			break;						\
1351 		dp += elem_size;					\
1352 		buflen -= elem_size;					\
1353 		elem_count--;						\
1354 	}								\
1355 	needed += elem_size;						\
1356 } while (0)
1357 #define FILLIT(fp, fdp, i, vp, pr) \
1358 	FILLIT2(fp, fdp, i, vp, pr, NULL)
1359 #define FILLSO(so) \
1360 	FILLIT2(NULL, NULL, 0, NULL, NULL, so)
1361 
1362 	switch (op) {
1363 	case KERN_FILE_BYFILE:
1364 		/* use the inp-tables to pick up closed connections, too */
1365 		if (arg == DTYPE_SOCKET) {
1366 			struct inpcb *inp;
1367 
1368 			NET_LOCK();
1369 			mtx_enter(&tcbtable.inpt_mtx);
1370 			TAILQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue)
1371 				FILLSO(inp->inp_socket);
1372 			mtx_leave(&tcbtable.inpt_mtx);
1373 			mtx_enter(&udbtable.inpt_mtx);
1374 			TAILQ_FOREACH(inp, &udbtable.inpt_queue, inp_queue)
1375 				FILLSO(inp->inp_socket);
1376 			mtx_leave(&udbtable.inpt_mtx);
1377 			mtx_enter(&rawcbtable.inpt_mtx);
1378 			TAILQ_FOREACH(inp, &rawcbtable.inpt_queue, inp_queue)
1379 				FILLSO(inp->inp_socket);
1380 			mtx_leave(&rawcbtable.inpt_mtx);
1381 #ifdef INET6
1382 			mtx_enter(&rawin6pcbtable.inpt_mtx);
1383 			TAILQ_FOREACH(inp, &rawin6pcbtable.inpt_queue,
1384 			    inp_queue)
1385 				FILLSO(inp->inp_socket);
1386 			mtx_leave(&rawin6pcbtable.inpt_mtx);
1387 #endif
1388 			NET_UNLOCK();
1389 		}
1390 		fp = NULL;
1391 		while ((fp = fd_iterfile(fp, p)) != NULL) {
1392 			if ((arg == 0 || fp->f_type == arg)) {
1393 				int af, skip = 0;
1394 				if (arg == DTYPE_SOCKET && fp->f_type == arg) {
1395 					af = ((struct socket *)fp->f_data)->
1396 					    so_proto->pr_domain->dom_family;
1397 					if (af == AF_INET || af == AF_INET6)
1398 						skip = 1;
1399 				}
1400 				if (!skip)
1401 					FILLIT(fp, NULL, 0, NULL, NULL);
1402 			}
1403 		}
1404 		break;
1405 	case KERN_FILE_BYPID:
1406 		/* A arg of -1 indicates all processes */
1407 		if (arg < -1) {
1408 			error = EINVAL;
1409 			break;
1410 		}
1411 		matched = 0;
1412 		LIST_FOREACH(pr, &allprocess, ps_list) {
1413 			/*
1414 			 * skip system, exiting, embryonic and undead
1415 			 * processes
1416 			 */
1417 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1418 				continue;
1419 			if (arg > 0 && pr->ps_pid != (pid_t)arg) {
1420 				/* not the pid we are looking for */
1421 				continue;
1422 			}
1423 			matched = 1;
1424 			fdp = pr->ps_fd;
1425 			if (pr->ps_textvp)
1426 				FILLIT(NULL, NULL, KERN_FILE_TEXT, pr->ps_textvp, pr);
1427 			if (fdp->fd_cdir)
1428 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1429 			if (fdp->fd_rdir)
1430 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1431 			if (pr->ps_tracevp)
1432 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1433 			for (i = 0; i < fdp->fd_nfiles; i++) {
1434 				if ((fp = fd_getfile(fdp, i)) == NULL)
1435 					continue;
1436 				FILLIT(fp, fdp, i, NULL, pr);
1437 				FRELE(fp, p);
1438 			}
1439 		}
1440 		if (!matched)
1441 			error = ESRCH;
1442 		break;
1443 	case KERN_FILE_BYUID:
1444 		LIST_FOREACH(pr, &allprocess, ps_list) {
1445 			/*
1446 			 * skip system, exiting, embryonic and undead
1447 			 * processes
1448 			 */
1449 			if (pr->ps_flags & (PS_SYSTEM | PS_EMBRYO | PS_EXITING))
1450 				continue;
1451 			if (arg >= 0 && pr->ps_ucred->cr_uid != (uid_t)arg) {
1452 				/* not the uid we are looking for */
1453 				continue;
1454 			}
1455 			fdp = pr->ps_fd;
1456 			if (fdp->fd_cdir)
1457 				FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pr);
1458 			if (fdp->fd_rdir)
1459 				FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pr);
1460 			if (pr->ps_tracevp)
1461 				FILLIT(NULL, NULL, KERN_FILE_TRACE, pr->ps_tracevp, pr);
1462 			for (i = 0; i < fdp->fd_nfiles; i++) {
1463 				if ((fp = fd_getfile(fdp, i)) == NULL)
1464 					continue;
1465 				FILLIT(fp, fdp, i, NULL, pr);
1466 				FRELE(fp, p);
1467 			}
1468 		}
1469 		break;
1470 	default:
1471 		error = EINVAL;
1472 		break;
1473 	}
1474 	free(kf, M_TEMP, sizeof(*kf));
1475 
1476 	if (!error) {
1477 		if (where == NULL)
1478 			needed += KERN_FILESLOP * elem_size;
