xref: /openbsd-src/sys/kern/kern_synch.c (revision c90a81c56dcebd6a1b73fe4aff9b03385b8e63b3)
1 /*	$OpenBSD: kern_synch.c,v 1.146 2018/05/31 02:16:22 guenther Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/timeout.h>
48 #include <sys/mount.h>
49 #include <sys/syscallargs.h>
50 #include <sys/pool.h>
51 #include <sys/refcnt.h>
52 #include <sys/atomic.h>
53 #include <sys/witness.h>
54 #include <ddb/db_output.h>
55 
56 #include <machine/spinlock.h>
57 
58 #ifdef KTRACE
59 #include <sys/ktrace.h>
60 #endif
61 
62 int	thrsleep(struct proc *, struct sys___thrsleep_args *);
63 int	thrsleep_unlock(void *);
64 
65 /*
66  * We're only looking at 7 bits of the address; everything is
67  * aligned to 4, lots of things are aligned to greater powers
68  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
69  */
70 #define TABLESIZE	128
71 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
72 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
73 
74 void
75 sleep_queue_init(void)
76 {
77 	int i;
78 
79 	for (i = 0; i < TABLESIZE; i++)
80 		TAILQ_INIT(&slpque[i]);
81 }
82 
83 
84 /*
85  * During autoconfiguration or after a panic, a sleep will simply
86  * lower the priority briefly to allow interrupts, then return.
87  * The priority to be used (safepri) is machine-dependent, thus this
88  * value is initialized and maintained in the machine-dependent layers.
89  * This priority will typically be 0, or the lowest priority
90  * that is safe for use on the interrupt stack; it can be made
91  * higher to block network software interrupts after panics.
92  */
93 extern int safepri;
94 
95 /*
96  * General sleep call.  Suspends the current process until a wakeup is
97  * performed on the specified identifier.  The process will then be made
98  * runnable with the specified priority.  Sleeps at most timo/hz seconds
99  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
100  * before and after sleeping, else signals are not checked.  Returns 0 if
101  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
102  * signal needs to be delivered, ERESTART is returned if the current system
103  * call should be restarted if possible, and EINTR is returned if the system
104  * call should be interrupted by the signal (return EINTR).
105  */
106 int
107 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
108 {
109 	struct sleep_state sls;
110 #ifdef MULTIPROCESSOR
111 	int hold_count;
112 #endif
113 
114 	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
115 
116 #ifdef MULTIPROCESSOR
117 	KASSERT(timo || _kernel_lock_held());
118 #endif
119 
120 #ifdef DDB
121 	if (cold == 2)
122 		db_stack_dump();
123 #endif
124 	if (cold || panicstr) {
125 		int s;
126 		/*
127 		 * After a panic, or during autoconfiguration,
128 		 * just give interrupts a chance, then just return;
129 		 * don't run any other procs or panic below,
130 		 * in case this is the idle process and already asleep.
131 		 */
132 		s = splhigh();
133 		splx(safepri);
134 #ifdef MULTIPROCESSOR
135 		if (_kernel_lock_held()) {
136 			hold_count = __mp_release_all(&kernel_lock);
137 			__mp_acquire_count(&kernel_lock, hold_count);
138 		}
139 #endif
140 		splx(s);
141 		return (0);
142 	}
143 
144 	sleep_setup(&sls, ident, priority, wmesg);
145 	sleep_setup_timeout(&sls, timo);
146 	sleep_setup_signal(&sls, priority);
147 
148 	return sleep_finish_all(&sls, 1);
149 }
150 
151 int
152 sleep_finish_all(struct sleep_state *sls, int do_sleep)
153 {
154 	int error, error1;
155 
156 	sleep_finish(sls, do_sleep);
157 	error1 = sleep_finish_timeout(sls);
158 	error = sleep_finish_signal(sls);
159 
160 	/* Signal errors are higher priority than timeouts. */
161 	if (error == 0 && error1 != 0)
162 		error = error1;
163 
164 	return error;
165 }
166 
167 /*
168  * Same as tsleep, but if we have a mutex provided, then once we've
169  * entered the sleep queue we drop the mutex. After sleeping we re-lock.