1479 		else if (*sizep < needed)
1480 			error = ENOMEM;
1481 		*sizep = needed;
1482 	}
1483 
1484 	return (error);
1485 }
1486 
1487 /*
1488  * try over estimating by 5 procs
1489  */
1490 #define KERN_PROCSLOP	5
1491 
1492 int
1493 sysctl_doproc(int *name, u_int namelen, char *where, size_t *sizep)
1494 {
1495 	struct kinfo_proc *kproc = NULL;
1496 	struct proc *p;
1497 	struct process *pr;
1498 	char *dp;
1499 	int arg, buflen, doingzomb, elem_size, elem_count;
1500 	int error, needed, op;
1501 	int dothreads = 0;
1502 	int show_pointers;
1503 
1504 	dp = where;
1505 	buflen = where != NULL ? *sizep : 0;
1506 	needed = error = 0;
1507 
1508 	if (namelen != 4 || name[2] <= 0 || name[3] < 0 ||
1509 	    name[2] > sizeof(*kproc))
1510 		return (EINVAL);
1511 	op = name[0];
1512 	arg = name[1];
1513 	elem_size = name[2];
1514 	elem_count = name[3];
1515 
1516 	dothreads = op & KERN_PROC_SHOW_THREADS;
1517 	op &= ~KERN_PROC_SHOW_THREADS;
1518 
1519 	show_pointers = suser(curproc) == 0;
1520 
1521 	if (where != NULL)
1522 		kproc = malloc(sizeof(*kproc), M_TEMP, M_WAITOK);
1523 
1524 	pr = LIST_FIRST(&allprocess);
1525 	doingzomb = 0;
1526 again:
1527 	for (; pr != NULL; pr = LIST_NEXT(pr, ps_list)) {
1528 		/* XXX skip processes in the middle of being zapped */
1529 		if (pr->ps_pgrp == NULL)
1530 			continue;
1531 
1532 		/*
1533 		 * Skip embryonic processes.
1534 		 */
1535 		if (pr->ps_flags & PS_EMBRYO)
1536 			continue;
1537 
1538 		/*
1539 		 * TODO - make more efficient (see notes below).
1540 		 */
1541 		switch (op) {
1542 
1543 		case KERN_PROC_PID:
1544 			/* could do this with just a lookup */
1545 			if (pr->ps_pid != (pid_t)arg)
1546 				continue;
1547 			break;
1548 
1549 		case KERN_PROC_PGRP:
1550 			/* could do this by traversing pgrp */
1551 			if (pr->ps_pgrp->pg_id != (pid_t)arg)
1552 				continue;
1553 			break;
1554 
1555 		case KERN_PROC_SESSION:
1556 			if (pr->ps_session->s_leader == NULL ||
1557 			    pr->ps_session->s_leader->ps_pid != (pid_t)arg)
1558 				continue;
1559 			break;
1560 
1561 		case KERN_PROC_TTY:
1562 			if ((pr->ps_flags & PS_CONTROLT) == 0 ||
1563 			    pr->ps_session->s_ttyp == NULL ||
1564 			    pr->ps_session->s_ttyp->t_dev != (dev_t)arg)
1565 				continue;
1566 			break;
1567 
1568 		case KERN_PROC_UID:
1569 			if (pr->ps_ucred->cr_uid != (uid_t)arg)
1570 				continue;
1571 			break;
1572 
1573 		case KERN_PROC_RUID:
1574 			if (pr->ps_ucred->cr_ruid != (uid_t)arg)
1575 				continue;
1576 			break;
1577 
1578 		case KERN_PROC_ALL:
1579 			if (pr->ps_flags & PS_SYSTEM)
1580 				continue;
1581 			break;
1582 
1583 		case KERN_PROC_KTHREAD:
1584 			/* no filtering */
1585 			break;
1586 
1587 		default:
1588 			error = EINVAL;
1589 			goto err;
1590 		}
1591 
1592 		if (buflen >= elem_size && elem_count > 0) {
1593 			fill_kproc(pr, kproc, NULL, show_pointers);
1594 			error = copyout(kproc, dp, elem_size);
1595 			if (error)
1596 				goto err;
1597 			dp += elem_size;
1598 			buflen -= elem_size;
1599 			elem_count--;
1600 		}
1601 		needed += elem_size;
1602 
1603 		/* Skip per-thread entries if not required by op */
1604 		if (!dothreads)
1605 			continue;
1606 
1607 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1608 			if (buflen >= elem_size && elem_count > 0) {
1609 				fill_kproc(pr, kproc, p, show_pointers);
1610 				error = copyout(kproc, dp, elem_size);
1611 				if (error)
1612 					goto err;
1613 				dp += elem_size;
1614 				buflen -= elem_size;
1615 				elem_count--;
1616 			}
1617 			needed += elem_size;
1618 		}
1619 	}
1620 	if (doingzomb == 0) {
1621 		pr = LIST_FIRST(&zombprocess);
1622 		doingzomb++;
1623 		goto again;
1624 	}
1625 	if (where != NULL) {
1626 		*sizep = dp - where;
1627 		if (needed > *sizep) {
1628 			error = ENOMEM;
1629 			goto err;
1630 		}
1631 	} else {
1632 		needed += KERN_PROCSLOP * elem_size;
1633 		*sizep = needed;
1634 	}
1635 err:
1636 	if (kproc)
1637 		free(kproc, M_TEMP, sizeof(*kproc));
1638 	return (error);
1639 }
1640 
1641 /*
1642  * Fill in a kproc structure for the specified process.