170  */
171 int
172 msleep(const volatile void *ident, struct mutex *mtx, int priority,
173     const char *wmesg, int timo)
174 {
175 	struct sleep_state sls;
176 	int error, spl;
177 #ifdef MULTIPROCESSOR
178 	int hold_count;
179 #endif
180 	WITNESS_SAVE_DECL(lock_fl);
181 
182 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
183 	KASSERT(mtx != NULL);
184 
185 	if (cold || panicstr) {
186 		/*
187 		 * After a panic, or during autoconfiguration,
188 		 * just give interrupts a chance, then just return;
189 		 * don't run any other procs or panic below,
190 		 * in case this is the idle process and already asleep.
191 		 */
192 		spl = MUTEX_OLDIPL(mtx);
193 		MUTEX_OLDIPL(mtx) = safepri;
194 		mtx_leave(mtx);
195 #ifdef MULTIPROCESSOR
196 		if (_kernel_lock_held()) {
197 			hold_count = __mp_release_all(&kernel_lock);
198 			__mp_acquire_count(&kernel_lock, hold_count);
199 		}
200 #endif
201 		if ((priority & PNORELOCK) == 0) {
202 			mtx_enter(mtx);
203 			MUTEX_OLDIPL(mtx) = spl;
204 		} else
205 			splx(spl);
206 		return (0);
207 	}
208 
209 	sleep_setup(&sls, ident, priority, wmesg);
210 	sleep_setup_timeout(&sls, timo);
211 	sleep_setup_signal(&sls, priority);
212 
213 	WITNESS_SAVE(MUTEX_LOCK_OBJECT(mtx), lock_fl);
214 
215 	/* XXX - We need to make sure that the mutex doesn't
216 	 * unblock splsched. This can be made a bit more
217 	 * correct when the sched_lock is a mutex.
218 	 */
219 	spl = MUTEX_OLDIPL(mtx);
220 	MUTEX_OLDIPL(mtx) = splsched();
221 	mtx_leave(mtx);
222 
223 	error = sleep_finish_all(&sls, 1);
224 
225 	if ((priority & PNORELOCK) == 0) {
226 		mtx_enter(mtx);
227 		MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */
228 		WITNESS_RESTORE(MUTEX_LOCK_OBJECT(mtx), lock_fl);
229 	} else
230 		splx(spl);
231 
232 	return error;
233 }
234 
235 /*
236  * Same as tsleep, but if we have a rwlock provided, then once we've
237  * entered the sleep queue we drop the it. After sleeping we re-lock.
238  */
239 int
240 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
241     const char *wmesg, int timo)
242 {
243 	struct sleep_state sls;
244 	int error, status;
245 	WITNESS_SAVE_DECL(lock_fl);
246 
247 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
248 	rw_assert_anylock(rwl);
249 	status = rw_status(rwl);
250 
251 	sleep_setup(&sls, ident, priority, wmesg);
252 	sleep_setup_timeout(&sls, timo);
253 	sleep_setup_signal(&sls, priority);
254 
255 	WITNESS_SAVE(&rwl->rwl_lock_obj, lock_fl);
256 
257 	rw_exit(rwl);
258 
259 	error = sleep_finish_all(&sls, 1);
260 
261 	if ((priority & PNORELOCK) == 0) {
262 		rw_enter(rwl, status);
263 		WITNESS_RESTORE(&rwl->rwl_lock_obj, lock_fl);
264 	}
265 
266 	return error;
267 }
268 
269 void
270 sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio,
271     const char *wmesg)
272 {
273 	struct proc *p = curproc;
274 
275 #ifdef DIAGNOSTIC
276 	if (p->p_flag & P_CANTSLEEP)
277 		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
278 	if (ident == NULL)
279 		panic("tsleep: no ident");
280 	if (p->p_stat != SONPROC)
281 		panic("tsleep: not SONPROC");
282 #endif
283 
284 	sls->sls_catch = 0;
285 	sls->sls_do_sleep = 1;
286 	sls->sls_sig = 1;
287 
288 	SCHED_LOCK(sls->sls_s);
289 
290 	p->p_wchan = ident;
291 	p->p_wmesg = wmesg;
292 	p->p_slptime = 0;
293 	p->p_priority = prio & PRIMASK;
294 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
295 }
296 
297 void
298 sleep_finish(struct sleep_state *sls, int do_sleep)
299 {
300 	struct proc *p = curproc;
301 
302 	if (sls->sls_do_sleep && do_sleep) {
303 		p->p_stat = SSLEEP;
304 		p->p_ru.ru_nvcsw++;
305 		SCHED_ASSERT_LOCKED();
306 		mi_switch();
307 	} else if (!do_sleep) {
308 		unsleep(p);
309 	}
310 
311 #ifdef DIAGNOSTIC
312 	if (p->p_stat != SONPROC)
313 		panic("sleep_finish !SONPROC");
314 #endif
315 
316 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
317 	SCHED_UNLOCK(sls->sls_s);
318 
319 	/*
320 	 * Even though this belongs to the signal handling part of sleep,
321 	 * we need to clear it before the ktrace.
322 	 */
323 	atomic_clearbits_int(&p->p_flag, P_SINTR);
324 }
325 
326 void
327 sleep_setup_timeout(struct sleep_state *sls, int timo)
328 {
329 	if (timo)
330 		timeout_add(&curproc->p_sleep_to, timo);
331 }
332 
333 int
334 sleep_finish_timeout(struct sleep_state *sls)
335 {
336 	struct proc *p = curproc;
337 
338 	if (p->p_flag & P_TIMEOUT) {
339 		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
340 		return (EWOULDBLOCK);
341 	} else
342 		timeout_del(&p->p_sleep_to);
343 
344 	return (0);
345 }
346 
347 void
348 sleep_setup_signal(struct sleep_state *sls, int prio)
349 {
350 	struct proc *p = curproc;
351 
352 	if ((sls->sls_catch = (prio & PCATCH)) == 0)
353 		return;
354 
355 	/*
356 	 * We put ourselves on the sleep queue and start our timeout
357 	 * before calling CURSIG, as we could stop there, and a wakeup
358 	 * or a SIGCONT (or both) could occur while we were stopped.
359 	 * A SIGCONT would cause us to be marked as SSLEEP
360 	 * without resuming us, thus we must be ready for sleep
361 	 * when CURSIG is called.  If the wakeup happens while we're
362 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
363 	 */
364 	atomic_setbits_int(&p->p_flag, P_SINTR);
365 	if (p->p_p->ps_single != NULL || (sls->sls_sig = CURSIG(p)) != 0) {
366 		if (p->p_wchan)
367 			unsleep(p);
368 		p->p_stat = SONPROC;
369 		sls->sls_do_sleep = 0;
370 	} else if (p->p_wchan == 0) {
371 		sls->sls_catch = 0;
372 		sls->sls_do_sleep = 0;
373 	}
374 }
375 
376 int
377 sleep_finish_signal(struct sleep_state *sls)
378 {
379 	struct proc *p = curproc;
380 	int error;
381 
382 	if (sls->sls_catch != 0) {
383 		if ((error = single_thread_check(p, 1)))
384 			return (error);
385 		if (sls->sls_sig != 0 || (sls->sls_sig = CURSIG(p)) != 0) {
386 			if (p->p_p->ps_sigacts->ps_sigintr &
387 			    sigmask(sls->sls_sig))
388 				return (EINTR);
389 			return (ERESTART);
390 		}
391 	}
392 
393 	return (0);
394 }
395 
396 /*
397  * Implement timeout for tsleep.
398  * If process hasn't been awakened (wchan non-zero),
399  * set timeout flag and undo the sleep.  If proc
400  * is stopped, just unsleep so it will remain stopped.
401  */
402 void
403 endtsleep(void *arg)
404 {
405 	struct proc *p = arg;
406 	int s;
407 
408 	SCHED_LOCK(s);
409 	if (p->p_wchan) {
410 		if (p->p_stat == SSLEEP)
411 			setrunnable(p);
412 		else
413 			unsleep(p);
414 		atomic_setbits_int(&p->p_flag, P_TIMEOUT);
415 	}
416 	SCHED_UNLOCK(s);
417 }
418 
419 /*
420  * Remove a process from its wait queue
421  */
422 void
423 unsleep(struct proc *p)
424 {
425 	SCHED_ASSERT_LOCKED();
426 
427 	if (p->p_wchan) {
428 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
429 		p->p_wchan = NULL;
430 	}
431 }
432 
433 /*
434  * Make a number of processes sleeping on the specified identifier runnable.