1643  */
1644 void
1645 fill_kproc(struct process *pr, struct kinfo_proc *ki, struct proc *p,
1646     int show_pointers)
1647 {
1648 	struct session *s = pr->ps_session;
1649 	struct tty *tp;
1650 	struct vmspace *vm = pr->ps_vmspace;
1651 	struct timespec booted, st, ut, utc;
1652 	int isthread;
1653 
1654 	isthread = p != NULL;
1655 	if (!isthread)
1656 		p = pr->ps_mainproc;		/* XXX */
1657 
1658 	FILL_KPROC(ki, strlcpy, p, pr, pr->ps_ucred, pr->ps_pgrp,
1659 	    p, pr, s, vm, pr->ps_limit, pr->ps_sigacts, isthread,
1660 	    show_pointers);
1661 
1662 	/* stuff that's too painful to generalize into the macros */
1663 	if (pr->ps_pptr)
1664 		ki->p_ppid = pr->ps_ppid;
1665 	if (s->s_leader)
1666 		ki->p_sid = s->s_leader->ps_pid;
1667 
1668 	if ((pr->ps_flags & PS_CONTROLT) && (tp = s->s_ttyp)) {
1669 		ki->p_tdev = tp->t_dev;
1670 		ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : -1;
1671 		if (show_pointers)
1672 			ki->p_tsess = PTRTOINT64(tp->t_session);
1673 	} else {
1674 		ki->p_tdev = NODEV;
1675 		ki->p_tpgid = -1;
1676 	}
1677 
1678 	/* fixups that can only be done in the kernel */
1679 	if ((pr->ps_flags & PS_ZOMBIE) == 0) {
1680 		if ((pr->ps_flags & PS_EMBRYO) == 0 && vm != NULL)
1681 			ki->p_vm_rssize = vm_resident_count(vm);
1682 		calctsru(isthread ? &p->p_tu : &pr->ps_tu, &ut, &st, NULL);
1683 		ki->p_uutime_sec = ut.tv_sec;
1684 		ki->p_uutime_usec = ut.tv_nsec/1000;
1685 		ki->p_ustime_sec = st.tv_sec;
1686 		ki->p_ustime_usec = st.tv_nsec/1000;
1687 
1688 		/* Convert starting uptime to a starting UTC time. */
1689 		nanoboottime(&booted);
1690 		timespecadd(&booted, &pr->ps_start, &utc);
1691 		ki->p_ustart_sec = utc.tv_sec;
1692 		ki->p_ustart_usec = utc.tv_nsec / 1000;
1693 
1694 #ifdef MULTIPROCESSOR
1695 		if (p->p_cpu != NULL)
1696 			ki->p_cpuid = CPU_INFO_UNIT(p->p_cpu);
1697 #endif
1698 	}
1699 
1700 	/* get %cpu and schedule state: just one thread or sum of all? */
1701 	if (isthread) {
1702 		ki->p_pctcpu = p->p_pctcpu;
1703 		ki->p_stat   = p->p_stat;
1704 	} else {
1705 		ki->p_pctcpu = 0;
1706 		ki->p_stat = (pr->ps_flags & PS_ZOMBIE) ? SDEAD : SIDL;
1707 		TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) {
1708 			ki->p_pctcpu += p->p_pctcpu;
1709 			/* find best state: ONPROC > RUN > STOP > SLEEP > .. */
1710 			if (p->p_stat == SONPROC || ki->p_stat == SONPROC)
1711 				ki->p_stat = SONPROC;
1712 			else if (p->p_stat == SRUN || ki->p_stat == SRUN)
1713 				ki->p_stat = SRUN;
1714 			else if (p->p_stat == SSTOP || ki->p_stat == SSTOP)
1715 				ki->p_stat = SSTOP;
1716 			else if (p->p_stat == SSLEEP)
1717 				ki->p_stat = SSLEEP;
1718 		}
1719 	}
1720 }
1721 
1722 int
1723 sysctl_proc_args(int *name, u_int namelen, void *oldp, size_t *oldlenp,
1724     struct proc *cp)
1725 {
1726 	struct process *vpr;
1727 	pid_t pid;
1728 	struct ps_strings pss;
1729 	struct iovec iov;
1730 	struct uio uio;
1731 	int error, cnt, op;
1732 	size_t limit;
1733 	char **rargv, **vargv;		/* reader vs. victim */
1734 	char *rarg, *varg, *buf;
1735 	struct vmspace *vm;
1736 	vaddr_t ps_strings;
1737 
1738 	if (namelen > 2)
1739 		return (ENOTDIR);
1740 	if (namelen < 2)
1741 		return (EINVAL);
1742 
1743 	pid = name[0];
1744 	op = name[1];
1745 
1746 	switch (op) {
1747 	case KERN_PROC_ARGV:
1748 	case KERN_PROC_NARGV:
1749 	case KERN_PROC_ENV:
1750 	case KERN_PROC_NENV:
1751 		break;
1752 	default:
1753 		return (EOPNOTSUPP);
1754 	}
1755 
1756 	if ((vpr = prfind(pid)) == NULL)
1757 		return (ESRCH);
1758 
1759 	if (oldp == NULL) {
1760 		if (op == KERN_PROC_NARGV || op == KERN_PROC_NENV)
1761 			*oldlenp = sizeof(int);
1762 		else
1763 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
1764 		return (0);
1765 	}
1766 
1767 	/* Either system process or exiting/zombie */
1768 	if (vpr->ps_flags & (PS_SYSTEM | PS_EXITING))
1769 		return (EINVAL);
1770 
1771 	/* Execing - danger. */
1772 	if ((vpr->ps_flags & PS_INEXEC))
1773 		return (EBUSY);
1774 
1775 	/* Only owner or root can get env */
1776 	if ((op == KERN_PROC_NENV || op == KERN_PROC_ENV) &&
1777 	    (vpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
1778 	    (error = suser(cp)) != 0))
1779 		return (error);
1780 
1781 	ps_strings = vpr->ps_strings;
1782 	vm = vpr->ps_vmspace;
1783 	uvmspace_addref(vm);
1784 	vpr = NULL;
1785 
1786 	buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1787 
1788 	iov.iov_base = &pss;
1789 	iov.iov_len = sizeof(pss);
1790 	uio.uio_iov = &iov;
1791 	uio.uio_iovcnt = 1;
1792 	uio.uio_offset = (off_t)ps_strings;
1793 	uio.uio_resid = sizeof(pss);
1794 	uio.uio_segflg = UIO_SYSSPACE;
1795 	uio.uio_rw = UIO_READ;
1796 	uio.uio_procp = cp;
1797 
1798 	if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1799 		goto out;
1800 
1801 	if (op == KERN_PROC_NARGV) {
1802 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nargvstr);
1803 		goto out;
1804 	}
1805 	if (op == KERN_PROC_NENV) {
1806 		error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nenvstr);
1807 		goto out;
1808 	}
1809 
1810 	if (op == KERN_PROC_ARGV) {
1811 		cnt = pss.ps_nargvstr;
1812 		vargv = pss.ps_argvstr;
1813 	} else {
1814 		cnt = pss.ps_nenvstr;
1815 		vargv = pss.ps_envstr;
1816 	}
1817 
1818 	/* -1 to have space for a terminating NUL */
1819 	limit = *oldlenp - 1;
1820 	*oldlenp = 0;
1821 
1822 	rargv = oldp;
1823 
1824 	/*
1825 	 * *oldlenp - number of bytes copied out into readers buffer.
1826 	 * limit - maximal number of bytes allowed into readers buffer.
1827 	 * rarg - pointer into readers buffer where next arg will be stored.
1828 	 * rargv - pointer into readers buffer where the next rarg pointer
1829 	 *  will be stored.
1830 	 * vargv - pointer into victim address space where the next argument
1831 	 *  will be read.
1832 	 */
1833 
1834 	/* space for cnt pointers and a NULL */
1835 	rarg = (char *)(rargv + cnt + 1);
1836 	*oldlenp += (cnt + 1) * sizeof(char **);
1837 
1838 	while (cnt > 0 && *oldlenp < limit) {
1839 		size_t len, vstrlen;
1840 
1841 		/* Write to readers argv */
1842 		if ((error = copyout(&rarg, rargv, sizeof(rarg))) != 0)
1843 			goto out;
1844 
1845 		/* read the victim argv */
1846 		iov.iov_base = &varg;
1847 		iov.iov_len = sizeof(varg);
1848 		uio.uio_iov = &iov;
1849 		uio.uio_iovcnt = 1;
1850 		uio.uio_offset = (off_t)(vaddr_t)vargv;
1851 		uio.uio_resid = sizeof(varg);
1852 		uio.uio_segflg = UIO_SYSSPACE;
1853 		uio.uio_rw = UIO_READ;
1854 		uio.uio_procp = cp;
1855 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1856 			goto out;
1857 
1858 		if (varg == NULL)
1859 			break;
1860 
1861 		/*
1862 		 * read the victim arg. We must jump through hoops to avoid
1863 		 * crossing a page boundary too much and returning an error.
1864 		 */
1865 more:
1866 		len = PAGE_SIZE - (((vaddr_t)varg) & PAGE_MASK);
1867 		/* leave space for the terminating NUL */
1868 		iov.iov_base = buf;
1869 		iov.iov_len = len;
1870 		uio.uio_iov = &iov;
1871 		uio.uio_iovcnt = 1;
1872 		uio.uio_offset = (off_t)(vaddr_t)varg;
1873 		uio.uio_resid = len;
1874 		uio.uio_segflg = UIO_SYSSPACE;
1875 		uio.uio_rw = UIO_READ;
1876 		uio.uio_procp = cp;
1877 		if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0)
1878 			goto out;
1879 
1880 		for (vstrlen = 0; vstrlen < len; vstrlen++) {
1881 			if (buf[vstrlen] == '\0')
1882 				break;
1883 		}
1884 
1885 		/* Don't overflow readers buffer. */
1886 		if (*oldlenp + vstrlen + 1 >= limit) {
1887 			error = ENOMEM;
1888 			goto out;
1889 		}
1890 
1891 		if ((error = copyout(buf, rarg, vstrlen)) != 0)
1892 			goto out;
1893 
1894 		*oldlenp += vstrlen;
1895 		rarg += vstrlen;
1896 
1897 		/* The string didn't end in this page? */
1898 		if (vstrlen == len) {
1899 			varg += vstrlen;
1900 			goto more;
1901 		}
1902 
1903 		/* End of string. Terminate it with a NUL */
1904 		buf[0] = '\0';
1905 		if ((error = copyout(buf, rarg, 1)) != 0)
1906 			goto out;
1907 		*oldlenp += 1;
1908 		rarg += 1;
1909 
1910 		vargv++;
1911 		rargv++;
1912 		cnt--;
1913 	}
1914 
1915 	if (*oldlenp >= limit) {
1916 		error = ENOMEM;
1917 		goto out;
1918 	}
1919 
1920 	/* Write the terminating null */
1921 	rarg = NULL;
1922 	error = copyout(&rarg, rargv, sizeof(rarg));
1923 
1924 out:
1925 	uvmspace_free(vm);
1926 	free(buf, M_TEMP, PAGE_SIZE);
1927 	return (error);
1928 }
1929 
1930 int
1931 sysctl_proc_cwd(int *name, u_int namelen, void *oldp, size_t *oldlenp,
1932     struct proc *cp)
1933 {
1934 	struct process *findpr;
1935 	struct vnode *vp;
1936 	pid_t pid;
1937 	int error;
1938 	size_t lenused, len;
1939 	char *path, *bp, *bend;
1940 
1941 	if (namelen > 1)
1942 		return (ENOTDIR);
1943 	if (namelen < 1)
1944 		return (EINVAL);
1945 
1946 	pid = name[0];
1947 	if ((findpr = prfind(pid)) == NULL)
1948 		return (ESRCH);
1949 
1950 	if (oldp == NULL) {
1951 		*oldlenp = MAXPATHLEN * 4;
1952 		return (0);
1953 	}
1954 
1955 	/* Either system process or exiting/zombie */
1956 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
1957 		return (EINVAL);
1958 
1959 	/* Only owner or root can get cwd */
1960 	if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
1961 	    (error = suser(cp)) != 0)
1962 		return (error);