435  */
436 void
437 wakeup_n(const volatile void *ident, int n)
438 {
439 	struct slpque *qp;
440 	struct proc *p;
441 	struct proc *pnext;
442 	int s;
443 
444 	SCHED_LOCK(s);
445 	qp = &slpque[LOOKUP(ident)];
446 	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
447 		pnext = TAILQ_NEXT(p, p_runq);
448 #ifdef DIAGNOSTIC
449 		/*
450 		 * If the rwlock passed to rwsleep() is contended, the
451 		 * CPU will end up calling wakeup() between sleep_setup()
452 		 * and sleep_finish().
453 		 */
454 		if (p == curproc) {
455 			KASSERT(p->p_stat == SONPROC);
456 			continue;
457 		}
458 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
459 			panic("wakeup: p_stat is %d", (int)p->p_stat);
460 #endif
461 		if (p->p_wchan == ident) {
462 			--n;
463 			p->p_wchan = 0;
464 			TAILQ_REMOVE(qp, p, p_runq);
465 			if (p->p_stat == SSLEEP)
466 				setrunnable(p);
467 		}
468 	}
469 	SCHED_UNLOCK(s);
470 }
471 
472 /*
473  * Make all processes sleeping on the specified identifier runnable.
474  */
475 void
476 wakeup(const volatile void *chan)
477 {
478 	wakeup_n(chan, -1);
479 }
480 
481 int
482 sys_sched_yield(struct proc *p, void *v, register_t *retval)
483 {
484 	struct proc *q;
485 	int s;
486 
487 	SCHED_LOCK(s);
488 	/*
489 	 * If one of the threads of a multi-threaded process called
490 	 * sched_yield(2), drop its priority to ensure its siblings
491 	 * can make some progress.
492 	 */
493 	p->p_priority = p->p_usrpri;
494 	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
495 		p->p_priority = max(p->p_priority, q->p_priority);
496 	p->p_stat = SRUN;
497 	setrunqueue(p);
498 	p->p_ru.ru_nvcsw++;
499 	mi_switch();
500 	SCHED_UNLOCK(s);
501 
502 	return (0);
503 }
504 
505 int
506 thrsleep_unlock(void *lock)
507 {
508 	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
509 	_atomic_lock_t *atomiclock = lock;
510 
511 	if (!lock)
512 		return 0;
513 
514 	return copyout(&unlocked, atomiclock, sizeof(unlocked));
515 }
516 
517 static int globalsleepaddr;
518 
519 int
520 thrsleep(struct proc *p, struct sys___thrsleep_args *v)
521 {
522 	struct sys___thrsleep_args /* {
523 		syscallarg(const volatile void *) ident;
524 		syscallarg(clockid_t) clock_id;
525 		syscallarg(const struct timespec *) tp;
526 		syscallarg(void *) lock;
527 		syscallarg(const int *) abort;
528 	} */ *uap = v;
529 	long ident = (long)SCARG(uap, ident);
530 	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
531 	void *lock = SCARG(uap, lock);
532 	uint64_t to_ticks = 0;
533 	int abort, error;
534 	clockid_t clock_id = SCARG(uap, clock_id);
535 
536 	if (ident == 0)
537 		return (EINVAL);
538 	if (tsp != NULL) {
539 		struct timespec now;
540 
541 		if ((error = clock_gettime(p, clock_id, &now)))
542 			return (error);
543 #ifdef KTRACE
544 		if (KTRPOINT(p, KTR_STRUCT))
545 			ktrabstimespec(p, tsp);
546 #endif
547 
548 		if (timespeccmp(tsp, &now, <)) {
549 			/* already passed: still do the unlock */
550 			if ((error = thrsleep_unlock(lock)))
551 				return (error);
552 			return (EWOULDBLOCK);
553 		}
554 
555 		timespecsub(tsp, &now, tsp);
556 		to_ticks = (uint64_t)hz * tsp->tv_sec +
557 		    (tsp->tv_nsec + tick * 1000 - 1) / (tick * 1000) + 1;
558 		if (to_ticks > INT_MAX)
559 			to_ticks = INT_MAX;
560 	}
561 
562 	p->p_thrslpid = ident;
563 
564 	if ((error = thrsleep_unlock(lock)))
565 		goto out;
566 
567 	if (SCARG(uap, abort) != NULL) {