1963 
1964 	len = *oldlenp;
1965 	if (len > MAXPATHLEN * 4)
1966 		len = MAXPATHLEN * 4;
1967 	else if (len < 2)
1968 		return (ERANGE);
1969 	*oldlenp = 0;
1970 
1971 	/* snag a reference to the vnode before we can sleep */
1972 	vp = findpr->ps_fd->fd_cdir;
1973 	vref(vp);
1974 
1975 	path = malloc(len, M_TEMP, M_WAITOK);
1976 
1977 	bp = &path[len];
1978 	bend = bp;
1979 	*(--bp) = '\0';
1980 
1981 	/* Same as sys__getcwd */
1982 	error = vfs_getcwd_common(vp, NULL,
1983 	    &bp, path, len / 2, GETCWD_CHECK_ACCESS, cp);
1984 	if (error == 0) {
1985 		*oldlenp = lenused = bend - bp;
1986 		error = copyout(bp, oldp, lenused);
1987 	}
1988 
1989 	vrele(vp);
1990 	free(path, M_TEMP, len);
1991 
1992 	return (error);
1993 }
1994 
1995 int
1996 sysctl_proc_nobroadcastkill(int *name, u_int namelen, void *newp, size_t newlen,
1997     void *oldp, size_t *oldlenp, struct proc *cp)
1998 {
1999 	struct process *findpr;
2000 	pid_t pid;
2001 	int error, flag;
2002 
2003 	if (namelen > 1)
2004 		return (ENOTDIR);
2005 	if (namelen < 1)
2006 		return (EINVAL);
2007 
2008 	pid = name[0];
2009 	if ((findpr = prfind(pid)) == NULL)
2010 		return (ESRCH);
2011 
2012 	/* Either system process or exiting/zombie */
2013 	if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2014 		return (EINVAL);
2015 
2016 	/* Only root can change PS_NOBROADCASTKILL */
2017 	if (newp != NULL && (error = suser(cp)) != 0)
2018 		return (error);
2019 
2020 	/* get the PS_NOBROADCASTKILL flag */
2021 	flag = findpr->ps_flags & PS_NOBROADCASTKILL ? 1 : 0;
2022 
2023 	error = sysctl_int(oldp, oldlenp, newp, newlen, &flag);
2024 	if (error == 0 && newp) {
2025 		if (flag)
2026 			atomic_setbits_int(&findpr->ps_flags,
2027 			    PS_NOBROADCASTKILL);
2028 		else
2029 			atomic_clearbits_int(&findpr->ps_flags,
2030 			    PS_NOBROADCASTKILL);
2031 	}
2032 
2033 	return (error);
2034 }
2035 
2036 /* Arbitrary but reasonable limit for one iteration. */
2037 #define	VMMAP_MAXLEN	MAXPHYS
2038 
2039 int
2040 sysctl_proc_vmmap(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2041     struct proc *cp)
2042 {
2043 	struct process *findpr;
2044 	pid_t pid;
2045 	int error;
2046 	size_t oldlen, len;
2047 	struct kinfo_vmentry *kve, *ukve;
2048 	u_long *ustart, start;
2049 
2050 	if (namelen > 1)
2051 		return (ENOTDIR);
2052 	if (namelen < 1)
2053 		return (EINVAL);
2054 
2055 	/* Provide max buffer length as hint. */
2056 	if (oldp == NULL) {
2057 		if (oldlenp == NULL)
2058 			return (EINVAL);
2059 		else {
2060 			*oldlenp = VMMAP_MAXLEN;
2061 			return (0);
2062 		}
2063 	}
2064 
2065 	pid = name[0];
2066 	if (pid == cp->p_p->ps_pid) {
2067 		/* Self process mapping. */
2068 		findpr = cp->p_p;
2069 	} else if (pid > 0) {
2070 		if ((findpr = prfind(pid)) == NULL)
2071 			return (ESRCH);
2072 
2073 		/* Either system process or exiting/zombie */
2074 		if (findpr->ps_flags & (PS_SYSTEM | PS_EXITING))
2075 			return (EINVAL);
2076 
2077 #if 1
2078 		/* XXX Allow only root for now */
2079 		if ((error = suser(cp)) != 0)
2080 			return (error);
2081 #else
2082 		/* Only owner or root can get vmmap */
2083 		if (findpr->ps_ucred->cr_uid != cp->p_ucred->cr_uid &&
2084 		    (error = suser(cp)) != 0)
2085 			return (error);
2086 #endif
2087 	} else {
2088 		/* Only root can get kernel_map */
2089 		if ((error = suser(cp)) != 0)
2090 			return (error);
2091 		findpr = NULL;
2092 	}
2093 
2094 	/* Check the given size. */
2095 	oldlen = *oldlenp;
2096 	if (oldlen == 0 || oldlen % sizeof(*kve) != 0)
2097 		return (EINVAL);
2098 
2099 	/* Deny huge allocation. */
2100 	if (oldlen > VMMAP_MAXLEN)
2101 		return (EINVAL);
2102 
2103 	/*
2104 	 * Iterate from the given address passed as the first element's
2105 	 * kve_start via oldp.
2106 	 */
2107 	ukve = (struct kinfo_vmentry *)oldp;
2108 	ustart = &ukve->kve_start;
2109 	error = copyin(ustart, &start, sizeof(start));
2110 	if (error != 0)
2111 		return (error);
2112 
2113 	/* Allocate wired memory to not block. */
2114 	kve = malloc(oldlen, M_TEMP, M_WAITOK);
2115 
2116 	/* Set the base address and read entries. */
2117 	kve[0].kve_start = start;
2118 	len = oldlen;
2119 	error = fill_vmmap(findpr, kve, &len);
2120 	if (error != 0 && error != ENOMEM)
2121 		goto done;
2122 	if (len == 0)
2123 		goto done;
2124 
2125 	KASSERT(len <= oldlen);
2126 	KASSERT((len % sizeof(struct kinfo_vmentry)) == 0);
2127 
2128 	error = copyout(kve, oldp, len);
2129 
2130 done:
2131 	*oldlenp = len;
2132 
2133 	free(kve, M_TEMP, oldlen);
2134 
2135 	return (error);
2136 }
2137 #endif
2138 
2139 /*
2140  * Initialize disknames/diskstats for export by sysctl. If update is set,
2141  * then we simply update the disk statistics information.
2142  */
2143 int
2144 sysctl_diskinit(int update, struct proc *p)
2145 {
2146 	struct diskstats *sdk;
2147 	struct disk *dk;
2148 	const char *duid;
2149 	int error, changed = 0;
2150 
2151 	KERNEL_ASSERT_LOCKED();
2152 
2153 	if ((error = rw_enter(&sysctl_disklock, RW_WRITE|RW_INTR)) != 0)
2154 		return error;
2155 
2156 	/* Run in a loop, disks may change while malloc sleeps. */
2157 	while (disk_change) {
2158 		int tlen;
2159 
2160 		disk_change = 0;
2161 
2162 		tlen = 0;
2163 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2164 			if (dk->dk_name)
2165 				tlen += strlen(dk->dk_name);
2166 			tlen += 18;	/* label uid + separators */
2167 		}
2168 		tlen++;
2169 
2170 		/*
2171 		 * The sysctl_disklock ensures that no other process can
2172 		 * allocate disknames and diskstats while our malloc sleeps.
2173 		 */
2174 		free(disknames, M_SYSCTL, disknameslen);
2175 		free(diskstats, M_SYSCTL, diskstatslen);
2176 		diskstats = NULL;
2177 		disknames = NULL;
2178 		diskstats = mallocarray(disk_count, sizeof(struct diskstats),
2179 		    M_SYSCTL, M_WAITOK|M_ZERO);
2180 		diskstatslen = disk_count * sizeof(struct diskstats);
2181 		disknames = malloc(tlen, M_SYSCTL, M_WAITOK|M_ZERO);
2182 		disknameslen = tlen;
2183 		disknames[0] = '\0';
2184 		changed = 1;
2185 	}
2186 
2187 	if (changed) {
2188 		int l;
2189 
2190 		l = 0;
2191 		sdk = diskstats;
2192 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2193 			duid = NULL;
2194 			if (dk->dk_label && !duid_iszero(dk->dk_label->d_uid))
2195 				duid = duid_format(dk->dk_label->d_uid);
2196 			snprintf(disknames + l, disknameslen - l, "%s:%s,",
2197 			    dk->dk_name ? dk->dk_name : "",
2198 			    duid ? duid : "");
2199 			l += strlen(disknames + l);
2200 			strlcpy(sdk->ds_name, dk->dk_name,
2201 			    sizeof(sdk->ds_name));
2202 			mtx_enter(&dk->dk_mtx);
2203 			sdk->ds_busy = dk->dk_busy;
2204 			sdk->ds_rxfer = dk->dk_rxfer;
2205 			sdk->ds_wxfer = dk->dk_wxfer;
2206 			sdk->ds_seek = dk->dk_seek;
2207 			sdk->ds_rbytes = dk->dk_rbytes;
2208 			sdk->ds_wbytes = dk->dk_wbytes;
2209 			sdk->ds_attachtime = dk->dk_attachtime;
2210 			sdk->ds_timestamp = dk->dk_timestamp;
2211 			sdk->ds_time = dk->dk_time;
2212 			mtx_leave(&dk->dk_mtx);
2213 			sdk++;
2214 		}
2215 
2216 		/* Eliminate trailing comma */
2217 		if (l != 0)
2218 			disknames[l - 1] = '\0';
2219 	} else if (update) {
2220 		/* Just update, number of drives hasn't changed */
2221 		sdk = diskstats;
2222 		TAILQ_FOREACH(dk, &disklist, dk_link) {
2223 			strlcpy(sdk->ds_name, dk->dk_name,
2224 			    sizeof(sdk->ds_name));
2225 			mtx_enter(&dk->dk_mtx);
2226 			sdk->ds_busy = dk->dk_busy;
2227 			sdk->ds_rxfer = dk->dk_rxfer;
2228 			sdk->ds_wxfer = dk->dk_wxfer;
2229 			sdk->ds_seek = dk->dk_seek;
2230 			sdk->ds_rbytes = dk->dk_rbytes;
2231 			sdk->ds_wbytes = dk->dk_wbytes;
2232 			sdk->ds_attachtime = dk->dk_attachtime;
2233 			sdk->ds_timestamp = dk->dk_timestamp;
2234 			sdk->ds_time = dk->dk_time;
2235 			mtx_leave(&dk->dk_mtx);
2236 			sdk++;