568 		if ((error = copyin(SCARG(uap, abort), &abort,
569 		    sizeof(abort))) != 0)
570 			goto out;
571 		if (abort) {
572 			error = EINTR;
573 			goto out;
574 		}
575 	}
576 
577 	if (p->p_thrslpid == 0)
578 		error = 0;
579 	else {
580 		void *sleepaddr = &p->p_thrslpid;
581 		if (ident == -1)
582 			sleepaddr = &globalsleepaddr;
583 		error = tsleep(sleepaddr, PUSER | PCATCH, "thrsleep",
584 		    (int)to_ticks);
585 	}
586 
587 out:
588 	p->p_thrslpid = 0;
589 
590 	if (error == ERESTART)
591 		error = ECANCELED;
592 
593 	return (error);
594 
595 }
596 
597 int
598 sys___thrsleep(struct proc *p, void *v, register_t *retval)
599 {
600 	struct sys___thrsleep_args /* {
601 		syscallarg(const volatile void *) ident;
602 		syscallarg(clockid_t) clock_id;
603 		syscallarg(struct timespec *) tp;
604 		syscallarg(void *) lock;
605 		syscallarg(const int *) abort;
606 	} */ *uap = v;
607 	struct timespec ts;
608 	int error;
609 
610 	if (SCARG(uap, tp) != NULL) {
611 		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
612 			*retval = error;
613 			return 0;
614 		}
615 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) {
616 			*retval = EINVAL;
617 			return 0;
618 		}
619 		SCARG(uap, tp) = &ts;
620 	}
621 
622 	*retval = thrsleep(p, uap);
623 	return 0;
624 }
625 
626 int
627 sys___thrwakeup(struct proc *p, void *v, register_t *retval)
628 {
629 	struct sys___thrwakeup_args /* {
630 		syscallarg(const volatile void *) ident;
631 		syscallarg(int) n;
632 	} */ *uap = v;
633 	long ident = (long)SCARG(uap, ident);
634 	int n = SCARG(uap, n);
635 	struct proc *q;
636 	int found = 0;
637 
638 	if (ident == 0)
639 		*retval = EINVAL;
640 	else if (ident == -1)
641 		wakeup(&globalsleepaddr);
642 	else {
643 		TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) {
644 			if (q->p_thrslpid == ident) {
645 				wakeup_one(&q->p_thrslpid);
646 				q->p_thrslpid = 0;
647 				if (++found == n)
648 					break;
649 			}
650 		}
651 		*retval = found ? 0 : ESRCH;
652 	}
653 
654 	return (0);
655 }
656 
657 void
658 refcnt_init(struct refcnt *r)
659 {
660 	r->refs = 1;
661 }
662 
663 void
664 refcnt_take(struct refcnt *r)
665 {
666 #ifdef DIAGNOSTIC
667 	u_int refcnt;
668 
669 	refcnt = atomic_inc_int_nv(&r->refs);
670 	KASSERT(refcnt != 0);
671 #else
672 	atomic_inc_int(&r->refs);
673 #endif
674 }
675 
676 int
677 refcnt_rele(struct refcnt *r)
678 {
679 	u_int refcnt;
680 
681 	refcnt = atomic_dec_int_nv(&r->refs);
682 	KASSERT(refcnt != ~0);
683 
684 	return (refcnt == 0);
685 }
686 
687 void
688 refcnt_rele_wake(struct refcnt *r)
689 {
690 	if (refcnt_rele(r))
691 		wakeup_one(r);
692 }
693 
694 void
695 refcnt_finalize(struct refcnt *r, const char *wmesg)
696 {
697 	struct sleep_state sls;
698 	u_int refcnt;
699 
700 	refcnt = atomic_dec_int_nv(&r->refs);
701 	while (refcnt) {
702 		sleep_setup(&sls, r, PWAIT, wmesg);
703 		refcnt = r->refs;
704 		sleep_finish(&sls, refcnt);
705 	}
706 }
707 
708 void
709 cond_init(struct cond *c)
710 {
711 	c->c_wait = 1;
712 }
713 
714 void
715 cond_signal(struct cond *c)
716 {
717 	c->c_wait = 0;
718 
719 	wakeup_one(c);
720 }
721 
722 void
723 cond_wait(struct cond *c, const char *wmesg)
724 {
725 	struct sleep_state sls;
726 	int wait;
727 
728 	wait = c->c_wait;
729 	while (wait) {
730 		sleep_setup(&sls, c, PWAIT, wmesg);
731 		wait = c->c_wait;
732 		sleep_finish(&sls, wait);
733 	}
734 }
735