2237 		}
2238 	}
2239 	rw_exit_write(&sysctl_disklock);
2240 	return 0;
2241 }
2242 
2243 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
2244 int
2245 sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep)
2246 {
2247 #ifdef SYSVSEM
2248 	struct sem_sysctl_info *semsi;
2249 #endif
2250 #ifdef SYSVSHM
2251 	struct shm_sysctl_info *shmsi;
2252 #endif
2253 	size_t infosize, dssize, tsize, buflen, bufsiz;
2254 	int i, nds, error, ret;
2255 	void *buf;
2256 
2257 	if (namelen != 1)
2258 		return (EINVAL);
2259 
2260 	buflen = *sizep;
2261 
2262 	switch (*name) {
2263 	case KERN_SYSVIPC_MSG_INFO:
2264 #ifdef SYSVMSG
2265 		return (sysctl_sysvmsg(name, namelen, where, sizep));
2266 #else
2267 		return (EOPNOTSUPP);
2268 #endif
2269 	case KERN_SYSVIPC_SEM_INFO:
2270 #ifdef SYSVSEM
2271 		infosize = sizeof(semsi->seminfo);
2272 		nds = seminfo.semmni;
2273 		dssize = sizeof(semsi->semids[0]);
2274 		break;
2275 #else
2276 		return (EOPNOTSUPP);
2277 #endif
2278 	case KERN_SYSVIPC_SHM_INFO:
2279 #ifdef SYSVSHM
2280 		infosize = sizeof(shmsi->shminfo);
2281 		nds = shminfo.shmmni;
2282 		dssize = sizeof(shmsi->shmids[0]);
2283 		break;
2284 #else
2285 		return (EOPNOTSUPP);
2286 #endif
2287 	default:
2288 		return (EINVAL);
2289 	}
2290 	tsize = infosize + (nds * dssize);
2291 
2292 	/* Return just the total size required. */
2293 	if (where == NULL) {
2294 		*sizep = tsize;
2295 		return (0);
2296 	}
2297 
2298 	/* Not enough room for even the info struct. */
2299 	if (buflen < infosize) {
2300 		*sizep = 0;
2301 		return (ENOMEM);
2302 	}
2303 	bufsiz = min(tsize, buflen);
2304 	buf = malloc(bufsiz, M_TEMP, M_WAITOK|M_ZERO);
2305 
2306 	switch (*name) {
2307 #ifdef SYSVSEM
2308 	case KERN_SYSVIPC_SEM_INFO:
2309 		semsi = (struct sem_sysctl_info *)buf;
2310 		semsi->seminfo = seminfo;
2311 		break;
2312 #endif
2313 #ifdef SYSVSHM
2314 	case KERN_SYSVIPC_SHM_INFO:
2315 		shmsi = (struct shm_sysctl_info *)buf;
2316 		shmsi->shminfo = shminfo;
2317 		break;
2318 #endif
2319 	}
2320 	buflen -= infosize;
2321 
2322 	ret = 0;
2323 	if (buflen > 0) {
2324 		/* Fill in the IPC data structures.  */
2325 		for (i = 0; i < nds; i++) {
2326 			if (buflen < dssize) {
2327 				ret = ENOMEM;
2328 				break;
2329 			}
2330 			switch (*name) {
2331 #ifdef SYSVSEM
2332 			case KERN_SYSVIPC_SEM_INFO:
2333 				if (sema[i] != NULL)
2334 					memcpy(&semsi->semids[i], sema[i],
2335 					    dssize);
2336 				else
2337 					memset(&semsi->semids[i], 0, dssize);
2338 				break;
2339 #endif
2340 #ifdef SYSVSHM
2341 			case KERN_SYSVIPC_SHM_INFO:
2342 				if (shmsegs[i] != NULL)
2343 					memcpy(&shmsi->shmids[i], shmsegs[i],
2344 					    dssize);
2345 				else
2346 					memset(&shmsi->shmids[i], 0, dssize);
2347 				break;
2348 #endif
2349 			}
2350 			buflen -= dssize;
2351 		}
2352 	}
2353 	*sizep -= buflen;
2354 	error = copyout(buf, where, *sizep);
2355 	free(buf, M_TEMP, bufsiz);
2356 	/* If copyout succeeded, use return code set earlier. */
2357 	return (error ? error : ret);
2358 }
2359 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
2360 
2361 #ifndef	SMALL_KERNEL
2362 
2363 int
2364 sysctl_intrcnt(int *name, u_int namelen, void *oldp, size_t *oldlenp)
2365 {
2366 	return (evcount_sysctl(name, namelen, oldp, oldlenp, NULL, 0));
2367 }
2368 
2369 
2370 int
2371 sysctl_sensors(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2372     void *newp, size_t newlen)
2373 {
2374 	struct ksensor *ks;
2375 	struct sensor *us;
2376 	struct ksensordev *ksd;
2377 	struct sensordev *usd;
2378 	int dev, numt, ret;
2379 	enum sensor_type type;
2380 
2381 	if (namelen != 1 && namelen != 3)
2382 		return (ENOTDIR);
2383 
2384 	dev = name[0];
2385 	if (namelen == 1) {
2386 		ret = sensordev_get(dev, &ksd);
2387 		if (ret)
2388 			return (ret);
2389 
2390 		/* Grab a copy, to clear the kernel pointers */
2391 		usd = malloc(sizeof(*usd), M_TEMP, M_WAITOK|M_ZERO);
2392 		usd->num = ksd->num;
2393 		strlcpy(usd->xname, ksd->xname, sizeof(usd->xname));
2394 		memcpy(usd->maxnumt, ksd->maxnumt, sizeof(usd->maxnumt));
2395 		usd->sensors_count = ksd->sensors_count;
2396 
2397 		ret = sysctl_rdstruct(oldp, oldlenp, newp, usd,
2398 		    sizeof(struct sensordev));
2399 
2400 		free(usd, M_TEMP, sizeof(*usd));
2401 		return (ret);
2402 	}
2403 
2404 	type = name[1];
2405 	numt = name[2];
2406 
2407 	ret = sensor_find(dev, type, numt, &ks);
2408 	if (ret)
2409 		return (ret);
2410 
2411 	/* Grab a copy, to clear the kernel pointers */
2412 	us = malloc(sizeof(*us), M_TEMP, M_WAITOK|M_ZERO);
2413 	memcpy(us->desc, ks->desc, sizeof(us->desc));
2414 	us->tv = ks->tv;
2415 	us->value = ks->value;
2416 	us->type = ks->type;
2417 	us->status = ks->status;
2418 	us->numt = ks->numt;
2419 	us->flags = ks->flags;
2420 
2421 	ret = sysctl_rdstruct(oldp, oldlenp, newp, us,
2422 	    sizeof(struct sensor));
2423 	free(us, M_TEMP, sizeof(*us));
2424 	return (ret);
2425 }
2426 #endif	/* SMALL_KERNEL */
2427 
2428 int
2429 sysctl_cptime2(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2430     void *newp, size_t newlen)
2431 {
2432 	CPU_INFO_ITERATOR cii;
2433 	struct cpu_info *ci;
2434 	int found = 0;
2435 
2436 	if (namelen != 1)
2437 		return (ENOTDIR);
2438 
2439 	CPU_INFO_FOREACH(cii, ci) {
2440 		if (name[0] == CPU_INFO_UNIT(ci)) {
2441 			found = 1;
2442 			break;
2443 		}
2444 	}
2445 	if (!found)
2446 		return (ENOENT);
2447 
2448 	return (sysctl_rdstruct(oldp, oldlenp, newp,
2449 	    &ci->ci_schedstate.spc_cp_time,
2450 	    sizeof(ci->ci_schedstate.spc_cp_time)));
2451 }
2452 
2453 #if NAUDIO > 0
2454 int
2455 sysctl_audio(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2456     void *newp, size_t newlen)
2457 {
2458 	if (namelen != 1)
2459 		return (ENOTDIR);
2460 
2461 	if (name[0] != KERN_AUDIO_RECORD)
2462 		return (ENOENT);
2463 
2464 	return (sysctl_int(oldp, oldlenp, newp, newlen, &audio_record_enable));
2465 }
2466 #endif
2467 
2468 #if NVIDEO > 0
2469 int
2470 sysctl_video(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2471     void *newp, size_t newlen)
2472 {
2473 	if (namelen != 1)
2474 		return (ENOTDIR);
2475 
2476 	if (name[0] != KERN_VIDEO_RECORD)
2477 		return (ENOENT);
2478 
2479 	return (sysctl_int(oldp, oldlenp, newp, newlen, &video_record_enable));
2480 }
2481 #endif
2482 
2483 int
2484 sysctl_cpustats(int *name, u_int namelen, void *oldp, size_t *oldlenp,
2485     void *newp, size_t newlen)
2486 {
2487 	CPU_INFO_ITERATOR cii;
2488 	struct cpustats cs;
2489 	struct cpu_info *ci;
2490 	int found = 0;
2491 
2492 	if (namelen != 1)
2493 		return (ENOTDIR);
2494 
2495 	CPU_INFO_FOREACH(cii, ci) {
2496 		if (name[0] == CPU_INFO_UNIT(ci)) {
2497 			found = 1;
2498 			break;
2499 		}
2500 	}
2501 	if (!found)
2502 		return (ENOENT);
2503 
2504 	memcpy(&cs.cs_time, &ci->ci_schedstate.spc_cp_time, sizeof(cs.cs_time));
2505 	cs.cs_flags = 0;
2506 	if (cpu_is_online(ci))
2507 		cs.cs_flags |= CPUSTATS_ONLINE;
2508 
2509 	return (sysctl_rdstruct(oldp, oldlenp, newp, &cs, sizeof(cs)));
2510 }
2511 
2512 int
2513 sysctl_utc_offset(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
2514 {
2515 	struct timespec adjusted, now;
2516 	int adjustment_seconds, error, new_offset_minutes, old_offset_minutes;
2517 
2518 	old_offset_minutes = utc_offset / 60;	/* seconds -> minutes */
2519 	new_offset_minutes = old_offset_minutes;
2520 	error = sysctl_securelevel_int(oldp, oldlenp, newp, newlen,
2521 	     &new_offset_minutes);
2522 	if (error)
2523 		return error;
2524 	if (new_offset_minutes < -24 * 60 || new_offset_minutes > 24 * 60)
2525 		return EINVAL;
2526 	if (new_offset_minutes == old_offset_minutes)
2527 		return 0;
2528 
2529 	utc_offset = new_offset_minutes * 60;	/* minutes -> seconds */
2530 	adjustment_seconds = (new_offset_minutes - old_offset_minutes) * 60;
2531 
2532 	nanotime(&now);
2533 	adjusted = now;
2534 	adjusted.tv_sec -= adjustment_seconds;
2535 	tc_setrealtimeclock(&adjusted);
2536 	resettodr();
2537 
2538 	return 0;
2539 }
2540